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Each section corresponds to a lecture of 2 hours, with the introduction �tting into § 1.
¿e material is very standard. §§ 1–5 is one block; § 2 and § 3 may be exchanged. ¿e
exercise session § 6 can be skipped, but at the risk of losing practical understanding of
phenomena. ¿e three blocks §§ 7–8, §§ 9–10, and §§ 11–12may be swapped freely; how-
ever § 10 uses some material from § 7. • ¿e optional (and untaught) § 13 is a module-
theoretic rephrasing of §§ 1–5. Turkish students tend to be familiar with module ter-
minology early in their curriculum. If I were to teach the course again, I might opt for
module language and introduce the group algebra as soon as § 1.

Introduction
Group theory is the natural language for symmetries and was promoted as such. As a
matter of fact and contrary to modern-style expositions, groups �rst emerged as groups
of symmetries. Some symmetries (not to be mistaken for re�ections) have undisputed
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geometric origin, as in Klein’s Erlanger Programm. Some are more combinatorial or
algebraic in nature, as in Galois’ theory of polynomial equations. In either case, math-
ematical practice is full of groups of transformations, viz. of group actions. In the xixth
century, groups were sets of bijections preserving some structure. ‘Abstract’ groups were
introduced later, around Burnside’s time, in order to achieve some uni�cation and for
intrinsic interest.

¿e purpose of representation theory is to return to ‘concrete’ groups, viz. groups
acting somewhere. Permutation group theory embeds group theory into combinator-
ics, thus yielding counting arguments. But (linear) representation theory even embeds
group theory into linear algebra. ¿ere one conveniently relies on geometric intuition.

Just like a group action of G is simply a morphism G → Sym(X) for some set X,
a linear representation is simply a morphism from G to GL(V) for some vector space.
What is remarkable is that to some extent, G ‘is’ the class of its representations. (¿ere
is almost some phenomenological lesson here: an abstract object is entirely determined
by its concrete manifestations.) Equally importantly, complex representations of �nite
groups are themselves determined by some number-theoretic functions called charac-
ters. As a result, the amount of group-theoretic information encoded in characters is
beyond �rst expectations; the strength of Frobenius’ character theory is a miracle.

¿e course will describe this theory, with some of its most classical and celebrated
applications to ‘pure’ �nite group theory. All the material here is extremely standard;
neither the exposition nor the choice of contents has any claim to originality. (See the
Further reading section for deeper sources.) Before you start with the notes, let me re-
commend a lovely survey by a major contributor to the topic.1

Prerequisites
¿e class is for advanced undergraduate or graduate students.

Algebraic number theory: Almost none. ¿e characteristic of a �eld; algebraically
closed �elds. It is safe to assume K = C everywhere. (See ‘Note on �elds’ be-
low.)

Group theory: Prerequisites corresponding to a full �rst course in pure group theory.
Groups, subgroups, normal subgroups and quotient groups; morphisms and fac-
torisation; cosets and Lagrange’s theorem on orders; conjugation and centralisers;
group actions, stabilisers, orbits. Advanced topics will occasionally involve semi-
direct products.
I shall use x y = y−1xy for conjugacy; a typical conjugacy class will be denoted
by γ. I reserve c for le cosets, viz. subsets of the form c = aH = {ah ∶ h ∈ H}
whenever H ≤ G is a subgroup.

Linear algebra: Finite-dimensional vector spaces; linear maps, eigenvalues and trace
of an endomorphism; projectors; linear forms, dual space; bilinear forms, non-
degenerate bilinear forms, symmetric forms, Hermite-symmetric forms and com-
plex scalar products. ¿e course tends to avoid bases and matrices but prefers
‘intrinsic’ arguments, so an abstract course in linear algebra is a prerequisite.

Module theory: Terminology helps, but no knowledge of module theory is required.
Familiarity with the tensor product is not required, as it will be brie�y discussed.

1C. Curtis, Representation theory of �nite groups: From Frobenius to Brauer. Mathematical Intelligencer 14,
No. 4, pp. 48–57, 1992.
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Note on �elds. Most arguments need assumptions both on the characteristic of K and
its algebraic closedness.

Technically the conjunction (characteristic 0 and algebraically closed) de�nes the
class ACF0 of algebraically closed �elds of characteristic 0. Two examples are the �eld
of complex numbersC and the �eld of algebraic numbers, viz. the algebraic closureQ of
the rationals inside the complex �eld. Characteristic 0 theory naturally takes place over
number �elds, viz. over �nite extensions ofQ. Now every number �eld embeds intoQ,
so into C. (Moreover, C-vector spaces bear additional ‘Hermite structure’, also known
as complex scalar products. ¿is is the reason why working over C is so e�cient.)

¿e beginner can safely assumeK = C throughout. It is however a good exercise to
understand what assumptions are needed in each theorem, so we discuss characteristics
a little.

Most of the theory works similarly provided charK is not a prime factor of ∣G∣; we
call this K has coprime characteristic with respect to G. One could introduce for each
�nite G the class ACF∣G∣⊥ of algebraically closed �elds of characteristic coprime to ∣G∣,
viz. of good �elds. For brevity, a good �eldwill be an algebraically closed �eld of coprime
characteristic. Hence ‘algebraically closed of characteristic 0’ implies good.

De�nition. Let G be a �nite group andK be a �eld.

• K has coprime characteristic with respect to G if (charK = 0 or charK does not
divide ∣G∣).

• K is good if it is algebraically closed of coprime characteristic.

Remarks.

• Coprimality makes sense only for �nite G; so does goodness. Almost nothing
remains of the theory for in�nite G. ¿ere is no general representation theory of
abstract in�nite groups.

• Because the characteristic of a �eld is 0 or a prime number, this is equivalent to:
charK is 0 or does not divide the exponent expG, which is the least common
multiple of orders of elements of G.

• ¿e �eldsQ, C are universally good (viz. independently of G).

1 Representations
Abstract.¿is section ismostly terminology. § 1.1 introduces themain objects: rep-
resentations. ¿ese simply consist in an action on some vector space. § 1.2 discusses
subrepresentations, and we stress the importance of irreducible representations. Fi-
nally § 1.3 describesmorphisms of representations.

1.1 Representations
1.1.1. De�nition. Let G be a group andK be a �eld.

• A linear representation of G in aK-vector space V is a morphism ρ∶G → GL(V).

• A linear representation of G over K, or K-linear representation, is a pair (V , ρ) as
above; one o en omits V or ρ from notation.
(Omitting V is less ambiguous than omitting ρ. Common practice can do either.)
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1.1.2. Remarks.

• In the notation above, let g ∈ G and v ∈ V . ¿en ρ(g) ∈ GL(V), so ρ(g)(v) ∈ V .
As alternatives to this clumsy notation, one may write:

– ρ(g) ⋅ v (useful if there are several representations),
– g ∗ v (useful to distinguish operators from vectors),

– g ⋅ v, or simply gv (useful to save time).

• By de�nition of a morphism, one has ρ(1) = IdV and ρ(gh−1) = ρ(g) ○ ρ(h)−1.

• Tradition calls degree of the representation the cardinal number deg ρ = dimV .

• A linear representation ρ ofG induces an ijective linear representation ofG/ker ρ.

• Tradition calls faithful an injective representation, viz. one with ker ρ = {1}.

1.1.3. Examples.

• ¿e trivial representation is:

triv∶ G → GL(K)
g ↦ 1,

with dimension 1.

• Let V be the K-vector space with dimension ∣G∣ and basis B = {eg ∶ g ∈ G}.
For g ∈ G we de�ne reg(g) on the basis B by letting reg(g)(eh) = eg⋅h . ¿en
we extend linearly, meaning we let: reg(g)(∑ λheh) = ∑ λhegh . ¿is de�nes the
regular representation:

reg∶ G → GL(V)
g ↦ reg(g).

(Check that one does have reg(g1g−12 ) = reg(g1) ○ (reg(g2))−1 in GL(V).)

From § 13 on, we shall drop unnecessary symbols and simply write g for eg .

• Technically, the above is the le -regular representation. (See exercice 1.4.4.)

• ¿e regular representation is a special case of a more general construction. Let G
act on some set X by g∗x. LetV be the vector space with dimension #X and basis
B = {ex ∶ x ∈ X}. Now de�ne perm(g) on the basis B by: perm(g)(ex) = eg∗x ,
then extend linearly. ¿is de�nes the permutation representation associated to the
permutation group (G , X). Its kernel is exactly the kernel of the action.

• ¿e regular representation is thus the permutation representation associated to
the le -regular, ‘Cayley’ group action of G on itself: g ∗ x = gx.
It is injective. Indeed, reg(g) = IdV implies reg(g)(e1) = Id(e1) = e1 while
reg(g)(e1) = eg . So g = 1 and ker reg = {1}.

• Not all representations are permutation representations, so the topic does not re-
duce to group actions.

1.1.4. Remarks (even more general representations).
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• One may represent other algebraic structures; for instance, a representation of an
(associative) ring R in a vector space V is simply a ring morphism R → End(V).

Actually, K-linear representations of a group G, correspond to representations
of the ‘group algebra’ K[G], by taking ρ∶G → GL(V) to the linear extension
ρ̂∶K[G] → End(V). (¿is is discussed in § 13.)

• One may also represent algebraic structures in more general modules than vector
spaces. For instance, a representation of a groupG in an abelian group A is simply
a morphism G → Aut(A). (¿is can be interesting, and bring new phenomena, if
A is for instance the torsion subgroup of the circle group S1 ≃ SO2(R), which is
no vector space.) Likewise, one may represent associative rings, or even Lie rings,
dropping linearity.

• Linear algebra gives intuition and tools, and linear representations of a given
group G already encode much information about it.

¿e purpose of this course is to give general notions on linear representations of
�nite groups in �nite-dimensional vector spaces over good �elds, such as C. ¿is is a
well-chartered territory, but it has striking applications. ¿e following basic lemma is
used throughout.

1.1.5. Lemma. Let G be a �nite group and K be a good �eld. Let ρ∶G → GL(V) be
a K-linear, �nite-dimensional representation. ¿en each ρ(g) is diagonalisable, and its
eigenvalues are roots of unity.

Proof. Each g ∈ G has �nite order gk = 1, so ρ(g) is annihilated by the polynomial
Xk − 1, which is split with simple roots over K. Moreover, eigenvalues of ρ(g) must
satisfy Xk − 1 = 0 inK: so they are roots of unity.

1.1.6. Remark. In general the various ρ(g)’s cannot be diagonalised simultaneously.

1.2 Subrepresentations and irreducibility
We discuss subobjects.

1.2.1. De�nition. LetG be a group andK be a �eld. Let (V , ρ) be aK-linear represent-
ation.

• A subrepresentation is a K-linear subspace W ≤ V which is also G-invariant,
viz. (∀g ∈ G)(∀w ∈W)(g ⋅w ∈W).

(¿is is the same as aK[G]-submodule; see § 13.2.)

• A nonzero representation V is irreducible if the only G-invariant subspaces are
{0} and V .
(¿is is the same as simplicity as aK[G]-module; see § 13.1.)

Notice that by convention, {0} is not irreducible (similar to ‘1 is not a prime’).

1.2.2. Examples.
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1. If A is an abelian group and K is an algebraically closed �eld, then every �nite-
dimensional, K-linear representation of A is actually 1-dimensional. ¿is is an
important fact (exercise 1.4.3).

2. ¿is need not hold over arbitraryK. LetG = SO2(R) be the real unit circle, acting
by rotations on V = R2. ¿is representation is irreducible because no vector line
is invariant under rotations.

Irreducible representations are the building blocks, the ‘atoms’ of more elaborate
representations (accordingly thought of as molecules). ¿is analogy underlies the entire
theory over good �elds and is developed in §§ 3–4.

1.2.3. Lemma. Let G be a �nite group andK be a �eld.

(i) Every irreducible linear representation is �nite-dimensional.

(ii) Every nonzero linear representation contains an irreducible representation.

Proof.

(i) Let V be irreducible. Let v ∈ V ∖ {0}. Now the set X = {g ⋅ v ∶ g ∈ G} is �nite,
hence spans a �nite-dimensional subspace W ≤ V . Any g ∈ G acts on X, so
it leavesW invariant. HenceW ≤ V is a subrepresentation. Since 0 ≠ v ∈ W ,
irreducibility implies V =W , which is �nite-dimensional.

(ii) Let V ≠ 0 be arbitrary. Here again, V contains a �nite-dimensional subrepres-
entationW . Now a �nite-dimensional subrepresentation ofminimal dimension
is irreducible.

1.2.4. Remarks.

• Some in�nite groups do not have a non-trivial, �nite-dimensional representation
(even reducible). See exercise 1.4.5.

• Some groups, and even some �nite groups, do not have a injective irreducible
representation. See exercise 1.4.6.

• Still, every group has a injective representation—for instance the regular one.

1.2.5. Remark (quotient representations). If V is aK-linear representation andW ≤ V
a subrepresentation, then the quotient group V/W naturally bears the structure of a
K-linear representation of G, called quotient representation.

Due toMaschke’s splitting phenomenon discussed in § 3.2, quotient representations
turn out to be avoidable in a �rst course, very much like quotient vector spaces are usu-
ally omitted from basic treatments of linear algebra.

1.3 Morphisms and isomorphisms of representations
We discuss arrows.

1.3.1. De�nition. Let G be a group and K be a �eld. Let (V1 , ρ1) and (V2 , ρ2) be two
K-linear representations of G.
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• A morphism of representations, also called a G-covariant morphism, is a function
f ∶V1 → V2 which is bothK-linear and compatiblewithG, viz. in obvious notation:

f (ρ1(g) ⋅ v1) = ρ2(g) ⋅ f (v1).

In lighter notation, this rewrites as f (g ⋅ v1) = g ⋅ f (v2).

• ¿is is the same as a morphism ofK[G]-modules. (See § 13.2.)

• We let HomK[G](ρ1 , ρ2) be the set of morphisms of representations.
More casual notations areHomK[G](V1 ,V2), or HomG(ρ1 , ρ2), or HomG(V1 ,V2).

• If V1 = V2 = V (implicitly we request ρ1 = ρ2 = ρ; see remarks 1.3.3), we simply
write EndK[G](ρ). (More casual: EndG(ρ) or EndG(V).)
An alternative notation could be CEndK(V)(G), because it consists of those K-
linear maps f ∈ EndK(V) which commute with the ‘Hom’ action of G, in the
sense of § 2.4.

• An isomorphism is a bijective morphism. Notice that the inverse of an isomorph-
ism is an isomorphism.

• Tradition calls equivalence an isomorphism of representations.

1.3.2. Remark. AK-linear map f ∶V1 → V2 is G-covariant i� for all g ∈ G the following
diagram is commutative, viz. the two possible compositions de�ne the same morphism:

V1 V2

V1 V2 .

f

ρ1(g) ρ2(g)
f

1.3.3. Remarks.

• HomK[G](V1 ,V2) is a slightly ambiguous notation: what matters is not Vi , but
truly (Vi , ρ i). Hence HomK[G](ρ1 , ρ2) is clearer but one has to accept ‘arrows
between arrows’.

• In more modern notation, (ρ1 → ρ2) would be in order, meaning: those arrows
from ρ1 to ρ2, being well understood that ρ1 , ρ2 live in the category of K[G]-
modules. Another option is (ρ1 → ρ2∶K[G]-Mod), for those arrows in the cat-
egoryK[G]-Mod.

1.3.4. Remark. Isomorphisms are classically denoted by ≃. Since there will be a con-
stant tension between isomorphisms of underlying vector spaces, and isomorphisms of
representations (which are stronger), we prefer explicit notation.

¿e notion of an isomorphism is relative to a category. For isomorphisms of K-
vector spaces, we write V1 ≃ V2 [K-Mod] (‘isomorphism of K-modules’). For iso-
morphims of K-linear representations of G, we write V1 ≃ V2 [K[G]-Mod] (‘iso-
morphism ofK[G]-modules’). (See § 13.)

1.3.5. Notation. Let G a group and K be a �eld. Let IrrK(G) denote the class of the
irreducible,K-linear representations of G up to isomorphism.

Truly elements of IrrK(G) are not representations, more isomorphism classes.
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1.3.6. Remarks.

• In general, IrrK(G) need not be �nite. But if G is �nite then so is IrrK(G). ¿is is
proved in exercise 1.4.7.

• Actually if G is �nite and K is good then # IrrK(G) is the number of conjugacy
classes in G, as proved in¿eorem 5.1.1. In particular, # IrrC(G) = #Conj(G).

• For algebraically closed K of characteristic dividing ∣G∣, the number # IrrK(G)
takes another value found by Brauer2. For non-algebraically closed K, matters
are more involved.

1.4 Exercises
1.4.1. Exercise. Let G = Sym(3), which is generated by (12) and (123). Let V ≃ C2 have
basis B = (e1 , e2). Now let ρ((12)) swap e1 and e2, while ρ((123)) does the following:

ρ((123))(e1) = e2 and ρ((123))(e2) = −e1 − e2 .

1. Prove that it de�nes a linear representation.

2. Write the matrixMatB ρ(g) for every g ∈ G.

1.4.2. Exercise. Let G = Sym(n) be the symmetric group over n symbols.

1. ¿e sign representation of G is:

ε∶ G ↦ GL(K1)
g ↦ ε(g),

where ε(g) is the usual signature of g. Show that it is a representation.

2. Let ρ∶G → GL(V) be a K-linear representation. Show that ρ′(g) = ε(g) ⋅ ρ(g) is
anotherK-linear representation. (More generally see tensor representations, § 2.3.)

1.4.3. Exercise.

1. Let A be a �nite, abelian group and ρ ∈ IrrC(A). Show that dim ρ = 1. Hint:
eigenvalue. Does this generalise to nilpotent groups?

2. Let A be an abelian subgroup of a �nite group G. Let ρ ∈ IrrC(G). Show that
dim ρ ≤ [G ∶ A].

3. Characterise which �nite groups have a non-trivial, complex, 1-dimensional repres-
entation ρ ≠ triv. Did you use properties of the �eld?

1.4.4. Exercise. ¿e right-regular representation is de�ned as follows. Let V have basis
{eg ∶ g ∈ G}. Now let regop(g)(eh) = eh⋅g−1 , and extend linearly. Prove that reg and regop
are isomorphic.

1.4.5. Exercise. Let G be a group.

1. Prove that the following are equivalent:
2R. Brauer, Über die Darstellung von Gruppen in Galoisschen Feldern. Actualités scienti�ques et industri-

elles 195. Hermann & Cie, Paris, 1935.
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(i) if X ⊆ G is any subset, there are �nitely many x1 , . . . , xn ∈ X such that
CG(X) = CG(x1 , . . . , xn);

(ii) every ascending chain of centralisers CG(X1) ≤ CG(X2) ≤ . . . is stationary;
(iii) every descending chain of centralisers CG(X1) ≥ CG(X2) ≥ . . . is stationary.

Hint: CCC = C.

2. A linear group is a subgroup of someGLn(K) for some integer n and some �eldK.
Prove that every linear group satis�es the above condition. Hint: use Mn(K).

3. Let Alt(N) be the set of permutations of N with �nite support and signature 1. De-(*)
duce that every �nite-dimensional representation of Alt(N) is trivial.

1.4.6. Exercise. Let N ≃ C4
2 be generated by e1 , e2 , e3 , e4. Now let ⟨σ⟩ ≃ C3 act on N as

follows:
eσ1 = e2 , eσ2 = e1e2 , eσ3 = e4 , eσ4 = e3e4 .

Let G = N ⋊ ⟨σ⟩. Show that G has no injective irreducible representation over C. Hint:
diagonalise N simultaneously.
Note. Characterisation of �nite groups admitting a injective irreducible representation is
a classical topic.3

1.4.7. Exercise. LetG be a �nite group, and letK[G] denote the le -regular representation.

1. Prove that every irreducible representation V is isomorphic to some V ′ ≤ K[G].
Hint: �x a non-zero linear form φ ∈ V∗ and consider f (v) = ∑g∈G φ(g−1v)eg .

