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1. Outline

Mirror symmetry

• Strominger–Yau–Zaslow (SYZ conjecture):

mirror symmetry of Calabi-Yau 3-folds would be explained in terms of special

Lagrangian (SL) dual T 3-fibrations (including singular fibers).

X6

f   

(X6)∗

f∗
||

B3

For generic b ∈ B, f−1(b) and (f ∗)−1(b) are “dual” SL T 3.

• Leung–Yau–Zaslow:

If a SL dual torus fibration is given, “SL submanifolds” correspond to “deformed

Hermitian Yang–Mills (dHYM) connections” via the real Fourier–Mukai transform.

In general, if X is the total space of a torus bundle, we have

S̃ub :=

{
(graphical)

submanifolds of X

}
−−−−→
real FM

{
Hermitian connections

of C → X∗

}
=: C̃onn.

(X∗ is given by replacing each fiber of X (∼= T k) with the dual torus.)

• This correspondence is given explicitly.

• Volume of a submanifold (in the usual sense)

⇝ “mirror” volume Ṽ for ∇ ∈ C̃onn.

• Ṽ can be defined without torus bundle structure on X, i.e.,

There exists a functional V for Hermitian connections of a (general) line bundle

over a (general) Riemannian manifold s.t.

V (∇) = Ṽ (∇) for ∇ ∈ C̃onn.

• Critical points of V are called minimal connections.

• We can show that

N ∈ S̃ub is a minimal submanifold ⇐⇒ ∇ := (real FM)(N) ∈ C̃onn is a minimal conn.

In this sense, minimal connections are “mirrors” of minimal submanifolds.
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The purpose of this course is to describe these details. The outline is as follows.

(1) Outline

(2) Review of connections

(3) The real Fourier–Mukai transform

(4) “Mirror” volume and its properties

(5) Calibrated submanifolds and their mirrors

2. Review of connections

Suppose that

• Xn: an oriented connected manifold,

• (L, h) −→ X: a smooth complex Hermitian line bundle.

Let me clarify the notation. First, L is a vector bundle with fiber C and there is a complex

structure JL, i.e., JL ∈ Γ(X,EndL) s.t. J2
L = −idL. JL corresponds to the multiplication of√

−1 ∈ C. Indeed, C acts on L by

C× L −→ L, (a+ b
√
−1, v) 7−→ (a+ b

√
−1) · v := av + bJL(v).(2.1)

We can consider the case rankL > 1, but we only consider the case rankL = 1 in this course.

Also, h ∈ Γ(X,L∗ ⊗ L∗) is the Hermitian metric of L. That is, for each x ∈ X,

hx : Lx × Lx −→ R is an inner product and JL preserves h, i.e., h(JL(·), JL(·)) = h.

Next, we define Hermitian connections of L. Set

Ωk(X,L) := Γ(X,ΛkT ∗X ⊗ L) := {smooth sections of ΛkT ∗X ⊗ L}.

In other words, Ωk(X,L) is the space of L-valued k-forms. Note that ΛkT ∗X⊗L = ΛkT ∗X⊗R

L admits a C-action induced from (2.1).

Definition 2.1. A map ∇ : Ω0(X,L) → Ω1(X,L) is called a Hermitian connection if

(1) ∇ is C-linear, i.e.,

∇
(
(a+ b

√
−1) · s

)
= (a+ b

√
−1) · ∇s

for any a, b ∈ R and s ∈ Γ(X,L).

(2) ∇ satisfies the Leibnitz rule, i.e.,

∇(fs) = df ⊗ s+ f∇s

for any smooth function f ∈ Ω0(X) and s ∈ Γ(X,L).

(3) ∇h = 0, i.e.,

dh(s1, s2) = h(∇s1, s2) + h(s1,∇s2)

for any s1, s2 ∈ Γ(X,L).
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Set

A0 := {Hermitian connections of (L, h)}.

Lemma 2.2. For any fixed ∇0 ∈ A0, we have

A0 = ∇0 + Ω1(X,Endskew-Herm(L)) = ∇0 +
√
−1Ω1(X) · idL,

Note that

Ω1(X,Endskew-Herm(L)) =Γ(X,T ∗X ⊗ Endskew-Herm(L)),

Endskew-Herm(L) :={T : L −→ L | T is C-linear, h(T (·), ·) + h(·, T (·)) = 0} (∗)
=

√
−1R · idL.

Proof. First we show (*). Recall that End(L) := {T : L −→ L | T is C-linear} has a global

section idL. Since L is a line bundle, any element T of End(L) is of the form T = z · idL for

z = x+ y
√
−1 ∈ C. Then for u, v ∈ L, we have

h(T (u), v) = h(xu+ yJL(u), v),

h(u, T (v)) = h(u, xv + yJL(v)) = xh(u, v)− yh(JL(u), v).

Thus

h(T (u), v) + h(u, T (v)) = 0 ⇐⇒ 2xh(u, v) = 0.

Since u, v is arbitrary, we see that x = 0 and obtain Endskew-Herm(L) ⊂
√
−1R · idL. The

converse is easy to show.

Take any ∇1 ∈ A0. By (2) of Definition 2.1, we see that

(∇1 −∇0)(fs) = f(∇1 −∇0)s.

This means that ∇1 −∇0 is a tensor, i.e., there is T ∈ Ω1(X,End(L)) s.t. ∇1 = ∇0 + T .

By (3), T satisfies h(Ts1, s2)+h(s1, T s2) = 0, which implies that T ∈ Ω1(X,Endskew-Herm(L)).

□

From ∇ ∈ A0, we can define the exterior covariant derivative d∇ : Ωp(X,L) −→
Ωp+1(X,L) by

d∇s = ∇s for s ∈ Ω0(X,L),

d∇(α ∧ s) = dα ∧ s+ (−1)kα ∧ d∇s for α ∈ Ωk(X) and s ∈ Ωℓ(X,L).

