Başvuru: Başvurunuzun ulaştığına dair bir onay mesajı gönderilecektir. Eğer üç dört gün içinde mesaj almamışsanız lütfen bir daha yazın, başvurunuz muhtemelen elimize geçmemiştir.
Kayıt: Belli aralıklarla başvurular değerlendirilir ve sonuçları e-postayla iletilir. Ödeme ve kayıtla ilgili tüm işlemler başvurunuz kabul edildikten sonra yapılacaktır.
Program
Eğitmen | Ders | 25.Oca | 1.Şub |
Yard. Doç. Salih Durhan | Geometrik bakışla değer cisimleri | 1 | |
Prof. Dr. Ali Nesin | İleri Düzeyde Lineer Cebir | 1 | |
Dr. Cihan Pehlivan | Artin`s primitive root conjecture | 1 | |
Yard. Doç. Hakan Güntürkün | Commutative Algebra | 1 | |
Arif Mardin | Measure, Integration and Probability Theory | 1 | 1 |
Yard. Doç. Kemal Ilgar Eroğlu | Ölçü Teorisi`nde bazı örtü teoremleri ve uygulamaları | 1 | 1 |
Prof. Dr. Selçuk Demir | Representation Theory of Infinite Symmetric Groups | 1 | |
Combinatorial Algebraic Geometry Workshop
|
|||
Prof. Dr. Feza Arslan | Computational Commutative Algebra and Grobner Basis | 1 | |
MSc. Alperen Ergür | Polynomial method in combinatorial algebraic geometry | 1 | |
Yard. Doç. Hakan Güntürkün | Enumerative tropical geometry | 1 | |
Doç. Dr. Ali Özgür Kişisel | Sylvester-Gallai type problems, Dirac-Motzkin conjecture | 1 | |
Yard. Doç. Dr. Özer Öztürk | Examples of polyhedral methods in algebraic geometry | 1 | |
Toplam | 6 | 8 |
İçerikler
Başlık: Geometrik bakışla değer cisimleri
Eğitmen: Yard. Doç. Salih Durhan
Kurum: ODTÜ
Tarih: 25-31 Ocak 2015
Önkoşul: Temel cebir kavramlarını iyi bilmek, güç serileri cisimleri ile aşinalık.
Seviye: İleri seviye lisans, yüksek lisans
İçerik: Değer cisimlerini ve genişlemelerini geometrik bir bakışla inceleyeceğiz. Tropikal geometrinin temel yöntemlerinin daha genel bağlamlarda nasıl işlediğini öğreneceğiz.
Başlık: İleri Düzeyde Lineer Cebir
Eğitmen: Prof. Dr. Ali Nesin
Kurum: İstanbul Bilgi Üniversitesi
Tarih: 25-31 Ocak 2016
Önkoşul: Lineer cebir
Seviye: Lisans 3, 4 ve lisansüstü
İçerik: Tensör çarpımı, mültilineer formlar, bilineer formlar.
Başlık: Artins primitive root conjecture
Eğitmen: Dr. Cihan Pehlivan
Kurum: –
Tarih: 25-31 Ocak 2016
Önkoşul: Graduate Algebra, Basic Number Theory.
Seviye: Graduate, advanced undergraduate.
İçerik: Big “O”, little “O” notations, basic properties of primitive roots, history of Artins primitive conjecture, Artins heuristic approach, basic facts from algebraic and analytic number theory, modified heuristic approach, Chebotarev density theorem, Hooleys proof under GRH.
Textbook: 1. Hooley, C.(1967). “On Artins conjecture”. J. Reine Angew. Math. 225: 209220.
2) Moree, P. (2012). “Artins primitive root conjecturea survey.” Integers 10(6): 1305-1416.
Başlık: Measure, Integration and Probability Theory
Eğitmen: Arif Mardin
Kurum: –
Tarih: 25 Ocak 7 Şubat 2016
Önkoşul: A solid background in first-year undergraduate analysis. Familiarity with the basic notions of discrete probability theory such as probability spaces, random variables, independence could be helpful. This course will be part of recommended preparatory courses for students who are planning to participate in “Şirince Summer School in Mathematical Physics”, which will take place at Nesin Mathematics Village in summer 2016.