2. Suppose that V1 , . . . ,Vr ≤ K[G] are pairwise non-isomorphic irreducible represent-
ations. Prove that ∑Vi = ⊕Vi is a direct sum. Hint: if V0 ≤ ⊕Vi , consider the
projectors π i ∶V0 → Vi onto the ith coordinate.

3. Deduce that G has �nitely many irreducible representations up to isomorphism.

Note.With more tools (and provided charK ∤ ∣G∣), there are other arguments relying on
the Artin-Wedderburn theorem applied to the algebraK[G].

2 Algebraic constructions
Abstract.We build new representations from existing ones. Direct sum represent-
ations (§ 2.1) are easily understood. Dual representations (§ 2.2) o�er the opportun-
ity to return to algebraic duality and dual bases in �nite-dimensional spaces. Tensor
representations (§ 2.3) endow the vector tensor product of two spaces with an action
of G. Last, Hom-representations (§ 2.4) connect to dual and tensor constructions.
In general, irreducibility is lost.

¿is section contains almost no representation theory except a couple of de�nitions
(dual representation, tensor representation, Hom representation). ¿ere are no assump-
tions onK. ¿roughout we pay attention to traces as they will underlie character theory.

3W. Gaschütz, Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen. Math. Nach. 12, pp. 253-
255, 1954.
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2.1 Direct sum representation
Direct sum space. ¿e notion of a direct sum space is expected to be familiar.

2.1.1.De�nition. LetV1 andV2 be two vector spaces over the same�eld. ¿eir (external)
direct sum is the vector spaceV1⊕V2 of pairs (v1 , v2), equipedwith componentwise linear
structure.

2.1.2. Remarks.

• V1 and V2 naturally embed into V1 ⊕ V2. ¿ere, their internal direct sum equals
V1 ⊕ V2.

• In particular if V1 has basis B1 and V2 has basis B2, then V1⊕V2 has basis B1 ∪B2.

• Not to be mistaken with the direct product space—though isomorphic as long as
only �nitely many vector spaces are involved.

Direct sum representation. ¿e simplest possible construction is as follows.

2.1.3. De�nition. Let (V1 , ρ1) and (V2 , ρ2) be two representations of the same group
over the same �eld. ¿e direct sum representation is (V1 ⊕ V2 , ρ1 ⊕ ρ2) given by:

(ρ1 ⊕ ρ2)(g)∣V1 = ρ1(g) and (ρ1 ⊕ ρ2)(g)∣V2 = ρ2(g).

¿is means that g acts on V1 ⊕V2 componentwise; in �nite dimension, one may use
‘block matrices’. ¿e following is therefore obvious.

2.1.4. Remark. LetV1 andV2 be �nite-dimensional representations ofG. ¿en for g ∈ G
one has tr(ρ1 ⊕ ρ2)(g) = tr ρ1(g) + tr ρ2(g).

2.2 Dual representation
Dual space. We �rst review some properties of the dual space of a vector space, with
no reference to representation theory.

2.2.1. De�nition. Let V be aK-vector space.

• A linear form on V is a linear map V → K.

• ¿e dual space of V is the space V∗ of all linear forms on V , equiped with the
following linear structure in obvious notation:

– (φ1 + φ2)(v) = φ1(v) + φ2(v),
– (λφ)(v) = λφ(v).

2.2.2. Remark (duality pairing). ¿ere is a ‘pairing’V∗×V → K, given by ⟨φ∣v⟩ = φ(v).
Now if f ∶V → V is a linear endomorphism, it induces f ∗∶V∗ → V∗ de�ned by:

f ∗(φ) = φ ○ f .

Notice that ⟨ f ∗(φ)∣v⟩ = φ ○ f (v) = ⟨φ∣ f (v)⟩.

2.2.3. Lemma (and de�nition: dual basis). Let V be a �nite-dimensional vector space.

(i) dimV∗ = dimV.
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(ii) If B = {e1 , . . . , en} is a basis of V, let e∗i ∈ V∗ be the linear form such that e∗i (e j) =
δ i j . ¿en B∗ = {e∗1 , . . . , e∗n} is a basis of V∗, called the dual basis.

(iii) Let f ∈ End(V). In the notation above,MatB∗ f ∗ = (MatB f )t .

(iv) In the notation above, tr f = tr f ∗.

Proof.

(i) is a consequence of (ii).

(ii) We prove both linear independence and generation. Suppose ∑n
i=1 λ i e∗i = 0,

in obvious notation. ¿en evaluating at each e j gives λ j = 0: whence linear
independence.

Now let φ ∈ V∗. For i ∈ {1, . . . , n}, let λ i = φ(e i). ¿en notice that φ −∑ λ i e∗i
vanishes on B, so on V . ¿us φ = ∑ λ i e∗i , which proves generation. Hence B∗
is a basis of V∗.

(iii) Say MatB f = M = (m i , j), so that Col jMatB f = CoordB f (e j), viz. f (e j) =

∑i m i , je i . Let v = ∑i λ i e i . Compute as follows:

f ∗(e∗j )(v) = e∗j ( f (v))
= (e∗j ○ f )(∑

i
λ i e i)

= e∗j (∑
i
λ i f (e i))

= e∗j (∑
i
λ i∑

k
mk , i ek)

= ∑
i ,k
λ imk , i e∗j (ek)

= ∑
i
λ im j , i

= ∑
i
(M t)i , je∗i (v),

whence f ∗(e∗j ) = ∑i(M t)i , je∗i . ¿is is our claim.

(iv) Obvious from (iii).

2.2.4. Remark. ¿is no longer holds if dimV is in�nite. One can still de�ne linear forms
e∗i , which remain linearly independent, but they no longer generate V∗.

Dual representation. We now put a G-structure on the dual vector space of a repres-
entation of G, in the most natural way.

2.2.5. De�nition. Let (V , ρ) be a K-linear representation of G. Its dual representation
is (V∗ , ρ∗), where:

ρ∗(g)(φ) = φ ○ ρ(g)−1 .

In alternate notation, this rewrites (g ⋅ φ)(v) = φ(g−1v).

2.2.6. Remarks.
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• Notice that ⟨ρ∗(g)(φ)∣ρ(g)(v)⟩ = φ ○ ρ(g)−1(ρ(g)v)) = φ(v), viz. :

⟨g ⋅ φ∣g ⋅ v⟩ = ⟨φ∣v⟩ .

¿e dual representation is de�ned precisely in order to preserve the duality pairing.

• Suppose V is �nite-dimensional with basis B; let B∗ be the dual basis. ¿en:

MatB∗ ρ∗(g) = (MatB ρ(g))−t ,

whereM−t = (M t)−1 = (M−1)t is the inverse-transpose matrix.

• In the notation above, tr ρ∗(g) = tr ρ(g−1).

• Important fact: V is irreducible i� V∗ is. A general proof is in exercise 2.5.5, but
faster proofs in special cases are given in Remarks 3.3.8 and 5.3.2.

2.3 Tensor representation
In this course we only tensor overK, never overK[G].

Tensor product of vector spaces. Informally speaking, the tensor product converts
bilinear maps to linear maps.

2.3.1. Proposition. Let V1 ,V2 be K-vector spaces over the same �eld K. ¿en there is a
(unique) initial pair (W , β) where W is aK-vector space and β∶V1 ×V2 →W is bilinear.

¿is means that there is a unique pair (W , β) as above such that for any other pair
(W ′ , β′), one may uniquely factorise β′ = h ○ β.

V1 × V2

W

W ′

β′

β

∃!h

Proof. Say Vi has basis Bi . Let C = B1 × B2; let W have basis indexed by C. Map
(b1 , b2) ∈ C to the corresponding vector inW and extend bilinearly. ¿is de�nes β.

We have to check that (W , β)meets the requirements. So let (W ′ , β′) be another
pair. On β(b1 , b2) we let h(β(b1 , b2)) = β′(b1 , b2). ¿is is well-de�ned. ¿en we
extend h linearly. So β′ factor through β. Moreover we had no other choice.

We now check that (W , β) is unique up to isomorphism. Indeed, if (W ′ , β′) is
another initial pair, then there are unique h, h′ such that β = h′ ○h ○β. But β = IdW ○β
would have worked as well, so h′ ○ h = IdW . Likewise, h ○ h′ = IdW′ . So h and h′ are
linear isomorphism and we are done.

2.3.2.De�nition. In the notation above, onewritesW = V1⊗KV2 and β(v1 , v2) = v1⊗v2.
¿is is called the tensor product of V1 and V2 overK.

Of course the tensor product is more an isomorphism type than a given realisation;
in particular one may always pick bases B1 and B2 more adapted to speci�c problems.
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2.3.3. Remarks.

• Write B1 ⊗B2 = B1 × B2. ¿is is a basis of V1 ⊗ V2. In particular, dim(V1 ⊗ V2) =
dimV1 ⋅ dimV2.

• Every element ofV1⊗V2 is therefore a unique linear combination of basic elements
b1 ⊗ b2. However, it is useful to forget about bases. ¿us every element is a linear
combination of ‘elementary tensors’ v1 ⊗ v2, but not every element of V1 ⊗ V2 is
an elementary tensor. (Physicists call this phenomenon ‘intrication’.)

• A remark on the construction. ¿e general notion of a tensor product over a
ring R is more involved and requires some factorisation. Since vector spaces are
free modules, our construction is (fortunately) much simpler than the general
module-theoretic one.

Tensor representation. We now equip the vector tensor product of representations
with the structure of a representation (viz. a G-action).

2.3.4. De�nition. Let G be a group and K be a �eld. Let (V1 , ρ1), (V2 , ρ2) be two K-
linear representations. ¿e tensor representation is (V1 ⊗K V2 , ρ1 ⊗ ρ2) where:

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = (gv1 ⊗ gv2).

2.3.5. Lemma. tr(ρ1 ⊗ ρ2)(g) = (tr ρ1(g)) ⋅ (tr ρ2(g)).

Proof. Let B1 = {e1 , . . . , ep} be a basis of V1 and B2 = { f1 , . . . , fq} be one of V2; then
{e i⊗ fk} is one ofV1⊗V2. By de�nition there are matricesM = (m i , j) and N = (nk ,ℓ)
such that:

ρ1(g) ⋅ e j = ∑
i
m i , je i and ρ2(g) ⋅ fℓ = ∑

k
nk ,ℓ fk .

¿us:
(ρ1 ⊗ ρ2)(g) ⋅ (e j ⊗ fℓ) = ∑

i ,k
m i , jnk ,ℓ(e i ⊗ fk).

Summing diagonal terms, we �nd:

tr(ρ1 ⊗ ρ2)(g) = ∑
j ,ℓ
m j , jnℓ ,ℓ = (∑

j
m j , j)(∑

ℓ
nℓ ,ℓ) = (tr ρ1(g))(tr ρ2(g)).

2.4 Hom-representation
¿e de�nition.

2.4.1. De�nition. Let V1 ,V2 be K-vector spaces. Let HomK(V1 ,V2) be the space of
linear maps V1 → V2, equiped with the following linear structure in obvious notation:

• ( f + g)(v1) = f (v1) + g(v1),

• (λ f )(v1) = λ f (v1).

¿us V∗ = HomK(V ,K).
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2.4.2.De�nition. Let (V1 , ρ1), (V2 , ρ2) be twoK-linear representations ofG. ¿eHom-
representation is (HomK(V1 ,V2), ρHom) where:

ρHom(g)( f ) = ρ2(g) ○ f ○ ρ1(g)−1 = g ⋅ f ⋅ g−1 .

2.4.3. Remark. A K-linear homomorphism f ∶V1 → V2 is �xed under the Hom-action
of G if and only if (∀g)( f ○ ρ1(g) = ρ2(g) ○ f ) if and only if f is aK[G]-morphism. In
symbols,

CHomK(V1 ,V2)(G) = HomK[G](V1 ,V2).

¿is simple observation is crucial in character theory (§ 5.2).

Hom and tensors. Let f ∶V1 → V2 be linear between �nite-dimensional spaces. Sup-
pose V1 has basis B = {e1 , . . . , en}. ¿en for x ∈ V , one may write x = ∑ λ je j . Now
e∗i (x) = λ i , so x = ∑ j e∗j (x)e j . Notice that this amounts to writing, as functions:

Id = ∑
j
e∗j e j .

Furthermore f (x) = f (∑ j e∗j (x)e j) = ∑ e∗j (x) f (e j). ¿us as functions from V1 to V2
we have:

f = ∑
j
e∗j f (e j).

¿e proper place to deal with the right-hand is the tensor space V∗
1 ⊗V2. ¿is motivates

the following.

2.4.4. Proposition. Let V1 ,V2 be two �nite-dimensionalK-vector spaces.

(i) ¿ere is a naturalK-linear isomorphism:

HomK(V1 ,V2) ≃ V∗
1 ⊗K V2 [K-Mod].

(ii) If in addition V1 ,V2 are representations of G, then the above is even an isomorphism
of representations, viz.:

HomK(V1 ,V2) ≃ V∗
1 ⊗K V2 [K[G]-Mod].

In (ii) one has aK[G]-isomorphism, but one still tensors overK.

Proof.

(i) First notice that dimensions agree, so it is enough to �nd a linear injection. Let
B = {e1 , . . . , en} be a basis of V1 and B∗ = {e∗1 , . . . , e∗n} be the dual basis.
To f ∈ HomK(V1 ,V2), associate the element:

T( f ) =
n
∑
i=1
e∗i ⊗ f (e i) ∈ V∗

1 ⊗K V2 .

¿is is well-de�ned. Moreover, T ∶HomK(V1 ,V2) → V∗
1 ⊗K V2 is clearly linear.

Now suppose T( f ) = 0. Expressing f (e i) over any basis of V2, we see that
the non-zero e∗i ⊗ f (e i) are linearly independent in V∗

1 ⊗ V2. So all are zero,
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meaning f (e i) = 0 onB. ¿is implies f = 0, and T is injective. ¿e dimensional
argument gives the conclusion.

(ii) Let f ∶V1 → V2 and g ∈ G. We shall compute and compare T(g ⋅ f )with g ⋅T( f ).
Consider the linear map:

u = (g−1)∗∶ V∗ → V∗

φ ↦ φ ○ g−1 .

Let M = MatB(g−1) have coe�cients (m i , j), so that g−1(e j) = ∑i m i , je i .
¿en by Lemma 2.2.3, we know that MatB∗ u = M t . ¿is means that u(e∗j ) =

∑i m j , i e∗i . We are ready for computation.

T(g ⋅ f ) = T[x ↦ g f (g−1x)]
= ∑

i
e∗i ⊗ g f (g−1e i)

= ∑
i ,k
e∗i ⊗ g f (mk , i ek)

= ∑
i ,k

(mk , i e∗i ) ⊗ (g ⋅ f (ek))

= ∑
k
u(e∗k ) ⊗ (g f (ek))

= ∑
k
(e∗k ○ g

−1) ⊗ (g ⋅ f (ek))

= ∑
k
(g ⋅ e∗k ) ⊗ (g ⋅ f (ek))

= g ⋅ (∑
k
e∗k ⊗ f (ek))

= g ⋅ T( f ).

We are done.

2.4.5. Remark. ¿is does not hold if dimV1 is in�nite; see exercise 2.5.2. It is however
enough to have dimV1 < ∞; see exercise 2.5.3.

2.5 Exercises
2.5.1. Exercise. Let V1 ,V2 ,V3 beK-vector spaces.

1. Show that there are natural linear isomorphisms: • V2⊕V1 ≃ V1⊕V2, • V1⊕(V2⊕
V3) ≃ (V1 ⊕ V2) ⊕ V3, • V1 ⊗ (V2 ⊗ V3) ≃ (V1 ⊗ V2) ⊗ V3, • V2 ⊗ V1 ≃ V1 ⊗ V2,
• V∗∗

1 ≃ V1, • V∗
1 ⊕ V∗

2 ≃ (V1 ⊕ V2)∗, • V∗
1 ⊗ V∗

2 ≃ (V1 ⊗ V2)∗.

2. Show that if V1 ,V2 are K-linear representation of G, the above is an isomorphism
of representations.

2.5.2. Exercise. Let V ,W be K-vector spaces. Show that in general, V∗ ⊗K W ≃ {φ ∈
HomK(V ,W) ∶ dim imφ < ∞}.

2.5.3. Exercise. Show that Proposition 2.4.4 still holds if V1 is �nite-dimensional, regardless
of V2. Hint: explicitly give the converse isomorphism.
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2.5.4. Exercise. Let V1 ,V2 be twoK-vector spaces and β∶V1 ×V2 → K be a bilinear form.
Suppose β is non-degenerate, viz.:

• (∀v1 ∈ V1)[(∀v2 ∈ V2)(β(v1 , v2) = 0) → v1 = 0];

• (∀v2 ∈ V2)[(∀v1 ∈ V1)(β(v1 , v2) = 0) → v2 = 0]/

1. Find natural linear embeddings V1 ↪ V∗
2 and V∗

1 ↪ V2.

2. Deduce that if V1 or V2 is �nite-dimensional, then both are and V1 ≃ V∗
2 .

2.5.5. Exercise. For this exercise it is preferable to know about quotient vector spaces.
Let V be a �nite-dimensional vector space.

1. For W ≤ V a subspace, let W⊥ = {φ ∈ V∗ ∶ (∀w ∈ W)(φ(w) = 0)}. Prove that
dimW⊥ = dimV − dimW.

2. Suppose in addition that V is a representation of G. Prove that V is irreducible i�
V∗ is.

2.5.6. Exercise. Return to Proposition 2.4.4. Prove that T( f ) does not depend on the(*)
choice of the basis. Deduce another proof that T is G-covariant.

3 Around reducibility
Abstract. Schur’s Lemma (§ 3.1) describes arrows between irreducible representa-
tions; there are extra claims ifK is algebraically closed but the general part is worth
remembering.Maschke’s ¿eorem (§ 3.2) provides nice direct sum decompositions
and eliminates the need for quotient objects, but has assumptions on charK. We
then introduce isotypical components (§ 3.3).

From this section on, it is important to distinguish assumptions on algebraic closed-
ness (‘à la Schur+’) from assumptions on the characteristic (‘à la Maschke’).

3.1 Schur’s Lemma
¿e phrase ‘Schur’s Lemma’ refers to various statements about morphisms between ir-
reducible representations. Some are extremely general; some hold in �nite-dimensional
spaces; some require, in addition, the base �eld to be algebraically closed. But there are
no assumptions on the characteristic.

3.1.1. Lemma (Schur’s Lemma). Let G be a group andK be a �eld. Let (V1 , ρ1), (V2 , ρ2)
be irreducibleK-linear representations.

(i) If f ∶ ρ1 → ρ2 is a morphism of representations, then either f = 0 or f is an iso-
morphism.

(ii) In particular, if (V , ρ) is an irreducible representation, then EndK[G](V) is a skew-
�eld.
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(iii) Suppose that K is algebraically closed. If (V , ρ) is a �nite-dimensional, irreducible
representation overK, then EndK[G](V) = K IdV ≃ K.

Proof.

(i) Suppose f ≠ 0. ¿en W1 = ker f < V1. However, W1 is G-invariant since for
x ∈ W1 and g ∈ G one has f (gx) = g f (x) = g ⋅ 0 = 0. By irreducibility of V ,
one has W1 = {0} and f is injective. Similarly, W2 = im f > 0 is G-invariant,
hence by irreducibilityW2 = V2 and f is surjective. It is thus aG-covariant linear
isomorphism, hence an isomorphism of representations.

(ii) A special case. Recall that the inverse of a K-linear, G-covariant isomorphism,
is againK-linear and G-covariant.