When ℓ = 0, we consider α ∧ s = a⊗ s.

Lemma 2.3. For a smooth function f ∈ Ω0(X) and s ∈ Γ(X,L), we have

(d∇ ◦ d∇)(fs) = f(d∇ ◦ d∇)(s) ∈ Ω2(X,L).
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Thus d∇ ◦ d∇ is a tensor. We call

F∇ := d∇ ◦ d∇ ∈ Ω2(X,End(L))

the curvature of ∇ ∈ A0.

Proof. We compute

(d∇ ◦ d∇)(fs) =d∇(df ⊗ s+ fd∇s)

=− df ∧ d∇s+ df ∧ d∇s+ f(d∇ ◦ d∇)(s) = f(d∇ ◦ d∇)(s).

□

For ξ ∈ Ωk(X,L) and η ∈ Ωℓ(X,L), define

h(ξ, η) ∈ Ωk+ℓ(X)

by taking the metric for L-parts and the wedge product for differential form parts. That is,

setting ξ =
∑

i αi ⊗ si and η =
∑

j α
′
j ⊗ s′j for αi ∈ Ωk(X), α′

j ∈ Ωℓ(X) and si, s
′
j ∈ Γ(X,L),

we have

h(ξ, η) =
∑
i,j

αi ∧ α′
jh(si, s

′
j).

Then we can show the following.

Fact 2.4. For ξ ∈ Ωk(X,L) and η ∈ Ωℓ(X,L), we have

dh(ξ, η) = h(d∇ξ, η) + (−1)kh(ξ, d∇η).

This is proved by a straightforward computation and we omit the proof. Using this fact,

we can see the following.

Lemma 2.5. We have

F∇ ∈ Ω2(X,Endskew-Herm(L)) =
√
−1Ω2(X) · idL,

and we may set

F∇ =
√
−1E∇ · idL for E∇ ∈ Ω2(X).

Proof. Recall that

dh(s1, s2) = h(∇s1︸︷︷︸
=d∇s1

, s2) + h(s1, ∇s2︸︷︷︸
=d∇s2

)

for any s1, s2 ∈ Γ(X,L). Taking d on both sides, we obtain

0 =h(d∇d∇s1, s2)− h(d∇s1, d
∇s2) + h(d∇s1, d

∇s2) + h(s1, d
∇d∇s2)

=h(F∇(s1), s2) + h(s1, F∇(s2)),

which implies that F∇ ∈ Ω2(X,Endskew-Herm(L)). □



5

We also see the following.

Lemma 2.6. For any ξ ∈ Ωk(X,L), we have

(d∇ ◦ d∇)(ξ) = F∇ ∧ ξ.

This notation means that we take the wedge product for differential form parts of F∇ and

ξ, and also take the composition of the Endskew-Herm(L) part of F∇ and the L part of ξ.

Proof. We only have to show this for ξ = α⊗ s for α ∈ Ωk(X) and s ∈ Γ(X,L) because ξ is

written as a finite sum of these locally. We compute

(d∇ ◦ d∇)(ξ) =d∇(dα⊗ s+ (−1)kα ∧ d∇s)

=(−1)k+1dα ∧ d∇s+ (−1)kdα ∧ d∇s+ α ∧ (d∇ ◦ d∇)(s)

=α ∧ (d∇ ◦ d∇)︸ ︷︷ ︸
=F∇

(s) = F∇ ∧ (α ∧ s).

□

Proposition 2.7 (Bianchi identity). We have dE∇ = 0 for any ∇ ∈ A0.

Proof. For s ∈ Γ(X,L), we compute

(d∇ ◦ d∇ ◦ d∇)(s) =d∇
(
(d∇ ◦ d∇)(s)

)
=d∇(F∇ ⊗ s) = d∇(

√
−1E∇ ⊗ s) =

√
−1dE∇ ⊗ s+

√
−1E∇ ∧ d∇s,

(d∇ ◦ d∇ ◦ d∇)(s) =(d∇ ◦ d∇)(d∇s) = F∇ ∧ d∇s =
√
−1E∇ ∧ d∇s.

Hence we have dE∇ ⊗ s = 0. Since s is arbitrary, we see that dE∇ = 0. □

We also see the following.

Lemma 2.8. For any ∇ ∈ A0 and a ∈ Ω1(X), we have

F∇+
√
−1a·idL = F∇ +

√
−1da · idL.

Proof. Set ∇′ = ∇+
√
−1a · idL. For any s ∈ Γ(X,L), we compute

d∇
′
s = ∇′s = ∇s︸︷︷︸

=d∇s

+
√
−1a⊗ s.

In addition, for any ξ ∈ Ωk(X,L), we see that

d∇
′
ξ = d∇ξ +

√
−1a ∧ ξ(2.2)

Indeed, we only have to show this for ξ = α ⊗ s for α ∈ Ωk(X) and s ∈ Γ(X,L) as above.

We compute

d∇
′
ξ = dα⊗ s+ (−1)kα ∧ ∇′s︸︷︷︸

=d∇s+
√
−1a⊗s

= d∇ξ +
√
−1a ∧ α⊗ s︸ ︷︷ ︸

=ξ

.
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Hence we obtain (2.2). Thus

d∇
′
(d∇

′
s) =d∇

′
(d∇s+

√
−1a⊗ s)

= d∇
′
(d∇s)︸ ︷︷ ︸

=d∇(d∇s)+
√
−1a∧d∇s

+
√
−1da⊗ s−

√
−1a ∧ d∇

′
s︸︷︷︸

=d∇s+
√
−1a⊗s

= F∇ ⊗ s+
√
−1da⊗ s.

□

Next, we study flat connections.