Seviye: Graduate, advanced undergraduate.
İçerik: The purpose of this course is to present first the basics of Lebesgue integrals and some of their most important properties. We then give a measure theoretic treatment of the essentials of probability theory. The lectures will develop both Lebesgue measure and integration, together with probability theory in parallel: As soon as sufficient progress is made in the former, its uses in the latter will be made explicit. The consequence of this approach is the natural continuity of the topics extending over two weeks. Students wishing to join in on the second week will be assumed to possess a working knowledge of measurable sets, sigma-algebras, measurable functions, definition and basic properties of the Lebesgue integral, probability spaces, random variables, probability distributions and their fundamental properties in the discrete case. Topics of the second week will include independence, conditional expectations, martingales, convergence of random variables, weak and strong laws of large numbers.
Dil: İngilizce
Kaynakça:
1) J.Rosenthal: “A First Look at Rigorous Probability Theory”, World Scientific, 2010
2) D.Williams: “Probability With Martingales”, Cambridge University Press, 1992
3) R.Durrett: “Probability: Theory and Examples”, Wadsworth, 1994
4) P.Billingsley: “Probability and Measure”, Wiley, 1979.
Başlık: Ölçü Teorisinde bazı örtü teoremleri ve uygulamaları
Eğitmen: Yard. Doç. Kemal Ilgar Eroğlu
Kurum: İstanbul Bilgi Üniversitesi
Tarih: 25 Ocak 7 Şubat 2016
Önkoşul: Lisans düzeyi ölçü teorisi
Seviye: İleri lisans, yüksek lisans
İçerik: Bu derste, Ölçü Teorisi`ndeki standart lisans konularından biraz daha ileri düzeydeki bazı sonuçlara değineceğiz. Özel olarak Vitali ve Besicovitch Örtü Teoremleri ve bunların uygulaması olarak mutlak sürekli ve Lipschitz fonksiyonlarda türevlilik, Lebesgue Yoğunluk Teoremi, ölçülerin birbirlerine göre türevleri gibi konulara bakacağız.
Başlık: Commutative Algebra
Eğitmen: Yar. Doç. Hakan Güntürkün
Kurum: Gediz Üniversitesi
Tarih: 25-31 Ocak 2016
Önkoşul: Algebraic Notions as Rings, Fields, Homomorphisms.
Seviye: İleri seviye lisans, lisansüstü
İçerik: Ideal-Variety Correspondence, Hilberts Nullstellensatz, Affine Varieties, Intersection Multiplicity, Projective Varieties, Maximal Spectrum, Prime Spectrum.
Combinatorial Algebraic Geometry Workshop
Feza Arslan: Computational Commutative Algebra and Grobner Basis
Monomial orderings, division algorithm, Gröbner basis, basic concepts of algebraic geometry and elimination theory.
Alperen Ergür: Polynomial method in combinatorial algebraic geometry
In recent years many outstanding problems in combinatorial geometry is solved by means of algebraic and topological tools. We are planning to present Finite Field Kakeya Conjecture, Joints Conjecture, Combinatorial Nullstellesatz and Polynomial Ham Sandwich Theorem in this direction. If time permits further topics will be discussed.
Hakan Güntürkün: Enumerative tropical geometry
Introduction to tropical geometry, tropical lines, tropical curves, classical enumeration of curves, tropical enumeration of curves.
Özgür Kişisel: Sylvester-Gallai type problems, Dirac-Motzkin conjecture
Suppose we have a line arrangement in real projective space. A point is called ordinary if it lies in the intersection of exactly two lines of the arrangement. If there are at least three lines and not all lines are concurrent, then there exist at least three ordinary points. If the number of lines n tends to infinity then asymptotically, the number of ordinary points is at least n/2. The last statement is a recently resolved conjecture. The aim of these lectures will be to describe these problems and similar variants.
Özer Öztürk: Examples of polyhedral methods in algebraic geometry
With a focus on toric varieties we shall discuss several applications of polyhedral methods in algebraic geometry.