(iii) Of course every scalar map λ IdV is G-covariant, so K IdV ≤ EndK[G](V).
We prove the converse. Let σ ∈ EndK[G](V). By assumption, V is �nite-
dimensional overK andK is algebraically closed. So any linear endomorphism
of V has an eigenvalue. Say λ ∈ K has a non-zero eigenspace Eλ(σ) ≠ {0}.
¿en τ = σ − λ IdV ∈ EndK[G](V) has a non-zero kernel. But EndK[G](V) is a
skew-�eld by (ii), so σ = λ IdV . Hence EndK[G](V) = K IdV ≃ K.

A useful consequence is that over an algebraically closed �eld, if both ρ1 and ρ2 are
irreducible, then dimHomK[G](ρ1 , ρ2) is 0 or 1.

3.1.2. Remarks.

• Even starting with a commutative K, one can construct irreducible representa-
tions where EndK[G](V) is a non-commutative skew-�eld. We return to the topic
in § 11; meanwhile see exercise 3.4.1.

• ¿e argument makes crucial use of commutativity of K. For vector spaces over
skew-�elds, the maps λ IdV are no longer K-linear. I am however not aware of a
developed representation theory over skew-�elds.

3.2 Maschke’s¿eorem
¿e phrase ‘Maschke’s ¿eorem’ refers to various statements about expressing arbitrary
representations as direct sums of irreducible ones. All require the characteristic to be
coprime to the order of the �nite group, hence always work in characteristic 0. (Gen-
eralisations to in�nite groups would require higher-level structure.) But there are no
assumptions on algebraic closedness.

3.2.1. ¿eorem (Maschke’s ¿eorem). Let G be a �nite group and K be a �eld. Suppose
thatK has coprime characteristic. Let (V , ρ) be aK-linear representation. ¿en:

(i) Every G-invariant subspace W ≤ V admits a G-invariant direct complement.

(ii) V is a direct sum of irreducible representations.

(iii) In particular, if V is �nite-dimensional, then it is a direct sum of �nitely many
irreducible representations.

3.2.2. Remarks.
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• (i) expresses complete reducibility, also known as semisimplicity of the group al-
gebraK[G]. (See § 13.2.)

• While (ii) does not require �nite-dimensionality (it does require �niteness of G
though), it is the kind of claim that o en disturbs beginners.

Proof.

(i) Let W ≤ V be as in the statement. Because direct complements exist in the
category of vector spaces, we may take a linear subspace S ≤ V such that V =
W ⊕ S. ¿e problem is that S need not be G-invariant. We shall ‘average it’ as
follows.

Let π∶V →W be the linear projector ontoW parallel to S. Now let:

π̂ = 1
∣G∣

∑
g∈G

ρ(g−1) ○ π ○ ρ(g) = 1
∣G∣

∑
g∈G

g−1πg .

(¿e second formula is in implicit notation, which we now use.) We claim the
following.

• π̂ is a linear, G-covariant map. Linearity is obvious since π̂ is a sum of
linear maps. Now for �xed h ∈ G, the map g ↦ gh is a bijection of the
indexing set G so:

π̂h = 1
∣G∣

∑
g∈G

g−1πg ⋅ h

=
1
∣G∣

∑
g∈G

h ⋅ h−1g−1 ⋅ π ⋅ gh

=
1
∣G∣

∑
g′∈G

h ⋅ g′πg′

= hπ̂.

• π̂ is a linear projector onto W . Recall that W is G-invariant. So for any
g ∈ G and v ∈ V , one has gv ∈ V , then π(gv) ∈ W , and g−1π(gv) ∈ W .
Hence π̂(g) ∈ W and im π̂ ≤ W . Now π is the identity on W . So for
w ∈ W , one has gw ∈ W , then π(gw) = gw, and g−1π(gw) = w. Hence
π̂(w) = w.
Summing up, im π̂ ≤ W and π̂∣W = IdW . ¿is is the de�nition of a linear
projector with imageW .

Let Ŝ = ker π̂. Being the kernel of the projector π̂, it is a direct complement of
W = im π̂. Moreover it is G-invariant, because π̂ is G-covariant. We are done.

(ii) ¿is requires somemaximality argument à la Zorn (and the proof may be omit-
ted by the unexperienced).

Let F be a family of irreducible subrepresentations of V whose sum is direct,
and maximal as such. (¿is exists by Zorn’s lemma, or the axiom of choice and
ordinal induction.) Let S = ∑W∈FW = ⊕W∈FW .

If S < V , then by (i), there is a G-invariant complement T . Now T contains an
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irreducible representation W ′ by Lemma 1.2.3. So F = F ∪ {W ′} is a family
of irreducible representations whose sum is direct. By maximality of F as such,
one hasW ′ ∈ F . SoW ′ ≤ S, a contradiction. ¿is proves S = V , as wanted.

(iii) A direct consequence of (ii), but it can also be proved directly by induction on
dimV . See exercise 3.4.4.

3.2.3. Remarks.

• If charK divides ∣G∣, then Maschke’s theorem no longer holds (exercise 3.4.6), so
the theory ofmodular representations is more complicated.

• Maschke’s principle fails for in�nite groups, even over C. However, it can be
salvaged for certain in�nite groups bearing extra structure (typically, aHaarmeas-
ure as used in Lie theory).

3.3 Isotypical components
We proceed to analysing reducible representations in terms of ‘atoms’ (viz. irreducible
representations).

3.3.1. De�nition. Let G be a group andK be a �eld. Let V be aK-linear representation
of G. Also let T ∈ IrrK(G).

• Let CpV(T) = {W ≤ V ∶ W is a subrepresentation andW ≃ T} be the set of
isomorphic copies of T inside V .

• Let IsoV(T) = ∑W∈CpV(T)W be their sum, called the isotypical component of V
of type T .

¿ese notions behave extremely well in presence of both Schur’s andMaschke’s phe-
nomena. ¿e following can be read following the analogy with p-primary components
of abelian groups.

3.3.2. ¿eorem. Let G be a �nite group andK be a �eld of coprime characteristic. Let V
be aK-linear representation. ¿en:

(i) Every irreducible subrepresentation of IsoV(T) is isomorphic to T.

(ii) V = ⊕T∈IrrK(G) IsoV(T).

(iii) If V1 ,V2 are twoK-linear representations, and f ∶V1 → V2 is a morphism of repres-
entations, then f (IsoV1(T)) ≤ IsoV2(T).

(iv) For every T ∈ IrrK(G), there is a subfamily FT ⊆ CpV(T) such that IsoV(T) =

⊕W∈FT W.

3.3.3. Remarks.

• Subrepresentations IsoV(T) are completely canonical, which is con�rmed by (iii).

• However a family FT as in (iv) is highly non-canonical. ¿e simplest example is
a 2-dimensional vector space V as a representation of {1}. Certainly V is a direct
sum of two vector lines, but these are not uniquely determined.
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• ¿e theoremdoes not require algebraic closedness, but fails badly in characteristic
dividing ∣G∣.

Proof. We use quick lemmas.

3.3.4. Lemma. Suppose V ′ ,W ≤ V are subrepresentations with W irreducible. ¿en
W ∩ V ′ = {0} or W ≤ V ′.

Proof. Let R =W ∩V ′, which is a subrepresentations ofW . If R = {0} we are done.
Otherwise, by irreducibility,W = R ≤ V ′.

3.3.5. Lemma. Every sum∑IWi of irreducible subrepresentations Wi ≤ V is the direct
sum of a subfamily J ⊆ I.

Proof. Let S = ∑IWi be a sum of irreducible subrepresentations. Let J ⊆ I be a
subfamily whose sum is direct, and maximal with respect to this property. (¿is
exists by maximality principles à la Zorn.) Now let S′ = ∑JWj = ⊕JWj . We claim
that S′ = S.

If it is not the case, there is i ∈ I withWi /≤ S′. By Lemma 3.3.4,Wi ∩ S′ = {0}.
So J ∪ {i} is a family properly containing J, whose sum is direct: a contradiction. So
S = S′ = ⊕JWj is the direct sum of a subfamily.

3.3.6. Lemma. Suppose that all Wi for i ∈ I and W are irreducible subrepresentations
of V, with W ≤ ∑IWi . ¿en W is isomorphic to one of the Wi .

Proof. By Lemma 3.3.5, up to taking a subfamily we may assume ∑IWi = ⊕IWi .
So we may consider the projectors π i ontoWi parallel to the other summands. Since
W ≠ {0}, there is i ∈ I such that π i(W) ≠ 0. We �x one such and let f be the
restriction π i∣W ∶W → Wi . ¿en f ≠ 0. Now bothW andWi are irreducible, so by
Schur’s Lemma f is an isomorphismW ≃Wi .

(i) Immediate from Lemma 3.3.6.

(ii) By Maschke’s theorem, V is a sum of irreducible representations. Each lies in
some IsoV(T), whence V = ∑T∈IrrK(G).

We prove that the latter sum is direct; suppose not. ¿en there are distinct types
T0 , T1 , . . . , Tn with n ≥ 1 such that IsoV(T0) ∩ (∑

n
i=1 IsoV(Ti)) ≠ {0}. So there

isW ∈ CpV(T0) contained in∑
n
i=1 IsoV(Ti). By Lemma 3.3.6, T0 is isomorphic

to one summand of some IsoV(Ti), viz. T0 ≃ Ti , a contradiction.

(iii) LetW1 ∈ CpV1(T). ¿en f (W1) ≤ V2 is G-invariant, hence a subrepresentation.
By Schur’s Lemma, either f (W1) = {0} or f (W1) ≃ W1 ≃ T . So in either case,
f (W1) ≤ IsoV2(T).

(iv) Immediate from Lemma 3.3.5.

3.3.7. Corollary (and de�nition). Let G be a �nite group and K be a �eld of coprime
characteristic. Let V be aK-linear, �nite-dimensional representation. ¿en there are well-

20



de�ned integers nT = nT(V) for T ∈ IrrK(G) such that:

V ≃ ⊕
T∈IrrK(G)

TnT [K[G]-Mod].

¿e integer nT(V) is called themultiplicity of T in V.

Proof. ¿e existence is a reformulation of¿eorem 3.2.1 (iii). Write V as a direct sum
of irreducible representations; now sort them according to their isomorphism types.

It remains to show that the integers do not depend on the decomposition. Suppose
there is an isomorphism of representations f ∶⊕TnT ≃ ⊕TmT . By¿eorem 3.3.2 (iii),
it restricts to isomorphisms fT ∶TnT ≃ TmT for each T ∈ IrrK(G). But then, nT dimT =
mT dimT , so nT = mT , as wanted.

Hence a �nite-dimensional, K-linear representation of a �nite group over a �eld of
coprime characteristic is entirely determined by the number of ‘atoms’ (viz. irreducible
representations) of each type in it.

3.3.8. Remark. Corollary 3.3.7 can be used to give a proof in coprime characteristic
that a representation V is irreducible i� V∗ is. (¿is holds with no assumptions on the
characteristic: see exercise 2.5.5.)

Suppose V is irreducible and write V∗ ≃ ⊕T TnT [K[G]-Mod]. ¿en V ≃ V∗∗ ≃

⊕T(T∗)nT [K[G]-Mod]. But V is irreducible, so there is only one term, and it has
multiplicity 1. Hence V∗ is irreducible. ¿e converse also uses V∗∗ ≃ V [K[G]-Mod].

In § 5, exercise 5.6.6 will give an explicit formula for the projector πT onto IsoV(T)
parallel to the sum of the other isotypical components.

3.4 Exercises
3.4.1. Exercise. LetH8 = {±1,±i ,± j,±k} be the group of basic quaternions, satisfying:

i2 = j2 = k2 = −1, , i j = k = − ji , jk = i = −k j, ki = j = −ik.

Let V ≃ R4 have basis 1, i , j, k, and extend linearly to de�ne anR-representation ofH8 in
V. Prove that it is irreducible, and determine EndR[G](V).

3.4.2. Exercise. Let G be a �nite group and ρ ∈ IrrC(G). Show that if ρ is injective, then
Z(G) is cyclic.

3.4.3. Exercise. Let ρ be the permutation representation of G = Sym(3), viz. the permuta-
tion action on V = Ce1 ⊕Ce2 ⊕Ce3. Check that L = ⟨e1 + e2 + e3⟩ is G-invariant. Give a
G-invariant complement. (Exercise 3.4.5 gives an instant method.)

3.4.4. Exercise. Return to¿eorem 3.2.1. Suppose charK = 0 and dimV < ∞. Prove (iii)
by induction on dimV without using (ii).

3.4.5. Exercise (an alternative proof of Maschke’s theorem over C). Let G be a group
and V be a �nite-dimensional, complex, linear representation of G. Let [⋅∣⋅] be a complex
scalar product, viz. a sesquilinear, Hermite-symmetric, positive de�nite form V ×V → C.
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1. Let vx∣yw = 1
∣G∣ ∑g∈G [gx∣g y]. Prove that this is a complex scalar product.

2. Prove that for x , y ∈ V and g ∈ G one has vgx∣g yw = vx∣yw.

3. Deduce a proof of Maschke’s theorem over C.

4. Extra question: if V is irreducible, show that allG-invariant complex scalar products
are multiples of v⋅∣⋅w.

3.4.6. Exercise (failure of Maschke in native characteristic). Let G = C2 be the cyclic
group with two elements. Let it act on V ≃ F22 by taking the generator to:

(
1 1
0 1) .

Prove that F2e2 is G-invariant, but has no G-invariant complement.

3.4.7. Exercise. Let G be �nite. Show that if all irreducible, linear complex representations
are 1-dimensional, then G is abelian.

3.4.8. Exercise. Determine which lemmas and which ads of ¿eorem 3.3.2 remain true
● if charK divides ∣G∣, ● if G is in�nite.

4 Characters
Abstract. ¿e de�nition of a character (§ 4.1) �rst looks ‘too simple to be useful’,
and yet is extremely powerful. Character tables encode the values of the irreducible
characters. Characters are typical examples of class functions (§ 4.2). We then de-
scribe characters of representations obtained by the usual algebraic constructions
(§ 4.3).

4.1 Characters and character tables
4.1.1. De�nition. Let G be a group and K be a �eld. Let ρ∶G → GL(V) be a �nite-
dimensional,K-linear representation. Its character is the map

χρ ∶ G → K
g ↦ tr ρ(g),

where tr denotes the trace. (When there is no ambiguity on ρ, one simply writes χ.)

4.1.2. Remarks.

• A character need not be a morphism!

• Since the trace is invariant under conjugation, so is any character, viz. one has
χ(g−1hg) = χ(h). In particular, one really computes χ(γ) for γ a conjugacy class
of G.

• Characters are especially useful if K is algebraically closed (so we have eigenval-
ues) and has coprime characteristic 0 (so we have complete reducibility). One
cannot imagine at �rst the strength of character theory over C.
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• It follows immediately from Corollary 3.3.7 that in coprime characteristic, for
every character χV there are integers nT for T ∈ IrrK(G) such that:

χV = ∑
T∈IrrK(G)

nT χT .

• Interestingly enough, the nT ’s above are integers of K, meaning that in positive
characteristic p they are to be considered modulo p. ¿us characters can, at best,
detect multiplicitymodulo the characteristic.
For instance, the character of triv⊕T p is χtriv+pχT = χtriv. But as representations,
triv /≃ (triv ⊕ T p). So parts of character theory even require charK = 0.

4.1.3. Lemma. SupposeK ≤ C. Let G be a �nite group and ρ∶G → GL(V) be aK-linear
representation of G with character χ. ¿en for all g ∈ G:

χ(g−1) = χ(g).

Proof. We know that ρ(g) can be brought to diagonal form, say one of its matrices is
diag(λ1 , . . . , λn). Hence ρ(g−1) = ρ(g)−1 is diagonalisable to diag(λ−11 , . . . , λ−1n ). But
each λ i is a complex root of unity, so λ−1i = λ i . ¿erefore one of the matrices of g−1 is
diag(λ1 , . . . , λn), with trace:

χ(g−1) = tr ρ(g−1) = tr diag(λ1 , . . . , λn) = ∑
i
λ i = ∑

i
λ i = tr ρ(g) = χ(g).

4.1.4. De�nition.

• An irreducible character is the character of an irreducible representation.
We let IrrK(G) be the set of irreducible characters. Because characters will de-
termine representations (at least in the irreducible case over good �elds), this does
not con�ict with the same notation for the set of irreducible representations.

• ¿e character table of a �nite group G overK is the table constructed as follows:

– list all conjugacy classes γ1 , . . . , γr ofG, with respective number of elements
say d1 , . . . , dr .

– list all irreducible characters χ1 , . . . , χr of G over K. For good K, it is the
same number r (¿eorem 5.1.1).

– Now tabulate values as follows:

G γ1 [×d1] . . . γr [×dr]

χ1 χ1(γ1) . . . χ1(γr)
⋮
χr χr(γ1) . . . χr(γr)

When not otherwise speci�ed, character tables are usually given over C (orQ).

4.1.5. Example. Here is the character table of Sym(3).

1 [×1] (12) [×3] (123) [×2]

χtriv 1 1 1
χε 1 −1 1
χ2 2 0 −1
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4.1.6. Remarks.

• Such a table does not really give the representations themselves, nor the group
structure.
For instance, the dihedral group D2⋅4 and the basic quaternion groupH8 have the
same character table over C, although they are non-isomorphic.

• ¿is cannot happen with �nite simple groups, but we know this because we have
the full list of them. Actually the �nite simple groups are determined by much
less information than their character tables—again because we have the list.

• However character tables encode much information on �nite groups. Actually
some properties can be ‘read o� ’ character tables; see exercise 7.4.2.

4.2 Class functions
Invariance under conjugation begs for a de�nition.

4.2.1. De�nition. A class function (also: central function) is a function α∶G → K satis-
fying: (∀g)(∀h)(α(g−1hg) = α(g)).

More algebraically, these are functions which factor through the conjugation rela-
tion. For a class function α and a conjugacy class γ, it makes sense to write α(γ).

4.2.2. Lemma (and notation). Let G be a �nite group and K be a �eld of coprime char-
acteristic.

(i) Class functions form aK-vector subspace of the spaceKG of all maps G → K.
We denote it by CK(G) (or simply C if there is no ambiguity onK or G).

(ii) dimK CK(G) is the number of conjugacy classes of G.

(iii) CK bears a bilinear, symmetric, non-degenerate form given by:

(α∣β) = 1
∣G∣

∑
g∈G

α(g−1)β(g).

(iv) IfK = C, then CC also bears a complex scalar product, given by:

[α∣β] = 1
∣G∣

∑
g∈G

α(g)β(g).

(v) WhenK ≤ C and χ1 , χ2 are characters, both coincide: (χ1∣χ2) = [χ1∣χ2].

Actually (i) and (ii) do not require coprimality of the characteristic (as seen from the
proof). But dividing by ∣G∣ certainly does.

Proof.

(i) is clear.

(ii) For γ ⊆ G a conjugacy class, let 1γ be the indicator function, viz. the function
which is 1 on γ and 0 elsewhere. ¿is map is in C. Let B = {1γ ∶ γ a conjugacy
class}. We claim that it is a basis of CK(G). Indeed, suppose ∑ λγ1γ = 0 in
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obvious notation. Let δ be a conjugacy class and let g ∈ δ; then ∑ λγ1γ(g) =
λδ = 0, which applies to every class. Now if α ∈ C, then for every class γ let
λγ = α(γ). ¿en α and∑ λγ1γ agree everywhere.

(iii) Bilinearity is clear. Symmetry follows from reindexing:

(β∣α) = 1
∣G∣

∑
g∈G

β(g−1)α(g) = 1
∣G∣

∑
g′∈G

β(g′)α(g′−1) = (α∣β) .

We prove non-degeneracy. Let α ∈ CK be (⋅∣⋅)-orthogonal to all class functions.
Let γ be a conjugacy class; then so is γ−1 = {g−1 ∶ g ∈ γ}. Let f = 1γ−1 be the
indicator function of γ−1. ¿en since α is a class function:

0 = ∣G∣ ⋅ ( f ∣α) = ∑
g∈G

f (g−1)α(g) = ∑
g∈G

1γ−1(g−1)α(g) = #γ ⋅ α(γ).