Definition 2.9. A Hermitian connection ∇ ∈ A0 is called flat if E∇ = 0.

A Hermitian line bundle (L, h) is called flat if it admits a flat connection.

Example 2.10. A trivial bundle L = X × C with the product metric, where C is endowed

with the standard flat metric, is a flat line bundle.

Indeed, the exterior derivative d defines a flat connection. That is, since the section of L

is a C-valued function, we can define a connection of L by

∇s = ds for s ∈ Ω0(X,L) = Ω0(X,C) := {X −→ C: a smooth map}.

Then this ∇ is a Hermitian connection and satisfies d∇ ◦ d∇ = d ◦ d = 0.

Lemma 2.11. Let ∇0 be a flat connection of a flat line bundle L. Then any flat Hermitian

connection of L is of the form ∇0 +
√
−1a · idL for a closed 1-form a ∈ Ω1(X).

Proof. Recall that any element of A0 is of the form ∇0 +
√
−1a · idL for a ∈ Ω1(X). By

Lemma 2.8, we have

F∇0+
√
−1a·idL = F∇0 +

√
−1da · idL =

√
−1da · idL,

which implies that da = 0. □

There is a canonical group acting on A0. Let GU be the group of unitary gauge transfor-

mations of (L, h). Precisely,

GU = { f · idL | f ∈ Ω0(X,C), |f | = 1 } ∼= C∞(X,S1).

The action GU ×A0 → A0 is defined by

(λ,∇) 7−→ λ−1 ◦ ∇ ◦ λ.

More explicitly, for λ = f · idL and s ∈ Γ(X,L), we have

(λ−1 ◦ ∇ ◦ λ)(s) = f−1∇(fs) = f−1(df ⊗ s+ f∇s) = ∇s+ f−1df ⊗ s,

and hence,

λ−1 ◦ ∇ ◦ λ = ∇+ f−1df ⊗ idL.
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Thus, the GU -orbit through ∇ ∈ A0 is given by ∇+KU · idL, where

KU := { f−1df ∈
√
−1Ω1 | f ∈ Ω0(X,C), |f | = 1 }.

Lemma 2.12. For any ∇ ∈ A0, the curvature 2-form F∇ is invariant under the action of GU .

Proof. This statement says that F∇+f−1df⊗idL = F∇ for any f ∈ Ω0(X,C) with |f | = 1. By

Lemma 2.8, we see that

F∇+f−1df⊗idL = F∇ + d(f−1df)⊗ idL = F∇.

□

Denote by Aflat the space of flat Hermitian connections:

Aflat = {∇ ∈ A0 | F∇ = 0}.

Lemma 2.12 implies that GU acts on Aflat. Then we have the following.

Fact 2.13. Let L be a flat line bundle with a flat connection ∇0. Then

Aflat/GU

∼=−→ H1(X,R)/2πH1(X,Z), [∇0 +
√
−1a · idL] 7−→ [a],

where we identify H1(X,Z) with its image in H1
dR(X) = H1(X,R), that is,

H1(X,Z) =
{
[α] ∈ H1

dR(X)

∣∣∣∣ ∫
A

α ∈ Z for any A ∈ H1(X,Z)
}
.

By Lemmas 2.11 and 2.12, we see that this is well-defined and surjective.

The injectivity is a little bit complicated. For example, this follows from Lemma 4.1 of

• K. Kawai and H. Yamamoto, Mirror of volume functionals on manifolds with special

holonomy. Adv. Math. 405 (2022), Paper No. 108515, 69 pp.

3. The real Fourier–Mukai transform

In this section, we introduce the real Fourier–Mukai transform for a torus fibration, which

gives the “mirror” correspondence, and give some computations using it.

For simplicity, we consider the following case:

X = Bk × T n, X∗ = Bk × (T n)∗,

where Bk ⊂ Rk is an open set and

T n = Rn/2πZn, (T n)∗ = (Rn)∗/2π(Zn)∗

and (Zn)∗ = {α ∈ (Rn)∗ | ⟨α, v⟩ ∈ Z for ∀v ∈ Zn}.
The idea is:

(1) First, we assign a ∈ T n to a Hermitian connection ∇a of (T n)∗ × C → (T n)∗.
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(2) Using this, we have{
graphical

submanifolds of X

}
∼= //

{
maps

Bk → T n

}
//

{
Hermitian connctions

of X∗ × C → X∗

}

graph(f) oo // f � // ∇ :=
{
∇f(x)

}
x∈Bk

where graph(f) := {(x, f(x)) ∈ X | x ∈ Bk}.
This is the real Fourier–Mukai transform. In this sense, the real Fourier–Mukai trans-

form gives the correspondence between graphical submanifolds of X and the Hermitian

connections of X∗ × C → X∗.

The correspondence (1) is given by the following identification:

T n = Rn/2πZn

∼= H1((T n)∗,R)/2πH1((T n)∗,Z)
∼= {flat Hermitian connections of (T n)∗ × C → (T n)∗}/GU .

Explicitly,

(a1, · · · , an) 7−→

[
n∑

j=1

ajdyj

]
7−→

[
d+

√
−1

n∑
j=1

ajdyj

]
,

where (y1, · · · , yn) are coordinates on (T n)∗.

(2) Given a map f = (f 1, · · · , fn) : Bk −→ T n, we obtain a Hermitian connection

∇ :=
{
∇f(x)

}
x∈Bk :

∇ = d+
√
−1

n∑
j=1

f j(x)dyj.

We call ∇ the real Fourier–Mukai transform of f (or graph(f)).

Note that ∇ is defined up to GU -action, or in other words, up to the addition of elements

of 2πZn. That is, we may replace (f 1, · · · , fn) with (f 1 + z1, · · · , fn + zn) for (z1, · · · , zn) ∈
2πZn. But the curvature

F∇ =
√
−1

n∑
j=1

df j ∧ dyj

is independent of this addition.