Now #γ = [G ∶ CG(g)] for any g ∈ γ, and therefore #γ divides ∣G∣. In particular,
#γ is coprime to the characteristic (if positive), and it follows α(γ) = 0. ¿is
holds for any conjugacy class: so α is zero globally.

(iv) Actually the formula de�nes a complex vector space on all ofCG , as easily seen.
Since CC is a vector subspace, the claim follows.

(v) Clear since by Lemma 4.1.3, χ(g−1) = χ(g) for a character.

4.2.3. Remarks.

• ¿ere are other conventions (inverse on the right, complex-conjugation on the
right). What matters is the resulting theory, viz. side-invariant phenomena.

• OverC there are two natural pairings of class functions: (⋅∣⋅) and [⋅∣⋅]. ¿ey return
the same values on characters but need not agree on all class functions. Only the
former is symmetric; the latter is merely Hermite-symmetric.

• In particular they give rise to distinct notions of orthonormality, which however
agree on characters.

• Analysts will favour working with [⋅∣⋅], and algebraists will prefer (⋅∣⋅).

4.3 Characters and algebraic constructions
§ 2 gavemethods how to obtain new representations from existing ones. ¿eproposition
below will describe the consequent behaviour of characters. It builds on the principle
that isomorphic representations have equal character.

4.3.1. Lemma. Let G be a �nite group and K be a �eld. If ρ1 ≃ ρ2 are isomorphic �nite-
dimensional representations, then χ1 = χ2.

Proof. By de�nition, there is an isomorphism f ∶ ρ1 ≃ ρ2, viz. a linear isomorphism
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V1 ≃ V2 such that for all g ∈ G:

V1 V2

V1 V2 .

f

ρ1(g) ρ2(g)
f

Another way to write it is ρ2(g) = f −1ρ1(g) f . Taking matrices if necessary, one sees
tr ρ2(g) = tr ρ1(g) for all g ∈ G, that is, χ2 = χ1.

4.3.2. Remark. A converse will be seen: in good cases, representations with equal char-
acters are actually isomorphic (¿eorem 5.1.1).

We return to the constructions of § 2 and determine their characters.

4.3.3. Proposition. Let G be a group and K be a �eld. Let (V , ρ), (V1 , ρ1), (V2 , ρ2) be
K-linear, �nite-dimensional representations with characters χ, χ1 , χ2.

(i) ¿e character of ρ1 ⊕ ρ2 is χ1 + χ2.

(ii) ¿e character of ρ∗ is χ∗(g) = χ(g−1). In caseK ≤ C, this also equals χ(g).

(iii) ¿e character of ρ1 ⊗K ρ2 is χ1 χ2.

(iv) ¿e character ofHomK(ρ1 , ρ2) is χ∗1 χ2. In caseK ≤ C, this also equals χ1 ⋅ χ2.

Proof.

(i) By de�nition, ρ1 ⊕ ρ2 is the natural action of G on V1 ⊕V2, viz. G acts on V1 via
ρ1 and on V2 via ρ2. So:

χρ1+ρ2(g) = tr(ρ1 ⊕ ρ2)(g) = tr ρ1(g) + tr ρ2(g) = χ1(g) + χ2(g).

(ii) By de�nition, ρ∗(g)∶V∗ → V∗ takes a linear form φ to the linear form v ↦
φ(g−1 ⋅ v). Working in coordinates if necessary, if B is a basis of V then:

MatB∗ ρ∗(g) = (MatB ρ(g−1))
t ,

so χ∗(g) = χ(g−1). In caseK ≤ C, this also equals χ(g) by Lemma 4.1.3.

(iii) By de�nition, ρ1 ⊗ ρ2 is the tensor action of G on V1 ⊗V2, viz. G acts on v1 ⊗ v2
by (ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1) ⊗ ρ2(g)(v2). Working in coordinates if
necessary,

χρ1⊗ρ2(g) = tr(ρ1 ⊗ ρ2)(g) = tr ρ1(g) ⋅ tr ρ2(g) = (ρ1ρ2)(g).

(iv) Recall fromProposition 2.4.4 (ii) that there is an isomorphismof representations
(viz. aK[G]-isomorphism):

HomK[G](V1 ,V2) ≃ V∗
1 ⊗K V2 [K[G]-Mod].

By Lemma 4.3.1 it is enough to give the character of the right-hand, and the claim
follows from (ii) and (iii).
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4.3.4. Remark. ¿us the character of Tn is nχT . IfK has positive characteristic dividing
n, this is the zero map. Similarly, triv ⊕ Tn has character χtriv. ¿is simply tells us that
the expected function:

{�nite-dimensionalK-linear representations} → {characters}

cannot be injective. ¿is is as deep as saying that in positive characteristic, the base �eld
does not have in�nitely many integers.

4.4 Exercises
4.4.1. Exercise.

1. Compute χreg for any �nite group G.

2. Generalise to χperm: prove that χperm(g) = #{x ∈ X ∶ gx = x}.

3. Let G = Sym(3). Inside perm, consider the line L = ⟨e1 + ⋅ ⋅ ⋅ + e3⟩. Let V be a
G-invariant complement of L inside perm. Give χV .

4. Same question when n = 4.

4.4.2. Exercise. Give the character table of the cyclic group Cn over C.

For the next exercises, admit that the number of complex, irreducible representa-
tions of a �nite group equals the number of conjugacy classes (¿eorem 5.1.1).

4.4.3. Exercise. Give the character table of Sym(3) over C.

4.4.4. Exercise. Give the character table of Alt(4) over C. Hint: act on a regular tetra-
hedron in the usual 3-dimensional space.

5 Orthogonality relations
Abstract. ¿e main ¿eorem (§ 5.1) says that irreducible complex characters of a
�nite group form an orthonormal basis of the space of class functions. ¿ere are
numerous consequences, such as: every �nite-dimensional, complex representa-
tion is determined by its character, or: every irreducible, complex representation
occurs in the regular representation with multiplicity equal to its dimension. ¿e
proof builds on a simple lemma giving the dimension of the subspace of �xed points
of a representation (§ 5.2). Orthonormality is then proved in § 5.3 and generation
in § 5.4.

5.1 ¿e main theorem
We �x a �nite group G and a good �eld K. Recall from § 4.2 that a K-valued class
function on a group G is a map α∶G → K such that (∀x)(∀y)(α(x y) = α(x)).

• Class functions form a K-vector space CK(G), and dimK CK(G) = #Conj(G),
the number of conjugacy classes of G.

• Characters are class functions.
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• CK(G) bears a natural bilinear, symmetric, non-degenerate form:

(α∣β) = 1
∣G∣

∑
g∈G

α(g−1)β(g).

• IfK = C, then CC(G) also bears a natural complex scalar product:

[α∣β] = 1
∣G∣

∑
g∈G

α(g)β(g).

• ¿ese agree on characters, so for that matter one may work with either.

5.1.1. ¿eorem. Let G be a �nite group andK be a good �eld.

(i) IrrK(G) forms an orthonormal basis of the space of class functions on G. In partic-
ular, # IrrK(G) = dimK CK(G) = #Conj(G).
In caseK ≤ C, the same holds with respect to [⋅∣⋅]-orthonormality.

(ii) Let V be a K-linear, �nite-dimensional representation. ¿en, as functions from G
toK, one has χV = ∑χ∈IrrK(G) (χV ∣χT) χT .

(iii) Every irreducible representation is determined by its character. If charK = 0, then
every �nite-dimensional representation is determined by its character.

(iv) Let reg be the regular representation of G overK. ¿en reg ≃ ⊕T∈IrrK(G) Tdim T .

5.1.2. Remarks.

• As a consequence of (iii), it is safe to let IrrK(G) be the set of irreducible characters.
Likewise, it is safe to write IsoV(χ) instead of IsoV(T).

• ¿e general case in (iii) fails in characteristic p > 0 (even over good �elds).
Indeed, for any representationW , letting V = triv ⊕W p one gets χV = triv. But
V /≃ triv [K[G]-Mod].

• Another way to write (iv) is:

χreg = ∑
χ∈IrrK(G)

χ(1) ⋅ χ.

¿is immediately implies:

∣G∣ = dim reg = χreg(1) = ∑
χ∈IrrK(G)

χ(1)2 ,

so ∣G∣ is a sum of #Conj(G)-many squares.

5.1.3. Remark. Although Conj(G) and IrrK(G) have the same number of elements (so
they are equipotent), there is in general no distinguished bijection between them.

An interesting exception is the symmetric group Sym(n) where one can attach to
each conjugacy class an irreducible character, in a systematic way. ¿is is the theory of
Young tableaux.4

4For example, see § 28 in the Curtis-Reiner book (‘Further reading’).
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5.2 Trivial spaces
5.2.1. De�nition. Let V be a K-linear representation of a group G. ¿e space of �xed
vectors, or the G-trivial subspace of V , is the subspace:

CV(G) = {v ∈ V ∶ (∀g ∈ G)(gv = v)}.

It should be obvious that CV(G) is indeed a linear subspace. An alternative notation
is VG ; we avoid it.

5.2.2. Lemma. Let G be a �nite group and K be a �eld of coprime characteristic. Let
V ,V1 ,V2 beK-linear, �nite-dimensional representations with character χ, χ1 , χ2.

(i) dimK CV(G) = 1
∣G∣ ∑g∈G χ(g).

(ii) dimHomK[G](V1 ,V2) = (χ1∣χ2).

One should be careful that these are formulas inK. ¿e right-hand could be 0 for a
bad reason; typically if the le -hand is divisible by the characteristic.

Proof.

(i) Consider the following linear endomorphism of V :

π = 1
∣G∣

∑
g∈G

g .

For h ∈ G one has:

h ○ π = 1
∣G∣

∑
g∈G

hg = 1
∣G∣

∑
hg∈G

hg = π.

It follows that π2 = 1
∣G∣ ∑h∈G hπ = 1

∣G∣ ∑h∈G π = π. So π is a linear projector. Let
us determine its image. If v ∈ CV(G) then π(v) = v. Conversely, if v ∈ V , then
for any h ∈ G one has hπ(v) = π(v), so π(v) ∈ CV(G).

¿us π is a projector with image CV(G) (we do not care for its kernel). Now for
any projector, tr π = dim im π; here this gives:

dimCV(G) = dim im π = tr π = 1
∣G∣

∑
g∈G

tr g = 1
∣G∣

∑
g∈G

χ(g).

(ii) Consider theK-linear representation of G:

HomK(V1 ,V2),

whose character is χ∗1 χ2 by Proposition 4.3.3 (iv). We investigate the G-trivial
space.

A K-linear map f ∶V1 → V2 is invariant under the action of G i� g ⋅ f = f i�
ρ2(g) ○ f ○ ρ1(g−1) = f i� ρ2(g) ○ f = f ○ ρ1(g) i� f is G-covariant. Hence:

CHomK(V1 ,V2)(G) = HomK[G](V1 ,V2).
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¿e dimension of the above is given by (i):

dimHomK[G](V1 ,V2) =
1
∣G∣

∑
g∈G

χ∗1 (g)χ2(g) = (χ1∣χ2) .

5.3 Orthonormality
5.3.1. Lemma. Let G be a �nite group and K be a good �eld. Let V1 ,V2 be two K-linear,
�nite-dimensional representations with characters χ1 , χ2.

(i) If V1 and V2 are irreducible, then (χ1∣χ2) = {
1 if V1 ≃ V2
0 otherwise.

(ii) Every irreducible representation is determined by its character. If charK = 0, this
extends to every �nite-dimensional representation.

(iii) ¿e multiplicity of an irreducible representation T in reg is exactly dimT, viz.:

reg ≃ ⊕
T∈IrrK(G)

Tdim T .

Proof.

(i) Recall from Lemma 5.2.2 (ii) that dimHomK[G](V1 ,V2) = (χ1∣χ2).

• If V1 and V2 are two non-isomorphic, irreducible representations, then
HomK[G](V1 ,V2) = {0} by Schur’s Lemma, so (χ1∣χ2) = 0.

• If V1 and V2 are irreducible and isomorphic, then on the one hand χ2 = χ1,
and on the other hand, always by Schur’s Lemma, HomK[G](V1 ,V2) ≃ K
is 1-dimensional. So (χ1∣χ2) = ∣G∣

∣G∣
= 1.

(ii) ¿e irreducible case is trivial from (i). Now suppose charK = 0. Let V be a
�nite-dimensional representation V ; then by Corollary 3.3.7, there are integers
nT such that:

V ≃ ⊕
T∈IrrK(G)

TnT .

¿en χV = ∑ nT χT where χT is the character of T . By linear independence of
the orthonormal family, χV completely determines the elements nT ∈ K.
Now the ring morphism Z → K is injective in characteristic 0, so χV even de-
termines the integers nT ∈ Z. It therefore determines the isomorphism type.

(iii) A priori reg = ∑ nχ χ where the sum ranges over irreducible characters. We now
determine the integers nχ . By orthonormality, for any irreducible ψ one has:

(reg∣ψ) = ∑
χ∈IrrK(G)

(nχ χ∣ψ) = ∑
χ∈IrrK(G)

nχδχ ,ψ = nψ (ψ∣ψ) = nψ .

Now reg is the permutation character attached to the regular representation: if
g ≠ 1, then g ⋅ eh = egh . So the matrix coding the action of g is a permuta-
tion matrix avoiding the diagonal, meaning reg(g) = 0. In particular, for any
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character ψ one has:

(reg∣ψ) = 1
∣G∣

∑
g∈G

reg(g−1)ψ(g) = 1
∣G∣

reg(1)ψ(1) = ψ(1).

Applying to irreducible χ, we get nχ = χ(1) = dim χ, as wanted.

Notice that the above also holds of [⋅∣⋅] when working over (a sub�eld of) C.

5.3.2. Remarks.

• Lemma 5.3.1 can be used to give a quick proof in characteristic 0 that a �nite-
dimensional representation V is irreducible i� V∗ is. (¿is is true in any charac-
teristic, but the general argument is more geometric: see exercise 2.5.5. Also see
Remark 3.3.8.)

Indeed, V is irreducible i� (χV ∣χV) = 1. ¿is is because a priori, V ≃ ⊕T TnT ;
now (χV ∣χV) = ∑ n2T in K. But in characteristic 0, this can equal 1 i� there is a
unique non-zero nT , which equals 1. ¿is proves the claim.

Finally notice that (χ∗V ∣χ∗V) = (χV ∣χV).

• ¿e above proof does not work in positive characteristic p > 0 (even over a good
�eld). Indeed, for V = triv ⊕ T p one gets (χV ∣χV) = 1 but V is certainly not
irreducible. ¿e reason is that here, (χV ∣χV) is not an absolute integer ∈ Z, but
an element of the prime �eld ofK.

5.4 ¿e space of class functions
We need one last fact to prove¿eorem 5.1.1.

5.4.1. Proposition. Let G be a �nite group and K be a good �eld. ¿en IrrK(G) spans
CK(G).

Proof. Let α∶G → K be a class function. We shall prove that α = ∑χ∈IrrK(G) (χ∣α) χ.
Considering the di�erence α−∑χ∈IrrK(G) (χ∣α) χ, it su�ces to prove that a class func-
tion orthogonal to all irreducible characters is trivial.

So let α be such. Let V = reg be the regular representation and

f = 1
∣G∣

∑
g∈G

α(g)g ∈ EndK(V).

Since α is a class function, one can easily show that f isG-covariant (see exercise 5.6.4),
hence f ∈ EndK[G](reg).

LetW ≤ reg be any irreducible subrepresentation, with character χ. By construc-
tion, W is f -invariant; moreover f remains an endomorphism of W . So by Schur’s
Lemma there is λ ∈ K such that f∣W = λ IdW . ¿en:

λ dimW = tr f∣W =
1
∣G∣

∑
g∈G

α(g) tr g∣W
²
=χ(g)

= (χ∗∣α) .

Now χ∗ is an irreducible character, so by assumption the above is 0; hence λ = 0 and
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f∣W = 0.
So f vanishes on all irreducible subrepresentations of reg. ¿e latter is a direct

sum of irreducible representations by Maschke’s ¿eorem, so f = 0 globally. Finally
f (e1) = 1

∣G∣ ∑g∈G α(g)eg = 0, meaning that α is identically 0. We are done.

5.5 Column orthogonality
Orthogonality has uncountable consequences. A useful tool is provided by the following
lemma.

5.5.1. Lemma (column orthogonality). Let G be a �nite group and K be a good �eld.
¿en for any two conjugacy classes γ1 , γ2, one has:

∑
χ∈IrrK(G)

χ(γ−11 )χ(γ2) = {
∣G∣

#γ1 if γ1 = γ2
0 otherwise.

Proof. We use matrix theory. Let A = (χ(γ))χ ,γ be the character table. We also need
the version with inverses: B = (χ(γ−1))χ ,γ . Last, let J be the diagonalmatrix:

J =
⎛
⎜
⎜
⎝

#γ1
∣G∣

⋱
#γr
∣G∣

⎞
⎟
⎟
⎠

.

By orthogonality, the (χ1 , χ2)-entry of the product BJAt is:

(BJAt)χ1 , χ2 = ∑
γ∈Conj(G)

χ1(γ−1)
#γ
∣G∣

χ2(γ) =
1
∣G∣

∑
g∈G

χ1(g−1)χ2(g) = δχ1 , χ2 .

Hence BJAt = I is the identity matrix. ¿is implies AJBt = I, and BtA = J−1. ¿e latter
gives, at (γ1 , γ2):

∑
χ∈IrrK(G)

χ(γ−11 )χ(γ2) = (BtA)γ1 ,γ2 = (J−1)γ1 ,γ2 = δγ1 ,γ2
∣G∣

#γ1
.

5.6 Exercises
5.6.1. Exercise. Let V be an irreducible representation and L be a 1-dimensional repres-
entation. Prove that V ⊗ L is irreducible.

5.6.2. Exercise (column orthogonality). Let G be a �nite group andK be a good �eld.

1. Prove that x , y are conjugate i� (∀χ ∈ IrrC(G))(χ(g) = χ(h)).

2. IfK ≤ C, prove that the square matrix (χ(γ) ⋅
√

#γ
∣G∣

) is unitary.

5.6.3. Exercise. Let G be �nite and V be a linear, complex, irreducible representation.
Prove that (dimV)2 ≤ [G ∶ Z(G)].
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5.6.4. Exercise. Let α∶G → K be any map. For V aK-linear representation of G, let:

fα ,V =
1
∣G∣

∑
g∈G

α(g)g∶V → V .

Prove that the following are equivalent:

(i) α is a class function;

(ii) for every representation V, fα ,V is a G-covariant endomorphism of V;

(iii) fα ,reg is a G-covariant endomorphism of reg.

5.6.5. Exercise. Let G be a �nite group andK be a good �eld of positive characteristic. Let
V ,V ′ be �nite-dimensional representations with the same character. Prove that there are
natural integers nT and n′T with T ∈ IrrK(G) such that:

• for each T, at least one of nT or n′T is 0,

• for each T, both nT and n′T are divisible by charK,

• one has:
V ⊕⊕

T
TnT ≃ V ′ ⊕⊕

T
Tn′T [K[G]-Mod].

5.6.6. Exercise. LetK be a good �eld. Let V be aK-linear, �nite-dimensional represent-(*)
ation and T ∈ IrrK(G). Prove that the projector onto IsoT(V) parallel to the other terms
⊕T′≠T IsoT′(V) is given by:

πT =
dimT
∣G∣

∑
g∈G

χT(g−1)g .

6 Computing character tables
Abstract. A problem session.

We give a couple of character tables over C. For each, I try to give a �ow of natural
arguments to determine it, and then a �ow of natural comments on it. But there are
many approaches to the same problem, so some of the remarks could be used in the
determination process.¿e only way to read the notes for this section is by actually trying
to construct the tables yourself.

Sym(1)=Alt(2)

• ¿ere is nothing to say before or a er.

Sym(1) 1 [×1]

triv 1
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Alt(3)

• Alt(3) is abelian.

• By abelianity, conjugacy classes have one element, so there are three of them.

• By abelianity again, the irreducible representations have dimension 1, hence are
simply morphisms Alt(3) → C×. We need three of them (including triv).

• For a non-trivial morphism Alt(3) → C×, the image of (123) in C× must have
order 3. Let j = e

2iπ
3 .

Alt(3) 1 [×1] (123) [×1] (132) [×1]

triv 1 1 1
χ1 1 j j2
ψ1 1 j2 j

• Here the orthogonality relations essentially reduce to: 1+1+1 = 3, and 1+ j+ j2 = 0.

• Observe how χ∗1 = ψ1 = χ1 ⊗ χ1.

Sym(3)

• ¿ere are three conjugacy classes and we easily �nd their cardinalities.

• ¿erefore there are three irreducible representations.

• In addition to triv, there is the signature representation sign. We miss one more.

• Let d be its dimension. Since (dim triv)2 + (dim sign)2 + d2 = ∣ Sym(3)∣ = 6, the
last irreducible representation is 2-dimensional. Call it χ2.

• One can predict that χ2 is real-valued, and vanishes on (12). Indeed:

– By exercise 2.5.5 or Remark 5.3.2, χ∗2 is an irreducible, 2-dimensional repres-
entation. But only χ2 is irreducible and 2-dimensional, so χ∗2 = χ2, which
means it is real-valued.

– χ2 ⊗ sign is an irreducible, 2-dimensional representation (exercise 5.6.1), so
χ2 ⊗ sign = χ2. But sign((12)) = −1, so χ2((12)) = 0.

One could use orthogonality to �nd χ2((123)), but geometry is more natural.

• Let perm3 be the permutation representation, which is 3-dimensional. Clearly
perm3(1) = 3, perm3((12)) = 1, and perm3((123)) = 0. ¿us, (perm3∣perm3) =
1
6 (9× 1+ 1× 3+0×2) = 2. So perm3 is the sum of two irreducible representations.
One of them must have dimension 2: thus χ2 is a subrepresentation of perm3.

• Of course e1+ e2+ e3 ∈ perm3 is �xed by Sym(3), so perm3 contains a copy of triv.

• By the above, χ2 = perm3 − triv, and we get the table.

Sym(3) 1 [×1] (12) [×3] (123) [×2]

triv 1 1 1
sign 1 −1 1
χ2 2 0 −1
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• Let us check orthogonality: • 12 × 1 + 12 × 3 + 12 × 2 = 6 expresses (triv∣triv) = 1; •
12 × 1+(−1)2 × 3+ 12 × 2 = 6 expresses (sign ∣ sign) = 1; • 1× 1+(−1)× 3+ 1× 2 = 0
expresses (triv∣ sign) = 0; • and so on.

• As predicted, χ2 = χ∗2 = χ2 ⋅ sign.

Alt(4)

• One should be careful with conjugacy classes. Although (123) and (132) are con-
jugate in Sym(4), the Sym(4)-conjugacy class ‘breaks’ into two when going down
to Alt(4). ¿is produces two Alt(4)-classes of the same size. With this in mind,
or just remembering Alt(4) ≃ C2

2⋊C3, we �nd 4 conjugacy classes and count their
elements.

• ¿ere are 4 irreducible representations and triv is one of them. (For Alt(n), by
de�nition sign = triv.) We need three more.

• Let K = {1, (12)(34), (13)(24), (14)(23)} ≤ Alt(4), the (very important) sub-
group of bitranspositions. It is normal and Alt(4)/K has order 3, hence is abelian.
Now each representation of Alt(4)/K gives one of Alt(4) (by letting K act trivi-
ally).

• ¿is way we gain two 1-dimensional representations of Sym(4): just ‘li ing’ those
of Sym(4)/K ≃ Sym(3). Call them χ1 and ψ1.

• We need one more. Its dimension satis�es 3 + d2 = 12, so the dimension is 3.

• Of course it is perm4 − triv, which is indeed irreducible by computation.

Alt(4) 1 [×1] (123) [×4] (132) [×4] (12)(34) [×3]

triv 1 1 1 1
χ1 1 j j2 1

ψ1 = χ∗1 1 j2 j 1
χ3 3 0 0 −1

• Orthogonality can be checked, or simply deduced. Indeed, since χ3 = perm4−triv
is irreducible, it must be the missing irreducible character. By orthogonality, we
know it is orthogonal to the others.

• Here is the geometric realisation of χ3.
Consider the tetrahedron centered at the origin, whose vertices are:

v1 = (1, 1, 1), v2 = (1,−1,−1), v3 = (−1, 1,−1), v4 = (−1,−1, 1).

Alt(4) acts on this tetrahedron. It is a good exercise to explicitly write thematrices
in {e1 , e2 , e3}, but we simply determine the character—in the basis {v1 , v2 , v3},
where computations are easy.

– (123) is a circular permutation of the same basis; the trace is 0. ¿e same
applies to its inverse.

– Now (12)(34) swaps v1 and v2, but takes v3 to v4 = −v1 −v2 −v3. So the trace
is −1.

And we retrieve χ3. ¿is geometric argument gives it directly, and not as a quo-
tient of perm4.
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Sym(4)

• ¿ere are 5 conjugacy classes.

• We already know two irreducible representations: triv and sign.

• Now perm4 − triv is again irreducible, and we can compute its character χ3.

• ¿en χ∗3 = χ3, but χ3 sign ≠ χ3, so we just produced a fourth irreducible repres-
entation.

• Computation reveals that the missing one has dimension 2. One can predict χ∗2 =
χ2 (real values) and χ2 sign = χ2 (so it vanishes where sign = −1). One could then
use orthogonality to compute the missing values.

• Now K = {1, (12)(34), (13)(24), (14)(23)} remains normal in Sym(4). ¿is is
most remarkable as normality is not transitive in general. Here, K = Alt(4)′ and
Alt(4) = Sym(4)′ are so-called characteristic subgroups, and being characteristic
is transitive.

• ¿en Sym(4)/K ≃ Sym(3). It su�ces to extend the irreducible 2-dimensional
representation of Sym(3) by letting K act trivially. Now in any isomorphism
Sym(4)/K ≃ Sym(3), the image of a 4-cycle becomes a transposition, while a
bitransposition becomes the identity: this gives the values of χ2.

Sym(4) 1 [×1] (12) [×6] (123) [×8] (1234) [×6] (12)(34) [×3]

triv 1 1 1 1 1
sign 1 −1 1 −1 1
χ2 2 0 −1 0 2
χ3 3 1 0 −1 −1

ψ3 = χ3 ⊗ sign 3 −1 0 1 −1

• Here again, the geometric interpretation of χ3 is by acting on the tetrahedron.
In the notation above, (12) swaps v1 and v2, but �xes v3 (and v4). So χ3((12)) =
1. Likewise, (1234) takes v1 to v2, v2 to v3, and v3 to v4 = −v1 − v2 − v3; thus
χ3((1234)) = −1.

• ¿e geometric interpretation of χ2 is di�erent. Since K ⊴ Sym(4), there is a con-
jugation action on the set X = K∖{1}. It is transitive. ¿is gives us a 3-dimensional
permutation representation.

Whenever one has a permutation representation, the vector ∑X ex is �xed by G,
so here permX contains (at least) a copy of triv.

One checks that χ2 = permX − triv.

Alt(5)

• Since Alt(5) is simple, the situation is completely di�erent now (and interesting
at last).

• In Alt(5), (123) is conjugate to its inverse (132). One may not use (23) ∉ Alt(5) to
perform this conjugation, but (23)(45) ∈ Alt(5) does as well.
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• However, (12345) is not Alt(5)-conjugate to its inverse (15432): the Sym(5)-class
of 5-cycles breaks into two Alt(5)-classes of equal size.

• In addition to triv, one easily �nds the irreducible character perm − triv; it has
dimension 4. We need threemore, and number theory gives dimensions 3, 3, 5.

• ¿ere are no subgroups of index 3 or 4, so actions on coset spaces are limited.
Also, the action on cosets of Alt(4) ≤ Alt(5) is equivalent to perm: this gives
nothing new.

• An educated guess and 5-dimensionality suggest to look for a permutation rep-
resentation on 6 elements, and Sylow theory provides one.

• Alt(5) has exactly 6 Sylow 5-subgroups, all of order 5.

• Let P = ⟨(12345)⟩; this is a Sylow 5-subgroup. ¿en [G ∶ NG(P)] = 6 so NG(P)
has order 10.

• ¿is implies that in the conjugation action, an element of order 3 �xes no Sylow
5-subgroup.

• ∣NG(P)∣ = 10 also implies that P is acted on by (the group generated by) a bitrans-
position; in abstract terms, NG(P) ≃ C5 ⋊ C2.

• ¿e bi-transposition (12)(34) �xes exactly two Sylow 5-subgroups: the one gen-
erated by (12354), and the one generated by (12453). (¿is can be seen because it
inverts said generators.) But it �xes no other Sylow 5-subgroup and this remains
to be seen.

• A good approach is by Burnside’s classical ‘�xed point formula’. For any �nite
group action G ↷ X, one has:

∑
G
#Fix g = ∑

(G ,X)
1g⋅x=x = ∑

X
∣ StabG(x)∣.

Here, the identity �xes 6 elements, a 3-cycle �xes 0, a 5-cycle �xes 1 (because if
a 5 element normalises a Sylow 5-subgroup, it is already inside). ¿ere remains
15 ⋅ #Fix(12)(34) = 60 − 6 − 12 − 12 = 30, and therefore #Fix(12)(34) = 2.

• ¿is gives us permSyl, and we can check that χ5 = permSyl − triv is irreducible and
5-dimensional.

• Wemiss twomore irreducible characters, say φ3 and φ′3. We do not knowwhether
they will be complex-conjugate, or if each will be sel-dual (real-valued). We then
use brute force: orthogonality relations.

• Let a = φ3((123)), b = φ3((12)(34)), c = φ3((12345)) and d = φ3((15432)).
De�ne a′ , b′ , c′ , d′ similarly.

• By orthogonality:

0 = ∣G∣ (triv∣φ3) = 3 + 20a + 15b + 12c + 12d
0 = ∣G∣ (χ4∣φ3) = 12 + 20a − 12c − 12d
0 = ∣G∣ (χ5∣φ3) = 15 − 20a + 15b.

¿is immediately yields a = 0, then b = −1, and c + d = 1.
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• We also have:
60 = ∣G∣ (φ3∣φ3) = 9 + 15 + 12c2 + 12d2 ,

which gives c2 + d2 = 3.

• Together with c + d = 1, this solves into:

{c, d} = {
1 −

√
5

2
,
1 +

√
5

2
} = {c′ , d′},

and we �nally get the character table.

Alt(5) 1 [×1] (123) [×20] (12)(34) [×15] (12345) [×12] (15432) [×12]

triv 1 1 1 1 1
φ3 3 0 −1 1+

√
5

2
1−

√
5

2
φ′3 3 0 −1 1−

√
5

2
1+

√
5

2
χ4 4 1 0 −1 −1
χ5 5 −1 1 0 0

• Although φ3 and φ′3 are self-dual, they are indeed related by a Galois action (but
not that of Gal(C/R), which is generated by complex conjugation).

• Representations φ3 and φ′3 arise in nature, as embeddings Alt(5) ↪ SO3(R). ¿ey
are the symmetry groups of the regular icosahedron/dodecahedron.5

6.1 Exercises
6.1.1. Exercise. Give the character tables of the group of isometries of the square (viz. D2⋅4).
Same question with the group of basic quaternions (viz.H8 = {±1,±i ,± j,±k}).
Note.¿us, two non-isomorphic groups can have the same character table. 6

6.1.2. Exercise. Let G be the group of isometries of the Euclidean cube. Give its character
table.

6.1.3. Exercise. Let D2⋅n be the dihedral group of order 2n, viz. the group of transforma-
tions of a regular n-gon in the usual plane. Give its character table.

6.1.4. Exercise. Compute the character table of Sym(5). You should �nd:

Sym(5) 1 (12) (123) (1234) (12)(34) (12345) (12)(345)
[×1] [×10] [×20] [×30] [×15] [×24] [×20]

triv 1 1 1 1 1 1 1
sign 1 −1 1 −1 1 1 −1
χ4 4 2 1 0 0 −1 −1

χ4 ⋅ sign 4 −2 1 0 0 −1 1
χ5 5 1 −1 −1 1 0 1

χ5 ⋅ sign 5 −1 −1 1 1 0 −1
χ6 6 0 0 0 −2 1 0

5I have to teach this in the Village someday.
6Quite interestingly, the same cannot happen with the earlier, rival theory of group determinants. See

E. Formanek and D. Sibley, ¿e group determinant determines the group, Proc. Amer. Math. Soc. 112(3),
pp. 649–656, 1991.
¿anks to Baran Çetin for pointing this out.
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6.1.5. Exercise. Read something about Young tableaux and representations of the sym-
metric group.

7 Number-theoretic aspects
Abstract. From here on we shall be working in characteristic 0. ¿e kernel of a
representation is o en called the character kernel (§ 7.1); every normal subgroup is
an intersection of irreducible character kernels. We then move to using algebraic
number theory in character theory (§ 7.2). A �rst application is a theorem by Burn-
side: the dimension of an irreducible complex representation divides ∣G∣ (§ 7.3).

7.1 Character kernels and their intersections
7.1.1. De�nition. Let G be a group andK be a �eld. Let (V , ρ) be a �nite-dimensional,
K-linear representation with character χ. We let ker χ = ker ρ and call it the kernel of χ.

¿is is a slight abuse of terminology since χ itself is not a morphism.

7.1.2. Lemma. Let G be a �nite group andK be a �eld. Let (V , ρ) be a �nite-dimensional,
K-linear, representation with character χ.

(i) ker χ is a normal subgroup of G.

(ii) Suppose thatK has characteristic 0. ¿en ker χ = {g ∈ G ∶ χ(g) = χ(1)}.

Proof. (i) is completely obvious since ker χ = ker ρ, a kernel in the usual sense. So we
prove (ii). If g ∈ ker χ, then ρ(g) = IdV so χ(g) = tr IdV = χ(1). Conversely suppose
χ(g) = χ(1); we must prove ρ(g) = IdV .

As above, χ(1) = tr IdV = dimV . Also, g has �nite order, so there is an integer
k with gk = 1, and ρ(g)k = IdV . ¿erefore all eigenvalues of g, even in an algebraic
closure, must satisfy this equation.

We �nish the proof with K = C (see Remark 7.1.3). ¿en ρ(g) ∈ GL(V) is an
element of �nite order say k. Since the polynomial Xk − 1 is split with simple roots,
ρ(g) is diagonalisable. Moreover, all its eigenvalues λ1 , . . . , λdim V satisfy λki = 1, so
they lie on the unit circle. By assumption, their sum is dimV . ¿is is possible only if
each λ i = 1. So ρ(g) diagonalises to the identity, implying ρ(g) = IdV , as wanted.

7.1.3. Remark. It is enough to have charK = 0. Indeed, all coe�cients and eigenvalues
of ρ(g) will live in an algebraic extension of Q, so all in Q ≤ C, and we safely conduct
the argument there.

However (ii) no longer holds in non-zero characteristic. As opposed to many results,
this one already fails in good �elds of positive characteristic.

7.1.4. ¿eorem. Let G be a �nite group and K be an algebraically closed �eld of charac-
teristic 0.

(i) ⋂χ∈IrrK(G) ker χ = {1}.

(ii) Let N ≤ G be a subgroup. ¿en N ⊴ G i� there is J ⊆ IrrK(G) such that N =

⋂χ∈J ker χ.
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Proof.

(i) Let K = ⋂χ∈IrrK(G) ker χ, an intersection of normal subgroups. We must show
K = {1}. Let us �x some notation. First, let πK ∶G → G/K be the canonical
projection.

Let χ ∈ IrrK(G). ¿en χ is the character of some irreducible, complex, linear
representation (Vχ , ρχ), viz. we have a morphism ρχ ∶G → GL(Vχ). Since K ≤
ker ρχ , one may factor and consider:

ρ̌χ ∶G/K → GL(Vχ).

By de�nition, ρχ = ρ̌χ ○ πK .
We claim that ρ̌χ is an irreducible representation of G/K. ¿is is obvious since
K acts trivially on Vχ , so G-invariant subspaces are the same as G/K-invariant
subspaces.

Let χ̌ be the character of ρ̌χ . ¿us χ̌ ∈ IrrK(G/K). Again, χ = χ̌○π. It follows that
if χ1 ≠ χ2 in IrrK(G), then χ̌1 ≠ χ̌2 in IrrK(G/K). So characters χ̌ for χ ∈ IrrK(G)
are distinct elements of IrrK(G/K), meaning { χ̌ ∶ χ ∈ IrrK(G)} ⊆ IrrK(G/K).

By the orthogonality relations:

∣G∣ = ∑
χ∈IrrK(G)

χ(1)2 = ∑
χ∈IrrK(G)

χ̌(1)2 ≤ ∑
ψ∈IrrK(G/K)

ψ(1)2 = ∣G/K∣,

which proves ∣K∣ = 1, as desired.

(ii) ¿e converse implication is obvious, so suppose N ⊴ G. Let πN ∶G → G/N
be the canonical projection. We consider IrrK(G/N), whose elements are the
irreducible characters ψ, attached to morphisms σψ ∶G/N → GL(Vψ).
For ψ ∈ IrrK(G/N), let:

ρψ = σψ ○ πN ∶G → GL(Vψ).

We claim that ρψ is an irreducible representation of G. Indeed, a G-invariant
subspace of Vψ is also G/N-invariant, hence {0} or Vψ by irreducibility of σψ .
Let ψ̂ be the character of ρψ . ¿us ψ̂ ∈ IrrK(G). Again, ψ̂ = ψ ○ πN . It follows
that if ψ1 ≠ ψ2 in IrrK(G/N), then ψ̂1 ≠ ψ̂2 in IrrK(G). (¿is is because πN is
onto.) So J = {ψ̂ ∶ ψ ∈ IrrK(G/N)} is a family of irreducible characters of G.
We claim that N = ⋂χ∈J ker χ. Indeed,

⋂
χ∈J
ker χ = ⋂

ψ∈IrrK(G/N)

ker ρψ = ⋂
IrrK(G/N)

ker(σψ ○ πN) = π−1N
⎛

⎝
⋂

IrrK(G/N)

ker σψ
⎞

⎠
.

By (i) applied to G/N , the latter intersection is {1 mod N}, so ⋂χ∈J ker χ =
π−1N (1) = N , as wanted.
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7.2 Algebraic integers
7.2.1. De�nition. Let R be a ring with 1. An element x ∈ R is integral (over Z) if there is
a polynomial P ∈ Z[X] with leading coe�cient 1 such that P(x) = 0.

One o en denotes byOR the set of integral elements of R.

7.2.2. Remark. Since R[x] is always commutative, commutativity of R is not required
for the general de�nition. (But one needs 1 ∈ R for the de�nition.)

If R = C, one calls x an algebraic integer; we simply writeO = OC.

7.2.3. Remark. Algebraic integers are not to be mistaken with algebraic numbers, where
the condition on the leading coe�cient is removed. Algebraic numbers exactly form the
�eldQ; butO is a proper subring ofQ.

7.2.4. Example.
√
2 is an algebraic integer; 12 is not.

7.2.5. Proposition. If R is a commutative ring with unit, thenOR is a subring of R.

Proof. Clearly 0, 1 are inOR , andOR is closed under −; so we need closedness under
+ and ⋅.

7.2.6. Lemma. Let x ∈ R. ¿en x ∈ OR i�Z[x] is �nitely generated as an abelian group.

Commutativity of R is not required in the Lemma, since R[x] always is commut-
ative.