By this explicit correspondence, we might be able to import many notions for subman-

ifolds to the connection side. Let’s do some explicit calculations here.
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First, we will describe the volume form of graph(f) in terms of the real Fourier–Mukai

transform ∇. Let us introduce the notation.

• (x1, · · · , xk): coordinates of Bk ⊂ Rk,

• f = (fk+1, · · · , fk+n) : Bk −→ T n (We change the index slightly.),

• (yk+1, · · · , yk+n): coordinates of T n.

The graph of f is given by

graph(f) := { (x, f(x)) | x ∈ B },

which is a k-dimensional submanifold of X = Bk × T n.

The real Fourier–Mukai transform ∇ of f is given by

∇ = d+
√
−1

k+n∑
a=k+1

fadya, F∇ =
√
−1E∇ =

√
−1

k∑
i=1

k+n∑
a=k+1

∂fa

∂xi
dxi ∧ dya.

Define

ι : Bk −→ X = Bk × T n, ι(x) = (x, f(x)).

Set

∂i :=
∂

∂xi
, ∂a :=

∂

∂ya
, fa

i :=
∂fa

∂xi

for 1 ≤ i ≤ k and k + 1 ≤ a ≤ k + n, and

vi := ι∗(∂i) = ∂i +
∂f

∂xi
= ∂i +

k+n∑
a=k+1

fa
i ∂a for i = 1, · · · , k.

Denote by ⟨·, ·⟩ the standard metric on X = Bk × T n, i.e.,

⟨·, ·⟩ =
k∑

i=1

dxi ⊗ dxi +
k+n∑

a=k+1

dya ⊗ dya.

Recall that the volume form on Bk w.r.t. the induced metric ι∗⟨·, ·⟩ is given by√
det(⟨vi, vj⟩)i,j=1,··· ,k · dx1 ∧ · · · ∧ dxk.

Proposition 3.1. Define E♯
∇ ∈ Γ(X,Endskew(TX)) by

⟨E♯
∇(·), ·⟩ = E∇, i.e., E♯

∇ =
k∑

i=1

k+n∑
a=k+1

fa
i

(
dxi ⊗ ∂a − dya ⊗ ∂i

)
.

Then we have √
det(⟨vi, vj⟩) =

√
det
(
idTX + E♯

∇

)
.

We observe that the right hand side is also defined for any Hermitian connection on a

(general) Hermitian line bundle (which does not admit a torus bundle structure).
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Proof. Since vi = ι∗(∂i) = ∂i +
∂f
∂xi = ∂i +

∑k+n
a=k+1 f

a
i ∂a, we have

⟨vi, vj⟩ = δij +

〈
∂f

∂xi
,
∂f

∂xj

〉
= δij +

k+n∑
a=k+1

fa
i f

a
j .

Hence

det(⟨vi, vj⟩) = det
(
Ik +

tAA
)
,

where Ik is the identity matrix of dimension k, A is a n× k matrix defined by

A = (fa
i )k+1≤a≤k+n,1≤i≤k

and tA is the transpose of A.

Now fix x ∈ B and consider the value at x. Since tAA is symmetric, it is diagonalizable

with real eigenvalues {λ1, · · · , λk}. Note that λj ≥ 0 for each j because for any v ∈ Rk,

⟨tAAv, v⟩ = |Av|2 ≥ 0.

We also have

E♯
∇ =

(
0 −tA

A 0

)
, (E♯

∇)
2 =

(
−tAA 0

0 −AtA

)
,

t
(
idTX + E♯

∇

)(
idTX + E♯

∇

)
= idTX − (E♯

∇)
2.

Thus for the computation, we should know eigenvalues of AtA.

Lemma 3.2. We have

{nonzero eigenvalues of tAA} = {nonzero eigenvalues of AtA}.

Proof. Let λ ̸= 0 be an eingenvalue of tAA. Take an eigenvector 0 ̸= v ∈ Rk, i.e., tAAv = λv.

Then

AtA(Av) = A(tAAv) = λAv.

If Av = 0, we have 0 = tAAv = λv. This is impossible since λ, v ̸= 0. Thus Av ̸= 0 and λ is

an eigenvalue of AtA.

The reverse inclusion also holds by replacing A with tA. □

Thus assuming λ1, · · · , λℓ ̸= 0, λℓ+1 = · · · = λk = 0, we see that

det
(
Ik +

tAA
)
= (1 + λ1) · · · (1 + λℓ).
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We also compute

det
(
idTX + E♯

∇

)2
=det

(
t
(
idTX + E♯

∇

)(
idTX + E♯

∇

))
=det

(
I + tAA 0

0 I + AtA

)
= (1 + λ1)

2 · · · (1 + λℓ)
2.

Note that det
(
idTX + E♯

∇

)
> 0 because E♯

∇ is skew-symmetric so it is conjugate to(
0 −µ1

µ1 0

)
⊕

(
0 −µ2

µ2 0

)
⊕ · · ·

for µj ∈ R, so det
(
idTX + E♯

∇

)
= (1+µ2

1)(1+µ2
2) · · · > 0. Hence the proof is completed. □

We give another computation. When S := graph(f) is a minimal submanifold, we will see

what condition is imposed for its real Fourier–Mukai transform ∇.

Recall that E♯
∇ =

∑k
i=1

∑k+n
a=k+1 f

a
i (dx

i ⊗ ∂a − dya ⊗ ∂i). Then observe that

vi = ∂i +
k+n∑

a=k+1

fa
i ∂a = (idTX + E♯

∇)(∂i)

for 1 ≤ i ≤ k. Set

ηa := (idTX + E♯
∇)(∂a) = ∂a −

k∑
j=1

fa
j ∂j

for k + 1 ≤ a ≤ k + n.