Proof. If x is integral and P(X) = Xn + an−1Xn−1 + ⋅ ⋅ ⋅ + a0 ∈ Z[X] vanishes at x,
then clearly Z[x] is generated by {1, x , . . . , xn−1} as an abelian group.

We prove the converse. For n ∈ N, let Rn be the abelian group generated by
{1, . . . , xn−1}. ¿en (Rn) is an ascending chain of abelian subgroups with union
Z[x]. But the latter is �nitely generated, so there is n such that Rn contains all gen-
erators. ¿en Rn+1 = Rn . ¿is implies xn+1 ∈ Rn , so x is integral.

If x and y are algebraic integers, then Z[x] and Z[y] are �nitely generated, and
so is their tensor product Z[x]⊗ZZ[y], which maps onto Z[x , y]. ¿e latter contains
Z[x + y] and Z[x ⋅ y]. It is not true in general that subgroups of �nitely generated
groups are �nitely generated, but this holds of abelian groups.

7.2.7. Remark. Proposition 7.2.5 requires commutativity of R. ¿e reason is that the
proof uses thatZ[x , y] is an image ofZ[x]×Z[y], which holds only if x and y commute.
See Remark 7.3.2.

7.2.8. Lemma. O ∩Q = Z.

Proof. ¿e converse inclusion is obvious. Suppose x =
p
q ∈ O where p and q are

coprime. Since x ∈ O, there is a polynomial P = Xn + an−1 + ⋅ ⋅ ⋅ + a0 ∈ Z[X] with
leading coe�cient 1 such that P(x) = 0. Multiplying by qn one has:

pn + an−1qpn−1 + ⋅ ⋅ ⋅ + a0qn = 0

Since p and q are coprime, one has q = 1, so x ∈ Z.
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Characters and algebraic integers.

7.2.9. Proposition. Let G be a �nite group and χ be a complex character. ¿en χ takes
values inO.

Proof. Write ρ(g) in diagonal form. Diagonal entries are roots of unity, hence algeb-
raic integers. So their sum χ(g) is an algebraic integer.

7.3 A¿eorem of Burnside
7.3.1. ¿eorem. Let V be a complex, irreducible representation of a �nite group G. ¿en
dimV divides ∣G∣.

Proof. Let V be an irreducible representation of G and let χ be its character; we wish
to prove that dimV divides ∣G∣.

Let γ be a conjugacy class and fγ = ∑g∈γ ρ(g)∶V → V . ¿en fγ is G-covariant, so
by Schur’s Lemma there is λγ ∈ C with fγ = λγ Id. Furthermore, taking the trace one
has:

λγ dimV = ∑
g∈γ

χ(g) = #γ ⋅ χ(γ).

Step 1. λγ ∈ O.

Veri�cation. While it is now clear that χ(γ) ∈ O and #γ ⋅ χ(γ) ∈ O, we even want
λγ = #γ⋅χ(γ)

dim V ∈ O. Division is not permitted so there is something to prove.
One could argue as follows in the group ring Z[G] (§ 13):

Let eγ = ∑g∈γ g ∈ Z[G]. ¿en eγ ∈ Z(Z[G]). ¿e latter is a commutative
ring, and �nitely generated as a group. So eγ ∈ OZ(Z[G]) ≤ OZ[G]. ¿us
ρ(eγ) = fγ = λγ IdV is an algebraic integer of End(V), and λγ ∈ O.

But we have not introduced the algebraic object Z[G]. (Also, be careful; see
Remark 7.3.2.) We therefore give an ad hoc argument which will reappear in
Lemma 8.2.1.

Let δ be another conjugacy class. For x ∈ G let Xγ ,δ = {(g , h) ∈ γ × δ ∶ x = gh}.
¿en:

fγ fδ = ∑
g∈γ
∑
h∈δ

ρ(gh) = ∑
x∈G

⎛

⎝
∑

(g ,h)∈Xγ ,δ

ρ(x)
⎞

⎠
= ∑
x∈G

#Xγ ,δρ(x).

Actually #Xγ ,δ depends only on the conjugacy class of x. Indeed, if x′ = x y ∈ xG ,
then the map (g , h) ↦ (g y , h y) de�nes a bijection Xγ ,δ ≃ X′γ ,δ . So the integer #Xγ ,δ

is constant on xG . ¿erefore there are integers nγ ,δ ,ε such that:

fγ fδ = ∑
ε∈Conj(G)

∑
x∈ε

nγ ,δ ,ερ(x) = ∑
ε∈Conj(G)

nγ ,δ ,ε fε .

Returning to the irreducible representation, this implies:

λγλδ = ∑
ε∈Conj(G)

nγ ,δ ,ελε .
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Let Λ be the column vector of the λδ for δ ∈ Conj(G). Let A be the matrix with
entries (nγ ,δ ,ε) for δ, ε ∈ Conj(G). ¿en varying δ, the equations above rewrite:

A ⋅ Λ = λγΛ.

So λγ is an eigenvalue of the integralmatrix A, and therefore a solution of its charac-
teristic polynomial. But the latter is in Z[X] and has leading coe�cient 1. Hence λγ
is an algebraic integer. ◇

Step 2. A formula for ∣G∣

dim V .

Veri�cation. Since V is irreducible, (χ∣χ) = 1. ¿erefore:

∣G∣ = ∑
g∈G

χ(g−1)χ(g)

= ∑
γ∈Conj(G)

#γ ⋅ χ(γ−1)χ(γ)

= ∑
γ∈Conj(G)

χ(γ−1)λγ dimV ,

and ∣G∣

dim V = ∑γ∈Conj(G) χ(γ−1)λγ . ◇

For each γ, we know that χ(γ−1) is an algebraic integer (Proposition 7.2.9). Like-
wise, λγ is an algebraic integer by Step 1. SinceO is a ring, we �nd ∣G∣/dimV ∈ O. But
obviously ∣G∣/dimV ∈ Q. By Lemma 7.2.8, ∣G∣/dimV is an integer.

7.3.2. Remark (if you already know the group algebra). It is the case that every g ∈ G
is an algebraic integer of Z[G]. But it is not the case that every sum of g’s chosen at
random is one. ¿is fails because Z[G] is not a commutative ring. See exercise 7.4.5.

7.4 Exercises
7.4.1. Exercise. Let G be a �nite group. Prove the following equivalence:

(i) G is simple;

(ii) for χ ∈ IrrC(G), one has ker χ = G or ker χ = {1};

(iii) for χ ∈ IrrC(G) ∖ {triv} and g ∈ G ∖ {1}, one has χ(g) ≠ χ(1).

7.4.2. Exercise. Let G be a �nite group.

1. Prove that G is simple i�:

(∀χ ∈ IrrC(G))(∀g ∈ G)[(χ(g) = χ(1)) → (χ = triv ∨ g = 1)].

2. Devise a solubility test from the character table.(*)

7.4.3. Exercise. Let G be a �nite group and G → GL(V) be a �nite-dimensional, linear,
complex representation with character χ.
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1. Prove that ker ∣χ∣ = {g ∈ G ∶ ∣χ(g)∣ = dimV} is a normal subgroup.

2. Prove that ⋂χ∈IrrC(G) ker ∣χ∣ = Z(G).(*)

7.4.4. Exercise. Let G be a �nite simple group. Prove that no irreducible complex repres-
entation has dimension 2. Hint: use ¿eorem 7.3.1 to prove that G has an involution.

7.4.5. Exercise. One needs to know or admit existence of the group ring Z[G] (see § 13).
Let G = Sym(3) and x = (12) + (23) ∈ Z[G]. Prove that x is not an algebraic integer of
Z[G].

8 Burnside’s paqb theorem
Abstract. An application of character theory: Burnside’s paqb theorem (§ 8.1). ¿e
proof uses a little algebraic number theory (§ 8.2) and is given in § 8.3.

8.1 Statement
8.1.1.¿eorem. Let G be a �nite group of order paqb where p, q are prime numbers. ¿en
G is soluble.

One must recall the de�nition of a soluble group. Actually the proof also relies on
nilpotent groups, and �nite Sylow theory. ¿e following facts will be required:

• every �nite group has a p-subgroup of maximal order;

• every �nite p-group is nilpotent.

Hence groups of order pa are nilpotent, and groups of order paqb are soluble. ¿ere
is nothing to say about groups of order paqbrc ; for instance Alt(5) has order 60 = 22 ⋅3 ⋅5
but is simple.

8.1.2. Remark. We shall give a character-theoretic proof of the theorem. However, there
exist character-free proofs; a full onewhich is not completely elementary, and two partial
elementary proofs in the odd and even cases.7

8.2 A number-theoretic lemma
8.2.1. Lemma. Let G be a �nite group; work over C. Let (V , ρ, χ) ∈ IrrC(G) and g ∈ G.

(i) ¿e complex number:

[G ∶ CG(g)]
χ(g)
χ(1)

is an algebraic integer.
7¿ey are respectively:
H. Bender, A group theoretic proof of Burnside’s paqb-theorem. Math. Zeitschri 126, pp. 327–338, 1972.
D. Goldschmidt, A group theoretic proof of the paqb theorem for odd primes. Math. Zeitschri 113, pp. 373–

375, 1970.
H. Matsuyama, Solvability of groups of order 2a pb . Osaka Math. J. 10, pp. 375–378, 1973.
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(ii) If [G ∶ CG(g)] and χ(1) are coprime, then χ(g) = 0 or ρ(g) ∈ C IdV .

Proof.

(i) ¿roughout we work in EndC(V). For γ a G-conjugacy class let:

fγ = ∑
g∈γ

g .

Clearly fγ ∈ EndC[G](V). By Schur’s Lemma, there is λγ ∈ K such that fγ =
λγ IdV . ¿erefore:

λγ χ(1) = tr fγ = ∑
g∈γ

χ(g) = #γ ⋅ χ(γ).

For g ∈ γ, one has #γ = [G ∶ CG(g)]. Hence:

[G ∶ CG(g)]
χ(g)
χ(1)

= λγ ,

and it remains to prove that λγ is an algebraic integer.
We argue exactly like in the proof of¿eorem 7.3.1, Step 1: there are integers nγ ,δ ,ε
such that:

fγ fδ = ∑
ε∈Conj(G)

nγ ,δ ,ε fε .

¿is means λγλδ = ∑ε∈Conj(G) nγ ,δ ,ελε . Now let A = (nγ ,δ ,ε)δ ,ε , a square matrix
with integer entries, and let Λ = (λδ)δ , a column vector with complex entries.
Clearly Λ ≠ 0. ¿e above rewrites:

λγΛ = AΛ.

Hence λγ is an eigenvalue of A, and λγ is an algebraic number by the Cayley-
Hamilton theorem.

(ii) By Bézout’s theorem, there are a, b ∈ Z such that:

a[G ∶ CG(g)] + bχ(1) = 1,

which immediately yields a[G ∶ CG(g)] χ(g)χ(1) + bχ(g) =
χ(g)
χ(1) . ¿e terms of the

le -hand member are algebraic integers, and therefore so is χ(g)
χ(1) . Now χ(g) is

a sum of χ(1)-many roots of unity. We �nish with an algebraic lemma.

8.2.2. Lemma. Let x1 , . . . , xn be complex roots of unity and m = x1+⋅⋅⋅+xn
n . If

m ∈ O, then m = 0 or x1 = ⋅ ⋅ ⋅ = xn = m.

Sketch of proof. ¿eproof uses a little Galois theory. Say all x i are kth roots of
unity; let ζ = e 2iπ

k . Now let F = Q[ζ] and Σ = Gal(F ∶ Q). By the fundamental
theorem of Galois theory, CF(Σ) = Q.

Let q = ∏σ∈Σ σ(m). Clearly Σ maps O to O; so q ∈ O. But q ∈ CF(Σ), so
q ∈ O ∩Q = Z. Now Σ maps roots of unity to roots of unity. In particular for
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every σ ∈ Σ, one has ∣σ(m)∣ ≤ 1. ¿us ∣q∣ ≤ 1, and two cases remain.
• If ∣q∣ = 0 then q = 0, so one σ(m) is zero. So is m.
• If ∣q∣ = 1, then ∣m∣ = 1 as well. A clear convexity argument gives that all
x i are equal (and equal to m).

Let λ1 , . . . , λχ(1) be the eigenvalues of ρ(g). By the Lemma, either their sum is
0, meaning χ(g) = 0, or they are all equal, in which case ρ(g) = λ IdV .

8.3 ¿e main lemma, and proof of Burnside’s theorem
8.3.1. Lemma. Let G be a �nite group. Suppose there is a conjugacy class γ ∈ Conj(G)
with #γ a prime power. ¿en G is not simple.

Proof. Let g ∈ G be such that γ = gG has cardinality pk for some prime p and k > 0.
Suppose G is simple. ¿en every non-trivial representation is injective.

Since g ∉ 1G = {1}, by column orthogonality (Lemma 5.5.1) we have:

∑
χ∈IrrC(G)

χ(1)χ(g) = ∑
χ∈IrrC(G)

χ(1−1)χ(g) = 0.

Separating triv from the sum and dividing,

∑
χ∈IrrC(G)∖{triv}

χ(1)χ(g)
p

= −
1
p
.

Now 1
p is a proper rational, so it is not an algebraic integer. Since a sum of algebraic

integers is again an algebraic integer, there is χ ∈ IrrC(G) ∖ {triv} such that χ(1)χ(g)
p is

not an algebraic integer; this certainly implies χ(g) ≠ 0.
Now χ(g) is an algebraic integer, so p does not divide χ(1). In particular χ(1) and

#gG = [G ∶ CG(g)] = pk are coprime. Moreover, χ(g) ≠ 0. By Lemma 8.2.1 (ii), there
is λ with ρ(g) = λ IdV . ¿is implies ρ(g) ∈ Z(ρ(G)). But ρ is injective, so g ∈ Z(G):
a contradiction.

Proof of Burnside’s paqb theorem. Let G be a counterexample of minimal order. If
a = 0 or b = 0, thenG has order a prime power, so it is nilpotent: hence not a counter-
example, a contradiction. Hence both a and b are non-zero.

If G is not simple, then there is {1} < N ◁ G. Notice that N and G/N still have
order of the form pa

′

qb
′

. By minimality, both N and G/N are soluble; hence so is G,
a contradiction. So G is simple. If Z(G) ≠ {1} then by simplicity Z(G) = G and G is
abelian: a contradiction.

Let P < G be a Sylow p-subgroup; since a > 0, one has P ≠ {1}. Since P is a non-
trivial, �nite p-group, it has a non-trivial centre; let g ∈ Z(P) ∖ {1}. ¿en P ≤ CG(g),
so ∣gG ∣ divides qb . On the other hand g ∉ Z(G) = {1}. So gG ≠ {g} is a conjugacy class
of cardinality a prime power. By Lemma 8.3.1, G is not simple, a contradiction.
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9 Induced representations and Frobenius reciprocity
Abstract. Induced representations (§ 9.1) construct representations of supgroups.
¿e Frobenius formula (§ 9.2) is an explicit formula for induced characters. Its con-
sequence, Frobenius reciprocity (§ 9.3), plays an important role in applied character
theory.

SupposeH ≤ G are groups. In this section and the next, c, d will stand for (le -)cosets
of G modulo H.

9.0.1. Notation. If (V , ρ) is a representation ofG, then the restriction ρ∣H ∶H → GL(V)

de�ne a representation of H, denoted by ResGH(ρ).
(In general, irreducibility is not preserved.)

¿e whole section discusses one basic, converse, question. Suppose (W , σ) is a rep-
resentation of H. Does it come from some representation of G? We start with a basic
lemma on ‘coset geometry’.

9.0.2. Lemma. Let H ≤ G be groups and c = aH be a (le -)coset of H. Let g c = {gb ∶ b ∈
c}. ¿en (gc = c) i� (ga ∈ H) i� (g c ⊆ H).

Proof.

• If gc = c, then gaH = aH and ga ∈ aH, so there is h ∈ H with ga = ah,
viz. ga = a−1ga = h ∈ H.

• If ga ∈ H and b ∈ c, then there is h ∈ H with b = ah. Hence gb = gah ∈ Hh = H.

• If g c ⊆ H, then for b ∈ c there is h ∈ H with b−1gb = gb = h, so gb = bh and
gc = gbH = bhH = bH = c.

9.1 Induced representations
Let H ≤ G be groups and σ ∶H → GL(W) be a representation of H. In general there is
no ρ∶G → GL(W) extending σ (exercise 9.4.4). But if we allow for a larger vector space,
an extension can be found. ¿e present subsection describes this construction.

9.1.1. De�nition. Let H ≤ G be groups and K be a �eld. Let (W , σ) be a K-linear
representation of H. Construct aK-linear representation of G as follows.

• Let {ac ∶ c ∈ G/H} be a transversal of H in G, viz. a set of representatives of the
le -cosets, so that G = ⊔c∈G/H acH.We request aH = 1.

• Let V = ⊕c∈G/H acW be a vector space obtained as a direct sum of [G ∶ H] copies
ofW .

• For g ∈ G and v = acw ∈ V , �rst write gac = adh, then let:

g ⋅ v = ad(h ⋅w).

Extend linearly this action.

¿e resulting object is called the induced representation of G, denoted by IndGHW .
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(It is perfectly �ne to leaveK implicit in notation.)

9.1.2. Proposition.

(i) ¿is is well-de�ned and does de�ne a representation of G in V.

(ii) aHW ≤ V is H-invariant and W ≃ aHW [K[H]-Mod].

(iii) ¿e (K[G]-isomorphism type of the) construction does not depend on the trans-
versal chosen, provided aH = 1.

(iv) If V ′ is another representation of G and f ∶W → ResGH V ′ is H-covariant, then there
is a unique f̂ ∶ IndGH → V ′ which is G-covariant and extends f .

Proof.

(i) By de�nition of a transversal, if g ∈ G and c ∈ G/H, there is a unique pair (ad , h)
such that gac = adh. So the construction is well-de�ned. Clearly each g acts
linearly. We now check that we have de�ned a morphism G → GL(V). Clearly
1 acts as the identity (this does not require aH = 1 yet). Now let g , g′ ∈ G and
v ∈ V . We must check g(g′v) = (g g′v). By linearity, we may suppose v = acw
for some ac and w ∈W .

By construction, g′ac = adh′ and gad = aeh for cosets d , e. Altogether, this
gives:

g′v = ad(h′w),

and then:
g(g′v) = ae(hh′w).

On the other hand, (g g′)ac = g(g′ac) = g(adh′) = (gad)h′ = aehh′, so we
also have:

(g g′)v) = ae(hh′w).

¿is proves mulitplicativity of the action. We have constructed a representation.

(ii) Let h ∈ H and v = aHW . ¿en haH ∈ H, so haH = aHh′ for some h′. ¿en
h ⋅ v = aH(h′w) ∈ aHW , which is therefore H-invariant (this does not require
aH = 1 yet).

We now construct an isomorphism ofH-representationsW ≃ aHW , using aH =
1. Map w to φ(w) = aHw. ¿en for h ∈ H one has haH = aHh, so:

h ⋅ φ(w) = h ⋅ (aHw) = aH(hw) = φ(hw),

as wanted. (Actually this only requires aH ∈ Z(H).)

(iii) Suppose {bc ∶ c ∈ G/H} is another transversal, also with bH = 1. So our con-
struction now comes in two �avours: Va and Vb . We must give an isomorphism
of representations of G. For c ∈ G/H, one has acH = bcH, so ηc = b−1c ac ∈ H.
To v = acw associate φ(v) = bc(ηcw), and extend linearly. It clearly de�nes a
linear isomorphism Va ≃ Vb . We contend it is a G-isomorphism. So let g ∈ G;
by linearity, it is enough to prove g ⋅ φ(v) = φ(g ⋅ v) for v of the form acw.
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Write gac = ad1h1 and gbc = bd2h2 in obvious notation. ¿en:

g ⋅ φ(v) = g ⋅ (bc(ηcw)) = bd2(h2ηcw),

while:
φ(g ⋅ v) = φ(ad1(h1w)) = bd1(ηd1h1w).