Lemma 3.3. {vi}ki=1 spans TS and {ηa}k+n
a=k+1 spans the orthogonal complement (normal bun-

dle) T⊥S.

Proof. It is clear that {vi}ki=1 spans TS by the definition of S = graph(f). We can compute

⟨vi, ηa⟩ =

〈
∂i +

k+n∑
b=k+1

f b
i ∂b , ∂a −

k∑
j=1

fa
j ∂j

〉
= −fa

i + fa
i = 0

for any i = 1, · · · , k and a = k + 1, · · · , k + n. □

We denote the induced metric by g = (gij):

gij = ⟨vi, vj⟩ = δij + fa
i f

a
j and set g−1 = (gij).

Also, set

G∇ := t
(
idTX + E♯

∇

)(
idTX + E♯

∇

)
= idTX − (E♯

∇)
2.
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Define a differential operator δ∇ : Ωp(X) −→ Ωp−1(X) by

δ∇α := −
k∑

i=1

i(G−1
∇ (∂i))D∂iα−

k+n∑
a=k+1

i(G−1
∇ (∂a))D∂aα,

where D is the (flat) Levi-Civita connection of ⟨·, ·⟩.

Proposition 3.4. The graph f is minimal if and only if δ∇E∇ = 0.

We observe that δ∇E∇ is defined for any Hermitian connection on a (general) Hermitian

line bundle (which does not admit a torus bundle structure).

Proof. Recall

ι : Bk −→ X = Bk × T n, ι(x) = (x, f(x)).

Then the graph f is minimal if and only if the mean curvature

H :=
k∑

i,j=1

gij
(
Dι∗TX

∂i
(ι∗(∂j))

)⊥
vanishes, where Dι∗TX is the induced connection on the pullback ι∗TX from the Levi-Civita

connection D of ⟨·, ·⟩ by ι, and ⊥: ι∗TX = TS ⊕ T⊥S → T⊥S is the orthogonal projection.

Since

Dι∗TX
∂i

(ι∗(∂j)) = Dι∗TX
∂i

((
∂j +

k+n∑
a=k+1

fa
j ∂a

)
◦ ι

)
=

k+n∑
a=k+1

fa
ij∂a◦ι, where fa

ij :=
∂2fa

∂xi∂xj
,

by Dι∗TX
∂i

(ι∗(∂j)) = (D∂i∂j) ◦ ι = 0, etc., we have〈
Dι∗TX

∂i
(ι∗(∂j)), ηa

〉
= fa

ij

for k + 1 ≤ a ≤ k + n. Since {ηa}k+n
a=k+1 spans T⊥S, it follows that H = 0 if and only if

k∑
i,j=1

gijfa
ij = 0 for any k + 1 ≤ a ≤ k + n.(3.1)

Next, we compute δ∇E∇. Since

E♯
∇ =

k∑
i=1

k+n∑
a=k+1

fa
i (dx

i ⊗ ∂a − dya ⊗ ∂i),

we have

G∇ = idTX − (E♯
∇)

2 =
k∑

i,j=1

(
δij +

k+n∑
a=k+1

fa
i f

a
j

)
dxi ⊗ ∂j +

k+n∑
a,b=k+1

(
δab +

k∑
i=1

fa
i f

b
i

)
dya ⊗ ∂b.
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Then it follows that G−1
∇ is a linear combination of dxi ⊗ ∂j and dya ⊗ ∂b. Using this, we

compute

δ∇E∇

=−
k∑

i=1

i(G−1
∇ (∂i))D∂i

(
k∑

j=1

k+n∑
a=k+1

fa
j dx

j ∧ dya

)
−

k+n∑
a=k+1

i(G−1
∇ (∂a))D∂a

(
k∑

j=1

k+n∑
a=k+1

fa
j dx

j ∧ dya

)
︸ ︷︷ ︸

=0

=−
k∑

i,j=1

k+n∑
a=k+1

fa
ijdx

j(G−1
∇ (∂i))dy

a,

where we use the fact that fa is a function of (x1, · · · , xk).

Since gij = ⟨vi, vj⟩ = ⟨G∇(∂i), ∂j⟩, we have

dxj(G−1
∇ (∂i)) = ⟨G−1

∇ (∂i), ∂j⟩ = gij,

and hence

δ∇E∇ = −
k∑

i,j=1

k+n∑
a=k+1

gijfa
ijdy

a.(3.2)

Then by (3.1) and (3.2), the proof is completed. □

4. “Mirror” volume and its properties

Until now we have considered the case when the manifold is Bk ×T n. The calculations at

the end of the previous section imply that the “volume functional” can be defined in a more

general situation. Indeed, we can define as follows.

Suppose that

• (Xn, g): a compact oriented connected Riemannian manifold,

• (L, h) → X: a smooth complex Hermitian line bundle,

• A0 = {Hermitian connections of (L, h)}.

For each ∇ ∈ A0, define E♯
∇ ∈ Γ(X,Endskew(TX)) by

g(E♯
∇(·), ·) = E∇.

Definition 4.1. Define the volume functional V : A0 −→ R by

V (∇) :=

∫
X

v(∇)volg, v(∇) :=

√
det
(
idTX + E♯

∇

)
.

The description of v(∇) is given in Proposition 3.1, where we describe the volume form of

the graphical submanifold in terms of its real Fourier–Mukai transform. So in this sense, V

can be considered as the “mirror” of the (standard ) volume functional for submanifolds.
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V is called the Dirac-Born-Infeld (DBI) action in physics.

As before, we can define the following tensor. (Recall that tE♯
∇ = −E♯

∇.)

G∇ := t
(
idTX + E♯

∇

)
◦
(
idTX + E♯

∇

)
= idTX − E♯

∇ ◦ E♯
∇.

The tensor G∇ is useful for our computation.

Lemma 4.2. (1)

v(∇) =

√
det
(
idTX + E♯

∇

)
=

√
1 + |E∇|2 +

∣∣∣∣E2
∇
2!

∣∣∣∣2 + ∣∣∣∣E3
∇
3!

∣∣∣∣2 + · · ·.

(2) v(∇) ≥ 1.

(3) G∇ is positive definite.

(=⇒ G∇ is considered as the ”metric” deformed by ∇.)

(4) v(∇) = (detG∇)
1/4.

Proof. (1) Fix x ∈ X and consider the value at x. For simplicity, we assume that dimX = 6.

Since E♯
∇ is skew-symmetric, there exist λ1, λ2, λ3 ∈ R and h ∈ O(TxX) ∼= O(6) such that

h−1E♯
∇h =

(
0 −λ1

λ1 0

)
⊕

(
0 −λ2

λ2 0

)
⊕

(
0 −λ3

λ3 0

)
.

In other words, we have

h∗E∇ = λ1e
1 ∧ e2 + λ2e

3 ∧ e4 + λ3e
5 ∧ e6

for an orthonormal basis {ei}6i=1 of T ∗
xX. Then, we obtain

det
(
idTX + E♯

∇

)
=(1 + λ2

1)(1 + λ2
2)(1 + λ2

3)

=1 +
3∑

i=1

λ2
i + (λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3) + λ2

1λ
2
2λ

2
3

=1 + |E∇|2 +
∣∣∣∣E2

∇
2!

∣∣∣∣2 + ∣∣∣∣E3
∇
3!

∣∣∣∣2.
(2) is immediate from (1). We can also check (3), (4) easily. □

We might want to consider the volume functional on a noncompact manifold. But since

v(∇) ≥ 1, when X is noncompact and Vol(X) = ∞, we always have V (∇) = ∞, which is

not so good.

Then define the normalized volume functional V 0 : A0 −→ [0,∞] by

V 0(∇) =

∫
X

(v(∇)− 1)volg.
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We see that

V 0(∇) = 0 ⇐⇒ E∇ = 0.

Then we can consider the first variation of V 0 (or V ) and obtain the following.

Proposition 4.3 (The first variation). Let {∇t}t∈(−ε,ε) ⊂ A0 be a compactly supported varia-

tion of ∇ = ∇0 ∈ A0 with V 0(∇) < ∞. Set

a =
1√
−1

d

dt
∇t

∣∣∣∣
t=0

∈ Ω1
c = {compactly supported 1-forms }.

Then

d

dt
V 0(∇t)

∣∣∣∣
t=0

= −⟨a,H(∇)⟩L2 .

Here,

H(∇) = v(∇) · (G−1
∇ )∗

(
n∑

j=1

i(G−1
∇ (ej))DejE∇

)
∈ Ω1(X),

where D is the Levi-Civita connection of g and {ej} is a local orthonormal frame.

Definition 4.4. We call H(∇) the mean curvature of ∇ ∈ A0. ∇ ∈ A0 is said to be minimal

if H(∇) = 0.

This proof requires a large amount of calculation. I omit the proof. For the proof, see the

proof of Proposition 5.1 of

• K. Kawai, A monotonicity formula for minimal connections, arXiv:2309.11796.

Remark 4.5. We can consider the “mirror” mean curvature flow. That is, a smooth family

{∇t }t∈[0,T ) ⊂ A0, where T ∈ (0,∞], satisfies the “mirror” mean curvature flow if

∂

∂t

(
∇t√
−1

)
= H(∇t).

The study of this flow would be interesting. The short-time existence and uniqueness is

proved in Theorem 3.7 of

• K. Kawai and H. Yamamoto, Mirror of volume functionals on manifolds with special

holonomy. Adv. Math. 405 (2022), Paper No. 108515, 69 pp.

We can understand the minimality condition as follows.

For ∇ ∈ A0, define δ∇ : Ωk → Ωk−1 and ∆∇ : Ωk → Ωk by

δ∇α := −
n∑

j=1

i(G−1
∇ (ej))Dejα, ∆∇ := dδ∇ + δ∇d.

We can check that
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• ∆∇ is an elliptic operator.

• E∇ = 0 =⇒ δ∇ = d∗.

Corollary 4.6. ∇ ∈ A0 is minimal ⇐⇒ δ∇E∇ = 0.

Remark 4.7. Recall from Proposition 3.4 that the graph f is minimal if and only if δ∇E∇ =

0. Thus minimal (graphical) submanifolds correspond to minimal connections via the real

Fourier–Mukai transform. In this sense, minimal connections are considered as “mirrors” of

minimal submanifolds.

We see that this is a similar characterization to Yang–Mills connections: d∗E∇ = 0.

Since dE∇ = 0 by the Bianchi identity (Proposition 2.7), a minimal connection ∇ satisfies

∆∇E∇ = 0.

We can make this more precise as follows.

Remark 4.8. We can show that the formal “large radius limit” of the defining equation of

minimal connections (δ∇E∇ = 0) is that of Yang–Mills connections (d∗E∇ = 0). Consider

the family of metrics

{gr := r2g}r>0.

Denote by ♯r the ♯ operator for gr as before. That is,

E∇ = gr

(
E♯r

∇ (·), ·
)
= r2g

(
E♯r

∇ (·), ·
)

⇐⇒ E♯r
∇ =

1

r2
E♯

∇.

Set

Gr
∇ = idTX − E♯r

∇ ◦ E♯r
∇ = idTX − 1

r4
E♯

∇ ◦ E♯
∇.

Note that the Levi-Civita connection of gr agrees with that of g because the Christoffel

symbols are given by

Γk
ij =

1

2

n∑
ℓ=1

gkℓ
(
∂giℓ
∂xj

+
∂gjℓ
∂xi

− ∂gij
∂xℓ

)
.