We must check equality. Indeed,

bd2h2ηc = gbcηc = gac = ad1h1 = bd1ηd1h1 ,

so by de�nition of a transversal, d2 = d1, and h2ηc = ηd1h1. So we are done.

(iv) Suppose f̂ ∶ IndGH → V ′ is G-covariant. ¿en for c ∈ G/H and w ∈W , one has:

f̂ (ac ⋅w) = f̂ (ac(aHw)) = f̂ (acw) = ac f̂ (w) = ac f (w),

so f̂ (acw) = ac f (w). ¿is guarantees uniqueness.

Conversely we let f̂ (acw) = ac f (w) and extend linearly. ¿is does de�ne a lin-
ear map f̂ ∶ IndGHW → V ′. We prove G-covariance on basic terms acw. Indeed,
with gac = adh in obvious notation:

f̂ (g ⋅ (acw)) = f̂ (adhw) = ad f̂ (hw) = ad f (hw)

= adh f (w) = gac f (w) = g f̂ (acw),

proving G-covariance.

9.1.3. Remarks.

• As a consequence of Proposition 9.1.2 (iii), we may write IndGHW = ⊕c∈G/H cW
with no mention of the transversal.

• (iv) is a universal property, conveniently described in terms of adjoint functors.

• ¿ere is a tensor description of IndGHW , but this course avoids tensoring over
general rings.

• Recall that ResGH does not change the underlying vector space, but Ind
G
H does (‘by

a factor [G ∶ H]’).

9.2 Induced class functions and Frobenius formula
If β ∈ CK(G) is a class function on G and H ≤ G is a subgroup, we denote by ResGH β
the restriction β∣H . Clearly β∣H ∈ CK(H); the operator ResGH ∶ CK(G) → CK(H) is clearly
linear. We now de�ne a ‘converse’ linear operator IndGH ∶ CK(H) → CK(G). It is converse
in a loose sense since in general, Res Indα ≠α. (‘Adjoint’ would be more adapted.)

9.2.1. Lemma. Let H ≤ G be a pair of �nite groups andK be a �eld.

(i) For α ∈ CK(H) a class function on H, the following de�nition makes sense:

IndGH α = ∑
c∈G/H∶
gc=c

α(g c).
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(ii) If W is a �nite-dimensional,K-linear representation of H with character χW , then:

IndGH χW = χIndGH W .

‘¿e character of the induced (representation) is the induced (function) of the char-
acter.’

Proof.

(i) Suppose ac , bc ∈ c; say ac = bcηc with ηc ∈ H. ¿en by Lemma 9.0.2:

gc = c i� gac ∈ H i� gbc ∈ H.

So if gc = c, then α(gac) and α(gbc) both make sense. Moreover, gbc ηc = gac so
gac and gbc are H-conjugate.
¿erefore always assuming gc = c, and since α is a class function onH, we have:

α(gbc) = α(gac).

Hence α(g c) is well-de�ned regardless of the choice of the transversal: the for-
mula makes sense.

(ii) Let V = IndGHW , with character χV . We prove χV = IndGH χW .
Let g ∈ G. Recall thatV = ⊕c∈G/H acW . Moreover, gmaps the space acW to the
space adW for gac = adh. But when computing tr g, only g-invariant subspaces
from the direct sum contribute, and:

tr g = ∑
c∈G/H∶

g(acW)≤acW

tr(g∣acW).

Notice that gacW ≤ acW i� there is h ∈ H with gac = ach i� gac ∈ H i� gc = c.
So:

• cosets d with gd ≠ d do not contribute;
• cosets c with gc = c contribute tr(g∣acW).

In the latter case, g acts on acW like h = gac . ¿erefore tr(g∣acW) = χW(gac) =
χW(g c).
Hence:

χV(g) = tr(g) = ∑
c∈G/H∶
gc=c

χW(g c) = IndGH χW .

9.3 Frobenius reciprocity
Since we deal with two groups, it is convenient to denote (⋅∣⋅)K the usual bilinear form
with respect to K ∈ {H,G}.

9.3.1. ¿eorem (Frobenius reciprocity). Let H ≤ G be �nite groups and K be a G-good
�eld (hence H-good as well).
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(i) Let W be a K-linear, �nite-dimensional representation of H and V be one of G.
¿en:

(χIndW ∣χV)G = (χW ∣χRes V)H .

(ii) For α ∈ CK(G) a class function on H and β ∈ CK(G) one on G, one still has:

(IndGH α∣β)G = (α∣ResGH β)H .

Proof.

(i) By Proposition 9.1.2 (iv), there is an isomorphism of underlying vector spaces:

HomK[H](W , ResV) ≃ HomK[G](IndW ,V) [K-Mod].

In particular,K-linear dimensions match. Now dimensions of spaces of covari-
ant morphisms were computed in Lemma 5.2.2 (ii) using the bilinear form, and
this gives:

(χW ∣χRes V)H = (χIndW ∣χV)G .

(ii) Notice that ResGH ∶ CK(G) → CK(H) and IndGH ∶ CK(H) → CK(G) are linearmaps.
ForK-valued characters, (i) holds. Since characters of a �nite group generate the
space of class functions, the formula holds of all class functions.

9.4 Exercises
9.4.1. Exercise.

1. Show that IndG{1} triv ≃ regG .

2. For �nite G, deduce from Frobenius reciprocity that reg = ∑χ∈IrrC(G) dim χ ⋅ χ.

9.4.2. Exercise. Let G be a �nite group and K ≤ H ≤ G be two subgroups. Let W be a
representation of K. Prove that IndGK W ≃ IndGH(Ind

H
K W) [C[G]-Mod].

9.4.3. Exercise. Let H ≤ G be �nite groups andK be a �eld. Let W be a representation of
H and V = IndGHW. Let ψ̂W coincide with ψW on H and equal 0 on G ∖H. Prove that:

χV(g) =
1

∣H∣
∑
x∈G

ψ̂W(gx).

9.4.4. Exercise. Let perm∶ Sym(4) → GL4(K) be the permutation representation. Now(*)
view Sym(4) as a subgroup of Sym(5). Show that perm does not extend to Sym(5) →
GL4(K).

10 Frobenius complement theorem
Abstract. Frobenius’ famous complement theorem deals with certain �nite group-
theoretic con�gurations. ¿ere is no known full proof avoiding character theory.
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10.1 Frobenius pairs
10.1.1. De�nition. A Frobenius pair is a pair of groups (H < G) such that:

• H is self-normalising in G, viz. NG(H) = H;

• H has trivial intersections with distinct conjugates, viz. G satis�es:

(∀g)[(H g = H) ∨ (H ∩H g = {1})].

A subgroup with trivial intersections looks like this:

1 H

Hg

G

(It is harder to draw self-normalisation phenomena.) ¿e conjunction is sometimes
calledmalnormality of H in G but we cannot recommend the terminology.

10.1.2. Examples.

• Let K be a �eld, A = (K;+) be its additive group and M = (K× , ⋅) be its multi-
plicative group. ¿en:

A⋊M ≃ {(
m a
0 1) ∶ (a,m) ∈ A×M} ,

withM embedding to diag(1,m). ¿en (M < A⋊M) is a Frobenius pair.

• While a�ne con�gurations are inspirational, they are not typical of Frobenius
pairs. For example, there is a Frobenius pair with H ≃ SL2(F5).

In�nite Frobenius pairs are a desperate topic.8

10.1.3. Remarks.

• In the literature, G is sometimes called a Frobenius group and H its Frobenius
complement.
It can be proved (but it requires tools not available in this class) that if (H1 < G)
and (H2 < G) are �nite Frobenius pairs with the same G, then there is g ∈ G with
Hh
2 = H1. So up to isomorphism there is at most one way in which a �nite group

can be the large group of a Frobenius pair, and the phrase ‘�nite Frobenius group’
makes sense.

¿is is completely not true with in�nite groups.

• ¿e above however supports the following question (Y. Tamer): is there a �rst-
order formula characterising Frobenius groups among �nite groups?

8P. de la Harpe, C. Weber,Malnormal subgroups and Frobenius groups: basics and examples. Con�uentes
Math. 6 (1), pp. 65–76, 2014.
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10.2 ¿e geometry of a Frobenius pair
10.2.1. Notation. For (H < G) a Frobenius pair, we let:

N = (G ∖ ⋃
x∈G

Hx) ∪ {1}.

Despite suggestive notation, this is just a subset. It is normal (viz. closed under G-
conjugation) and closed under −1. In general, no more can be said; for in�nite groups,
one could even have N = {1}.

10.2.2. Lemma. Let (H < G) be a Frobenius pair and g ∈ G with g ≠ 1. ¿en exactly one
of the following two occurs:

• g ∈ ⋃x∈G Hx , there is a unique c ∈ G/H such that gc = c, and gG ∩ H is a single
H-conjugacy class;

• g ∈ N, there is no c ∈ G/H such that gc = c, and gG ∩H = ∅.

Proof. If g ∈ Hx , then gx−1H = x−1gx
−1
H = x−1H. If also gaH = aH, then ga ∈ aH

and ga ∈ H. So 1 ≠ g ∈ Hx ∩ Ha−1 , which forces xa ∈ NG(H) = H. Hence x−1H = aH
and the coset solution is unique. Suppose h1 , h2 ∈ gG ∩ H; they are not 1. ¿ere are
x1 , x2 ∈ G with h i = gx i . In particular,

h1 = gx1 = h
x−12 x1
2 ∈ H ∩Hx−12 x1 ∖ {1}.

So x−12 x1 ∈ NG(H) = H, meaning that h1 and h2 are H-conjugate.
If g ∈ N , then gG ∩H = ∅. If however gc = c for some coset c = aH, then g ∈ Ha−1 ,

a contradiction. So the equation gc = c has no solution in G/H.

10.3 Frobenius’ complement theorem
¿e following remarkable result is due to Frobenius. We repeat that no fully character-
free proof is known.

10.3.1.¿eorem. Let (H < G) be a �nite Frobenius pair. ¿en there is a normal subgroup
N ⊴ G such that G = N ⋊H.

Proof. ¿ere is no con�ict with our notation since the only candidate is:

N =
⎛

⎝
G ∖ ⋃

g∈G
H g⎞

⎠
∪ {1}.

But there is no clear group-theoretic reason why N should be closed under product,
and the proof requires a serious detour through character theory. We begin with a
simple computation.

Step 1. #N = ∣G∣

∣H∣
.

Veri�cation. Subsets of the form (H ∖ {1})x = Hx ∖ {1}:
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• have ∣H∣ − 1 elements,

• are disjoint or equal,

• form a family parametrised by G/NG(H) = G/H, with ∣G∣

∣H∣
members.

So:
G ∖ N = ⋃

x∈G
Hx ∖ {1} = ⋃

x∈G
(H ∖ {1})x

has exactly ∣G∣

∣H∣
(∣H∣ − 1) = ∣G∣ − ∣G∣

∣H∣
elements. Hence N has exactly ∣G∣

∣H∣
elements. ◇

¿e key step will be to use Frobenius’ reciprocity formula and prove that for a
Frobenius pair, every irreducible character of H extends to an irreducible character of G.
(¿is is quite false in general; see exercise 9.4.4.)

¿e naive guess when trying to extend ψ ∈ IrrC(H) to ψ̂ ∈ IrrC(G) would be
IndGH ψ. However, recall that ‘Ind expands the dimension by a factor [G ∶ H]’, so
ResGH Ind

G
H ψ ≠ ψ. Indeed,

(ResGH Ind
G
H ψ)(1) = (IndGH ψ)(1) = [G ∶ H]ψ(1) ≠ ψ(1).

¿e obstacle would disappear ‘if ψ(1) were 0’. ¿is suggests to consider the class func-
tion ψ(h) − ψ(1), viz. ψ − ψ(1)trivH .
Step 2. Let α∶H → C be a class function with α(1) = 0. ¿en IndGH α is the unique
class function on G which • extends α, and • vanishes on N .

Veri�cation. Uniqueness is obvious since G = N ∪⋃x∈G Hx .
By Lemma 10.2.2, if g ∈ G is conjugate to two elements h1 , h2 ∈ H, then h1

and h2 are already H-conjugate. In particular α(h1) = α(h2) and we may de�ne
α̊(g) = α(h1). On N we let α̊(x) = 0, which is consistent since N ∩ H = {1} and
α(1) = 0. So there is an extension of α to a G-class function vanishing on N .

We must prove that α̊ so constructed actually equals:

(IndGH α)(g) = ∑
c∈G/H∶
gc=c

α(g c).

So let g ∈ G; we may assume g ≠ 1. We use Lemma 10.2.2. If g ∈ N , the sum giving
Ind is empty, so (Ind α)(g) = 0 = α̊(g). If on the other hand g ∈ Hx , then the sum
contains only term, namely α(gx

−1
) = α̊(gx

−1
) = α̊(g). ◇

Step 3. Every irreducible complex characterψ ∈ IrrC(H) extends to some ψ̂ ∈ IrrC(G).
Moreover we may suppose N ⊆ ker ψ̂.

Veri�cation. ¿e trivial character trivH certainly extends to trivG . So consider ψ ∈
IrrC(H) ∖ {trivH}; we seek to extend it to an irreducible character of G. It will be:

ψ̂ = IndGH[ψ − ψ(1)trivH] + ψ(1)trivG .

(Keep inmind at all times that although IndGH ∶ C(H) → C(G) is linear, it does not take
trivH to trivG . So ψ̂ does not equal IndGH ψ.) Many details are required. ¿roughout,

54



we write Ind for IndGH and Res for Res
G
H .

First let d = ψ(1) ∈ N. Now let α = ψ−dtrivH , anH-class functionwith α(1) = 0.
By Step 2, Ind α is a G-class function extending α. ¿us α = Res Ind α. As said, we
let:

ψ̂ = Ind α + dtrivG .

¿en:
Res ψ̂ = Res Ind α + dtrivH = α + dtrivH = ψ.

But it remains to prove that ψ̂ is a character of G.
First use linearity of Ind, giving:

ψ̂ = Ind(ψ − dtrivH) + dtrivG = Indψ−d Ind trivH + dtrivG .

Now recall that Indψ and Ind trivH are indeed characters of G by Lemma 9.2.1. So ψ̂
is a Z-linear combination of characters of G, hence a Z-linear combination of irre-
ducible characters of G. We prove that there is only term by computing (ψ̂∣ψ̂). ¿is
involves Frobenius reciprocity.

By reciprocity (extended to all class functions), bearing in mind Res trivG =
trivH and Res Ind α = α, one �nds:

(ψ̂∣ψ̂)G = (Ind α + dtrivG ∣ Ind α + dtrivG)G
= (Ind α∣ Ind α)G + d (trivG ∣ Ind α)G + d (Ind α∣trivG)G + d

2 (trivG ∣trivG)G
= (α∣Res Ind α)H + d (Res trivG ∣α)H + d (α∣Res trivH)H + d

2

= (α∣α)H + d (trivH ∣α)H + d (α∣trivH)H + d
2

= (α + dtrivH ∣α + dtrivH)H
= (ψ∣ψ)H
= 1.

Recall that ψ̂ is a Z-linear combination of irreducible characters of G, say ψ̂ =

∑ n iψ̂ i in obvious notation. ¿en by orthonormality, (ψ̂∣ψ̂)G = ∑ n2i = 1. So ψ̂ is
itself either an irreducible character or the opposite of one. However ψ̂ extends ψ, so
ψ̂(1) = ψ(1) = d ∈ N and ψ̂ ∈ IrrC(G).

Last, for g ∈ N , the equation gc = c has no solutions by Lemma 10.2.2. So any
sum of the form

(Ind β)(g) = ∑
c∈G/H∶
gc=c

β(g c)

is actually empty. So there remains only ψ̂(g) = ψ(1)trivG(g) = ψ(1) = ψ̂(1), mean-
ing N ⊆ ker ψ̂. ◇

Step 4. N is a normal subgroup of G.

Veri�cation. For ψ ∈ IrrC(H), let ψ̂ ∈ IrrC(G) as in Step 3. Recall that N ⊆ ker ψ̂.
Now let:

K = ⋂
ψ∈IrrC(H)

ker ψ̂,

a normal subgroup of G. We shall prove that K = N . ¿e inclusion N ⊆ K is by
Step 3.
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We now show K ⊆ N . ¿is relies on proving K ∩ H = {1}. Indeed let h ∈
K ∩ H. ¿en for ψ ∈ IrrC(H), one has ψ(h) = ψ̂(h) = ψ̂(1) = ψ(1). Hence h ∈

⋂IrrC(H) kerψ = {1} by ¿eorem 7.1.4 (i). Since K is a normal subgroup, it avoids all
conjugates of H, viz. K ⊆ N . ◇

Hence N = K is a normal subgroup disjoint from H. Now ∣N ∣ = #N = ∣G∣

∣H∣
by

Step 1, which implies G = N ⋊H.

10.3.2. Remarks.

• ¿ompson proved that N must be nilpotent.9

• If H has even order, N is even abelian. ¿is is not true in general: see exer-
cise 10.4.2.

• But H can be non-soluble: there is a �nite Frobenius group with H ≃ SL2(F5).

10.3.3. Remark. Frobenius groups have a lovely application to Wedderburn’s theorem
(�nite skew-�elds are commutative) going through Desarguesian planes.10 Good pub-
licity for my other nmk lecture notes!

10.4 Exercises
10.4.1. Exercise. Let G be a �nite group acting transitively on a set X. Suppose that every
g ≠ 1 �xes at most one element of X. Prove that N = {�xed-point free elements} ∪ {1} is
a normal subgroup.

10.4.2. Exercise. Consider the group:

N =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

1 x z
1 y

1

⎞
⎟
⎠
∶ (x , y, z) ∈ F37

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

and the map:

σ
⎛
⎜
⎝

⎛
⎜
⎝

1 x z
1 y

1

⎞
⎟
⎠

⎞
⎟
⎠
=
⎛
⎜
⎝

1 2x 4z
1 2y

1

⎞
⎟
⎠
.

Prove that σ is an automorphism of order 3 of N. Now prove that (⟨σ⟩ < N ⋊ ⟨σ⟩) is a
Frobenius pair.

10.4.3. Exercise. Let (H < G) be a �nite Frobenius pair, say G = N ⋊ H. Let π∶G →
G/N ≃ H be the quotient map. Let χ ∈ IrrC(G) be non-trivial. Prove that:

• either χ = ψ ○ π for some ψ ∈ IrrC(G/N) = IrrC(H),

• or χ = IndGN φ for some φ ∈ IrrC(N).

10.4.4. Exercise (Bender’s ‘even’ proof). ¿is exercise contains no representation theory;(**)
on the contrary, it gives a character-free proof of ¿eorem 10.3.1 under extra assumptions.

Let (H < G) be a �nite Frobenius pair. Suppose that H has even order.
9J. ¿ompson, Finite groups with �xed-point-free automorphisms of prime order. Proc. Nat. Acad. Sci.

U. S. A. 45, pp. 578–581, 1959.
10S. Ebey, K. Sitaram, Frobenius groups and Wedderburn’s theorem. Amer. Math. Monthly 76, pp. 526–528,

1969.
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1. Determine the cardinal of N = (G ∖⋃g∈G H g) ∪ {1}.

2. Prove that if i , j are two involutions (of any group), then (i j)i = (i j)−1.

3. Let i ∈ H be an involution. Prove that for g ∈ G ∖H, one has 1 ≠ ig−1 ig ∈ N.

4. Determine the cardinal of R∗ = {ig−1 ig ∶ g ∈ G ∖H} ⊆ N.

5. Prove that N = R∗ ∪ {1}

6. Conclude that N is a subgroup of G.

Notes.

• ¿e method even proves abelianity of N under our assumption that H has even
order. ¿is is not true in general; however N is nilpotent (see Remarks 10.3.2).