Also, note that if {ej} is a local orthonormal frame for g, {ej/r} is a local orthonormal frame

for gr. So the defining equation of minimal connections with respect to gr is given by

δr∇E∇ := − 1

r2

n∑
j=1

i
(
(Gr

∇)
−1(ej)

)
DejE∇ = − 1

r2

n∑
j=1

i

((
idTX − 1

r4
E♯

∇ ◦ E♯
∇

)−1

(ej)

)
DejE∇ = 0.

Thus, formally taking the ”large radius limit”, which means the leading behaviour of Fr(∇)

as r → ∞, we obtain

d∗E∇ = 0.

This is exactly the defining equation of Yang–Mills connections. Thus it is natural to ex-

pect that minimal connections for a sufficiently large metric will behave like Yang–Mills

connections.
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Using this, we can show the following existence theorem.

Theorem 4.9. Suppose further that (X, g) is compact. Then there exists a minimal connection

with respect to gr for sufficiently large r > 0.

We use the fact that there is a Yang-Mills connection for a line bundle (by the Hodge

theory), and the implicit function theorem.

Outline of the proof. Define a map F : [0, 1]×A0 → d∗Ω2 by

F(s,∇) = −
(
det G̃s

∇

)1/4((
G̃s

∇

)−1
)∗

i

((
G̃s

∇

)−1

(ei)

)
DeiE∇,

where

G̃s
∇ := idTX − s4E♯

∇ ◦ E♯
∇.

Then

F(s,∇) =

{
d∗E∇ s = 0,

− 1
s2
H1/s(∇) s ̸= 0,

where H1/s(∇) is the mean curvature for g1/s as defined in Proposition 4.3. Then F(0, ·)−1(0)

is the set of Yang–Mills connections with respect to g and F(s, ·)−1(0) for s ̸= 0 is the set of

minimal connections with respect to g1/s. (We omit the explanation that the image of F is

contained in d∗Ω2.)

By the Hodge decomposition, we see that there is a Yang–Mills connection ∇0, i.e., an

element∇0 ∈ F(0, ·)−1(0). Then we use the“implicit function theorem”to show the existence

of a minimal connection for a small s.

More precisely, we first consider the derivative (linearization) (dF)(0,∇0) : R⊕
√
−1Ω1 →

d∗Ω2 of F at (0,∇0). We have

(dF)(0,∇0)(0,
√
−1b) =

d

dt
F(0,∇0 + t

√
−1b · idL)

∣∣∣∣
t=0

= −d∗db.

By the Hodge decomposition, we see that this map is surjective. Then by the “implicit

function theorem”, there is ∇ ∈ A0 s.t. F(s,∇) = 0 for small s, which is equivalent to

saying that ∇ is a minimal connection with respect to g1/s. □

We can also show the following monotonicity formula for minimal connections.

Theorem 4.10 (Monotonicity formula). • (Xn, g): an oriented Riemannian manifold,

with dimX = n = 2m+ 1 and Ric(g) ≥ 0. Fix p ∈ X.

• (L, h) → X: a smooth complex Hermitian line bundle.
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Then there exist a = a(n, p, g) ≥ 0, 0 < r′p < injg(p), and a function Θ : [0,∞) → R s.t.

for any minimal connection ∇,

(0, r′p] → R, ρ 7→ eaρ
2

ρ

∫
Bρ(p)

(v(∇)− 1)volg + 2aΘ(ρ)

is non-decreasing, where Bρ(p) is the geodesic ball of radius ρ centered at p.

Remark 4.11. Roughly, Theorem 4.10 says that

eaρ
2

ρκ

∫
Bρ(p)

(v(∇)− 1)volg

is non-decreasing for κ = 1. It is known that the value of κ is important.

• I am not sure κ = 1 the best for the monotonicity. That is, we might be able to prove

the monotonicity for κ > 1.

• For Yang–Mills connections, there is an analogous monotonicity formula. In that

case, κ is taken to be “scaling invariant” (in a certain sense). There are no such a

property for our case.

In addition to this, if we can also prove the “ε-regularity theorem”, we might study the

“blowup set” of a sequence of minimal connections. (There is such an argument for Yang–

Mills connections.)

Outline of the proof. • We first show the “integration by parts formula” for a minimal con-

nection ∇: ∫
X

(∆∇f1) · f2 · v(∇)volg =

∫
X

f1 · (∆∇f2) · v(∇)volg,

where f1, f2 ∈ Ω0, one of which is compactly supported.

• Set f1 = 1, f2 =“cut off function” and compute ∆∇f2.

• After some calculations, we see that the monotonically is obtained if the following is

satisfied:

(1) 0 < ∃r′p < injg(p), ∀τ ∈ [0, r′p],

n

∫
Bτ (p)

volg ≥ τ
∂

∂τ

∫
Bτ (p)

volg, ωnτ
n ≥

∫
Bτ (p)

volg,

where ωn = 2πn/2

nΓ(n/2)
is the volume of the unit ball in Rn.

(2) (trG−1
∇ − 1)v(∇)− n+ 1 ≥ 0.

(1) is satisfied if Ric(g) ≥ 0 (relative volume comparison theorem).

(2) is an algebraic condition. It is satisfied if dimX = n = 2m+1. (If dimX = n = 2m+1,

E♯
∇ must have an eigenvalue 0. We use this.) □

For more details, see Theorem 4.15 of
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• K. Kawai and H. Yamamoto, Mirror of volume functionals on manifolds with special

holonomy. Adv. Math. 405 (2022), Paper No. 108515, 69 pp.

Corollary 4.12. Let (L, h) −→ R2m+1 be a (necessarily trivial) smooth complex Hermitian

line bundle over (R2m+1, g0), where g0 is the standard flat metric.

If ∇ is minimal with V 0(∇) < ∞, then ∇ is flat. (i.e. E∇ = 0.)

Proof. We use the fact that we can take a = 0 and r′p = ∞ for (R2m+1, g0).

If E∇ ̸= 0, ∃p ∈ R2m+1,∃R0 > 0 s.t.

1

R0

∫
BR0

(p)

(v(∇)− 1)volg0 > 0.

By the monotonicity formula, for ∀R ≥ R0,

0 <
1

R0

∫
BR0

(p)

(v(∇)− 1)volg ≤
1

R

∫
BR(p)

(v(∇)− 1)volg −→ 0 (R −→ ∞),

which is a contradiction. □

5. Calibrated submanifolds and their mirrors

We will state a little bit about calibrated submanifolds and their mirrors.

Definition 5.1 (Harvey-Lawson, 1982). Let (Xn, g) be a Riemannian manifold and ξ ∈ Ωk(X)

with dξ = 0. ξ is called a calibration if for every oriented k-dimensional submanifold N

ξ|N ≤ volN .

(
⇐⇒

ξ(e1, · · · , ek) ≤ 1

for oriented o.n.b. {ei} of TxN (∀x ∈ N).

)
N is called a calibrated submanifold (ξ-submanifold) if ξN = volN .

Lemma 5.2. Every compact calibrated submanifold N is volume-minimizing in its homology

class. The volume is given topologically ([ξ] · [N ]).

Hence calibrated submanifolds are minimal submanifolds.

Proof. Suppose that N ′ is any compact k-submanifold of X with [N ′] = [N ] ∈ Hk(X,R).
Then

Vol(N) =

∫
N

volN =

∫
N

ξ =

∫
N ′

ξ ≤
∫
N ′

volN ′ = Vol(N ′).

□

Example 5.3. Let (Xn, g, ω) be a Kähler manifold, where ω ∈ Ω2(X) is a Kähler form. It

is known that ω and its powers (multiplied by a constant) are calibrations and calibrated

submanifolds are complex submanifolds.

In other words, calibrations and calibrated submanifolds are a generalization of these.
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Recall the situation of Section 3, i.e., suppose that

X = Bk × T n, X∗ = Bk × (T n)∗.

If there is a calibration on X, we can impose a condition that a graph(f) of f : Bk −→ T n is

a calibrated submanifold. This condition can be described in terms of the real Fourier–Mukai

transform ∇, and sometimes this condition is described without torus bundle structures.

A G2-manifold is defined as a 7-dimensional Riemannian manifold (X7, g) with holonomy

group Hol(g) contained in G2. It is known that the metric g is Ricci-flat and there is a

parallel 3-form φ ∈ Ω3(X7), which characterize the geometry. It is known that this 3-

form φ is a calibration, and the corresponding calibrated submanifolds are called associative

submanifolds.

We can equip B3 × T 4 with the flat G2-structure. Then as above, we can describe the

associative condition on graph(f) in terms of the real Fourier–Mukai transform ∇, and this

condition is described without torus bundle structures. Then we obtain the following notion.

Definition 5.4. • (X7, φ, g): a G2-manifold,

• (L, h) → X: a smooth complex Hermitian line bundle.

A Hermitian connection ∇ of (L, h) is called a deformed Donaldson–Thomas (dDT) con-

nection (deformed G2-instanton) if

1

6
F 3
∇ + F∇ ∧ ∗φ = 0.

When X = B3 × T 4 with the flat G2-structure, graph(f) is associative if and only if the

real Fourier–Mukai transform ∇ is a dDT connection.

We can show the following.

Theorem 5.5 (“Mirror” of associator equality). Let (X7, φ, g) be a G2-manifold. For any

∇ ∈ A0, we have(
1 +

1

2
⟨F 2

∇, ∗φ⟩
)2

+

∣∣∣∣∗φ ∧ F∇ +
1

6
F 3
∇

∣∣∣∣2 + 1

4
|φ ∧ ∗(F∇)

2|2 = v(∇)2,

where v(∇) =

√
det
(
idTX + E♯

∇

)
as defined in Definition 4.1. In particular,∣∣∣∣1 + 1

2
⟨F 2

∇, ∗φ⟩
∣∣∣∣ ≤ v(∇)

for any ∇ ∈ A0. The equality holds if and only if ∇ is dDT.

By an algebraic computation, we see that

∗φ ∧ F∇ +
1

6
F 3
∇ = 0 =⇒ φ ∧ ∗(F∇)

2 = 0.
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Using this, we obtain the last characterization.

By Theorem 5.5, we see the following.

Corollary 5.6. For any dDT connection ∇, ∇ is a global minimizer of V and V (∇) is given

topologically, i.e.,

V (∇) =

∣∣∣∣∫
X

(
1 +

1

2
⟨F 2

∇, ∗φ⟩
)
volg

∣∣∣∣ = ∣∣Vol(X) +
(
−2π2c1(L)

2 ∪ [φ]
)
· [X]

∣∣
for any dDT connection ∇.

This is the “mirror” of the fact that every compact associative (calibrated) submanifold is

homologically volume minimizing, and the volume is given topologically.

Corollary 5.7. Suppose that L is a flat line bundle. Then any dDT connection is a flat

connection. In particular, the moduli space of dDT connections is H1(X,R)/2πH1(X,Z).

Proof. Let ∇0 be a flat connection (and hence ∇0 is dDT) and ∇ be any dDT connection.

Then ∫
X

√
1 + |F∇|2 +

∣∣∣∣F 2
∇
2!

∣∣∣∣2 + ∣∣∣∣F 3
∇
3!

∣∣∣∣2volg = V (∇) = V (∇0) =

∫
X

volg,

which implies that F∇ = 0. □