• To date, there is no known full character-free proof of ¿eorem 10.3.1.11

11 Real, purely complex, quaternionic representations
Abstract. § 11.1 gives a correspondence between bilinear forms on V and morph-
isms V ≃ V∗. § 11.2 discusses the irreducible case. ¿en § 11.3 introduces real,
purely complex, and quaternionic representations.

¿is section discusses only complex representations. ¿e irreducible ones will be
classi�ed into real, complex, and quaternionic representations, in a technical sense. To
avoid clash in terminology, we make an e�ort to talk about ‘C-linear representations’,
and to refer to the second case as ‘purely complex’.

11.1 Bilinear forms and duality
For V a K-vector space, we let BilK(V × V ,K) be the space of K-bilinear forms on V .
By de�nition, one has BilK(V × V ,K) ≃ HomK(V ⊗K V ,K).

11.1.1. De�nition. A bilinear form on a representation V is preserved by G if:

(∀g ∈ G)(∀x ∈ V)(∀y ∈ V)(β(gx , g y) = β(x , y)).

We shall simply say that β is a bilinear G-form.
We let G- BilK(V × V ,K) ≤ BilK(V × V ,K) be the subspace of bilinear G-forms.

When no confusion can arise, we simply write G- Bil ≤ Bil .

11.1.2. Remark. We avoid writing ‘BilK[G](V ×V ,K)’, because bilinearG-forms are not
K[G]-bilinear. Likewise, ‘G-bilinear’ is slightly confusing.

11.1.3. Proposition. Let V be a �nite-dimensional vector space.

(i) ¿ere is a natural isomorphismHomK(V ,V∗) → BilK(V × V ,K) [K-Mod].
11See however a very interesting entry on Terence Tao’s webpage, https://terrytao.wordpress.com/

2013/05/24/a-fourier-analytic-proof-of-frobeniuss-theorem/
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(ii) ¿e above induces a natural bijection:

{linear isomorphisms f ∶V ≃ V∗ [K-Mod]}
↔ {non-degenerate bilinear forms β∶V × V → K}.

(iii) If V is also a representation of a group G, then (i) restricts to HomK[G](V ,V∗) →
G-BilK(V × V ,K), which like in (ii) induces a natural bijection:

{isomorphisms of representations f ∶V ≃ V∗ [K[G]-Mod]}
↔ {non-degenerate bilinear G-forms β∶V × V → K}.

11.1.4. Remark. In (iii), the isomorphism HomK[G](V ,V∗) ≃ G- Bil can be considered
in K[G]-Mod or in K-Mod without loss of information, since the natural action of G
on each side is trivial.

Proof.

(i) Truly, in abstract terms, this is because inK-Mod one has isomorphisms:

BilK(V × V ,K) ≃ Hom(V ⊗ V ,K) ≃ (V ⊗ V)∗ ≃ V∗ ⊗ V∗

≃ Hom(V∗∗ ,V∗) ≃ Hom(V ,V∗) [K-Mod].

One may prefer a casual approach. To K-linear f ∶V → V∗, associate the map
β f (x , y) = f (x)(y) ∈ K. Clearly β f is bilinear. Moreover f ↦ β f is linear.
Conversely, to bilinear β∶V × V → K, associate fβ(x) = β(x , ⋅) ∈ V∗. ¿en
fβ ∶V → V∗ is linear. Moreover β ↦ fβ is linear. ¿ese constructions are inverses
of each other, hence linear isomorphisms.

(ii) Work in the notation above. Suppose f ∶V ≃ V∗ is a linear isomorphism. If
x ∈ V is such that β f (x , ⋅) = 0, then f (x) = 0 and therefore x = 0. So β f is
le -non-degenerate; by �nite-dimensionality, this is enough.
Conversely suppose that β∶V × V → K is a non-degenerate bilinear form. If
fβ(x) = 0, then x = 0 by non-degeneracy. So fβ ∶V ≃ V∗ [K-Mod].

(iii) Return to the construction, in the same notation.

Suppose that f is G-covariant. ¿us f (g ⋅ x) = g ⋅ f (x). Let φ = f (x) ∈ V∗, so
that f (gx) = g ⋅ φ. By de�nition of the dual representation, for y ∈ V one has
(g ⋅ φ)(y) = φ(g−1 y). ¿erefore f (gx)(y) = f (x)(g−1 y) and �nally:

β f (gx , g y) = f (gx)(g y) = f (x)(g−1g y) = f (x)(y) = β f (x , y),

so β f is preserved by G.
Conversely, if β is preserved by G, then:

fβ(g ⋅ x)(y) = β(gx , y) = β(x , g−1 y) = f (x)(g−1(y)) = (g ⋅ f (x))(y),

so fβ(g⋅) = g ⋅ f (x) inside V∗.
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11.2 Real, purely complex, quaternionic representations
With Proposition 11.1.3, one could expect the theory to divide in two: either V ≃ V∗ or
not, based on existence or not of non-degenerate bilinear G-forms. But the theory of
bilinear forms divides itself into two main subtopics, so there are three cases in total.

11.2.1. De�nition. A bilinear form β is:

• symmetric if (∀x)(∀y)(β(y, x) = β(x , y));

• alternating if (∀x)(∀y)(β(y, x) = −β(x , y)).

We write Bils , resp. Bila for symmetric, resp. alternating bilinear forms. G- Bils and
G- Bila are de�ned likewise.

One also says skew-symmetric for alternating.

11.2.2. Proposition. Let G be a �nite group; work over C. Let V be an irreducible, C-
linear representation. ¿en:

(i) every non-zero, bilinear G-form on V is non-degenerate;

(ii) exactly one of the following three case occurs:
• [real]: G-Bil = G-Bils has dimension 1 and G-Bila = {0}.
• [purely complex]: G-Bil = G-Bils = G-Bila = {0}.
• [quaternionic]: G-Bil = G-Bila has dimension 1 and G-Bils = {0}.

Proof. ¿e claims follow from two lemmas.

11.2.3. Lemma. Let V be an irreducibleC-linear representation of a �nite group G. ¿en
every non-zero, bilinear G-form is non-degenerate. Moreover dimG-Bil = 0 or 1.

Proof. Recall fromProposition 11.1.3 that we have a ‘dictionary’: G- BilC(V×V ,C) ≃
HomC[G](V ,V∗). Now V is irreducible, and therefore so is V∗. ¿us by Schur’s
Lemma, HomC[G](V ,V∗) is either trivial or 1-dimensional.

Let β∶V × V → C be a bilinear G-form. Let fβ ∶V → V∗ [C-Mod] be given
by Proposition 11.1.3; then fβ ≠ 0. By Schur’s Lemma again, fβ is an isomorphism.
Translating back through Proposition 11.1.3, β f is non-degenerate.

11.2.4. Lemma. Let V be any representation over a �eld of characteristic ≠ 2. ¿en
Bil = Bils ⊕Bila , and G-Bil = G-Bils ⊕G-Bila .

Proof. Let β∶V × V → C be bilinear. Notice how:

βs(x , y) = β(x , y)+β(y, x)
2

and βa(x , y) = β(x , y)−β(y, x)
2

are two bilinear forms; the �rst is symmetric and the second is alternating. Moreover
β = βs + βa . Last, if β is a G-form, so are βs and βa .

We prove the Proposition. ¿e �rst lemma implies (i) so we move to (ii). ¿e
three cases are mutually exclusive. If there is no non-trivial bilinear G-form, we are in
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the purely complex case. So suppose there is one, β ≠ 0; decompose it as β = βs + βa .
By the �rst lemma again, dimG- Bil = 1, so G- Bil = ⟨β⟩. In particular there is λ ∈ C
with βs = λβ. If λ ≠ 0 then βs ≠ 0; thus ⟨βs⟩ = G- Bils = G- Bil and there remains
G- Bila = {0}: this is the real case. Otherwise λ = 0, meaning β = βa ≠ 0: we reach
the quaternionic case.

11.2.5. Remarks.

• It is enough to haveK a good �eld of characteristic ≠ 2.

• Beware of terminology (1). ¿e character χV is real-valued i� V is (real or qua-
ternionic). ¿e proof is immediate: χV is real-valued i� χV∗ = χ∗V = χV = χV i�
V∗ ≃ V [C[G]-Mod], and we apply Proposition 11.1.3.

• Beware of terminology (2). In all three cases, EndC[G](V) = C IdV by irredu-
cibility, so quaternions will never emerge as Schur’s �eld. A better name for the
third case could have beenWeyl’s neologism symplectic, since a symplectic form is
a non-degenerate, alternating bilinear form.

• Reason for the terminology is in exercise 11.4.3.

11.3 More on real and quaternionic geometries
We elaborate on the cases delinated by Proposition 11.2.2. Recall that a map f ∶V1 → V2
between complex vector spaces is semi-linear if it is additive but f (λv) = λ f (v). (It is
then R-linear but ‘twists’ the action of i.)

11.3.1. Proposition. Let G be a �nite group; work overC. Let V be aC-linear, irreducible
representation. ¿en the following are equivalent:

(i) there exists a non-degenerate, symmetric, bilinear G-form on V;

(ii) there exists a G-covariant, semi-linear isomorphism σ ∶V → V with σ 2 = IdV ;

(iii) there exists a real, G-invariant vector space W ⊆ V with V =W ⊕ iW.

11.3.2. Remarks. Let us rephrase (iii).

• In matrix form: there is a basis B in which all matrices MatB ρ(g) have real coef-
�cients.

• In dimension-theoretic form: there is a real,G-invariant vector spaceW ⊆ V with
dimRW = dimC V and V = ⟨W⟩C.

• In abstract form: there is an R-linear representationW ′ such that V ≃W ′ ⊗R C,
where C is equipped with the trivial G-action and the usual R-action.

¿is accounts for the name: aC-linear representation is real if it comes from anR-linear
representation.

Proof.

(i)⇒(ii). By Proposition 11.1.3, such a bilinear form induces an isomorphism fβ ∶V ≃
V∗ [K[G]-Mod]. (We have not used symmetry of β so far.)
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Let [⋅∣⋅] a complex scalar product onV . It is the same as a semi-linear isomorph-
ism s∶V ≃ V∗. If we average [⋅∣⋅] using G, we may even take a complex scalar
product v⋅∣⋅w preserved by G. (¿is method was already in exercise 3.4.5.) Hence
we may suppose that there is a semilinear, G-covariant isomorphism s∶V ≃ V∗.
It satis�es s(x)(y) = vx∣yw. In particular, for φ ∈ V∗, one has:

vs−1φ∣yw = φ(y).

Finally let σ = s−1 ○ fβ ∶V → V . It is a semi-linear, G-covariant isomorphism. So
σ 2∶V → V is a linear, G-covariant isomorphism. By irreducibility and Schur’s
Lemma, there is λ ∈ C with σ 2 = λ IdV . Now:

vσx∣yw =
0

s−1 fβ(x)∣y
8

= fβ(x)(y) = β(x , y),

so �nally using symmetry of β:

vσx∣yw = β(x , y) = β(y, x) = vσ y∣xw .

We apply this to y = σx, getting:

vσx∣σxw = vσσx∣xw = vλx∣xw = λ vx∣xw .

But for x ≠ 0, both vσx∣σxw and vx∣xw are positive real numbers; thus so are λ
and λ. Up to rescaling by 1

√
λ
, we may thus suppose λ = 1.

(ii)⇒(iii). Treat V as a real vector space. ¿ere the linear map σ satis�es σ 2 = IdV ,
so it is diagonalisable with eigenvalues ±1. LetW+ = E1(σ) andW− = E−1(σ).
¿en V =W+ ⊕W−. Moreover, each is clearly G-invariant.
We claim thatW− = iW+. Indeed, ifw+ ∈W+, then σ(iw+) = −iσ(w+) = −iw+,
so iW+ ≤W−. ¿e converse inclusion is proved similarly. It follows thatW+ and
W− have the same real dimension.

¿us V =W+⊕ iW+, and in particular, ⟨W⟩ = V as aC-vector space. Moreover,
dimC V = 1

2 dimR V = 1
2 (dimRW+ + dimR(iW+)) = dimRW+.

(iii)⇒(i). LetW ⊆ V be a real, G-invariant, subspace such that V =W ⊕ iW ; hence
every v ∈ V writes uniquely as v = x + iy with x , y ∈ W . Take a real scalar
product onW . Averaging it, we may take a real scalar product v⋅∣⋅w onW which
is preserved by G. Now simply put:

(x + iy∣x′ + iy′) = (vx∣x′w− vy∣y′w) + (vx∣y′w + vy∣x′w)i ∈ C.

¿en (⋅∣⋅) is C-bilinear and G-covariant. Since it is non-zero, it is non-
degenerate by Proposition 11.2.2.

In a very similar way, one proves the following.

11.3.3. Proposition. Let G be a �nite group and V be a C-linear, irreducible representa-
tion. ¿en the following are equivalent:

(i) there exists a non-degenerate, alternating, bilinear G-form on V;

(ii) there exists a G-covariant, semi-linear isomorphism σ ∶V → V with σ 2 = − IdV .
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11.4 Exercises
11.4.1. Exercise. Let V be a K-linear representation of G. De�ne an action of G on
BilK(V × V ,K) such that the map β ↦ fβ of Proposition 11.1.3 is a morphism of rep-
resentations. Why could you expect inversions?

11.4.2. Exercise. Prove Proposition 11.3.3.

11.4.3. Exercise. LetH8 = {±1,±i ,± j,±k} be the group of basic quaternions.

1. Compute the only irreducible, 2-dimensional character over C, say χ2.

2. Prove that χ2 is not real. [Hint: extend the candidate group morphism H8 →
GL2(R) to the associative algebra of quaternionsH.]

3. Consider the following realisation of quaternions:12

H = {(
z1 −z2
z2 z1

) ∶ (z1 , z2) ∈ C2} ≤ M2(C) [R-Alg].

Realise χ2 by giving explicitH8 ↪ H× ≤ GL2(C).

11.4.4. Exercise (real-valued characters, and groups of odd order). Let G be a �nite
group. We work over C. A (complex) character χ is real-valued if χ = χ. A conjugacy
class γ ∈ Conj(G) is real if γ−1 = γ.

1. Prove that γ is real i� (∀χ ∈ IrrC(G))(χ(γ) ∈ R). [Hint: column orthogonality.]

2. Let d = # IrrC(G) = #Conj(G). Let σ1 , σ2 ∈ Sym(d) be given by χ i = χσ1(i) and
γ−1i = γσ2(i).
Also let ρ = permSym(d)∶ Sym(d) → GLd(C) be the permutation representation.
Finally let M ∈ Md(C) be the character table.
What are ρ(σ1)M and Mρ(σ2)?

3. Deduce that the number of real conjugacy classes equals the number of real-valued
characters. [Hint: what is tr ρ(σ1)?]

4. Deduce that ∣G∣ is odd i� the only real-valued irreducible character of G is triv. [¿is
question contains no representation theory.]

5. Deduce that if ∣G∣ is odd, then #Conj(G) ≡ ∣G∣ [16].

12 ¿e Frobenius-Schur formula
Abstract. ¿e Frobenius-Schur formula determines whether an irreducible, C-
linear representation is real, purely complex, or quaternionic in the sense of § 11.

12Good publicity for my other nmk lecture notes!
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12.1 Statement
Recall that an irreducible, C-linear representation (V , ρ) is:

• real if there exists a non-zero, symmetric, bilinear G-form on V ;

• purely complex if there exists no non-zero, bilinear G-form on V ;

• quaternionic if there exists a non-zero, alternating, bilinear G-form on V .

12.1.1. ¿eorem. Let G be a �nite group and V be a C-linear, irreducible representation
with character χ. ¿en:

1
∣G∣

∑
g∈G

χ(g2) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if V is real
0 if V is purely complex
−1 if V is quaternionic.

¿ere are no other values.

¿e proof requires a short geometric digression.

12.2 Sym and Alt
Here Sym and Alt do not stand for symmetric and alternating groups, but for certain
factors of tensor powers. ¿ese construction are natural in geometry.

12.2.1. De�nition. Let V be a vector space and k be an integer. Let Σk be the symmetric
group on {1, . . . , k}.

• ¿e kth symmetric power of V is:

Symk(V) = (
k
⊗V)/⟨{

v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk = vσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ vσ(k) ∶
(v1 , . . . , vk) ∈ V k , σ ∈ Σk

}⟩

• ¿e kth exterior power of V is:

Altk(V) = (
k
⊗V)/⟨{

v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk = ε(σ)vσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ vσ(k) ∶
(v1 , . . . , vk) ∈ V k , σ ∈ Σk

}⟩

12.2.2. Notation. In the notation above, we let:

• v1⋯vk be the image of v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk in Symk(V);

• v1 ∧ ⋅ ⋅ ⋅ ∧ vk be the image of v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk in Altk(V).

12.2.3. Lemma. LetG be a group andK be a �eld of characteristic≠ 2. Let V be aK-linear,
�nite-dimensional representation of G. ¿en:

(i) Sym2(V) and Alt2(V) are naturally representations, under g ⋅ (xy) = (gx)(g y)
and g ⋅ (x ∧ y) = (gx) ∧ (g y), extended linearly.

(ii) Sym2(V) and Alt2(V) are isomorphic to subrepresentations of V ⊗ V; moreover

V ⊗ V ≃ Sym2(V) ⊕Alt2(V) [K[G]-Mod];
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(iii) χSym2(V)(g) = 1
2 (χV(g)

2 + χV(g2)) and χAlt2(V)(g) = 1
2 (χV(g)

2 − χV(g2)).

Proof.

(i) Clear.

(ii) Let B = {e1 , . . . , en} be a basis of V . ¿en {e i ⊗ e j ∶ 1 ≤ i , j ≤ n} is a basis of
V ⊗ V .

• Let Σ2 = ⟨(12)⟩ act on V ⊗ V by letting (12)(e i ⊗ e j) = e j ⊗ e i , extended
linearly. Let σ be the image of (12) in EndK(V ⊗ V). ¿us,

σ(∑ λ i , je i ⊗ e j) = ∑ λ i , je j ⊗ e i = ∑ λ j , i e i ⊗ e j .

In particular, σ(v1 ⊗ v2) = v2 ⊗ v1 for all v1 , v2 ∈ V .
• Notice G-covariance of σ .
• Clearly σ 2 = Id in EndK(V ⊗ V), so (σ − Id)(σ + Id) = 0. Basic linear
algebra implies ker(σ − Id) = im(σ + Id) while ker(σ + Id) = im(σ − Id),
and also V ⊗ V = ker(σ − Id) ⊕ ker(σ + Id).

• Consider the following elements of V ⊗ V :

s i , j =
1
2
(e i ⊗ e j + e j ⊗ e i) for i≤ j and a i , j =

1
2
(e i ⊗ e j−e j ⊗ e i) for i< j.

Let Bs = {s i , j ∶ i ≤ j} and Ba = {a i , j ∶ i < j}. Since #(Bs ⊔ Ba) = n2 and
e i ⊗ e j ∈ ⟨Bs ⊔ Ba⟩, we get that Bs ⊔ Ba is a basis.

• Now ⟨Bs⟩ = ker(σ − 1) and ⟨Ba⟩ = ker(σ + 1) follow easily.

• Last, Sym2(V) ≃ (V ⊗V)/ im(σ − 1) ≃ ker(σ − 1). Moreover, s i , j maps to
e i e j . Similarly, Alt2(V) ≃ (V ⊗V)/ im(σ + 1) ≃ ker(σ + 1), and a i , j maps
to e i ∧ e j .

• By G-covariance, all the above holds as representations of G.

A byproduct of the proof is that {e i e j ∶ i ≤ j} is a basis of Sym2(V) and {e i ∧e j ∶
i < j} is a basis of Alt2(V).

(iii) Let g ∈ G be �xed. One could have started with an eigenbasis B = {e1 , . . . , en}
under the action of g, viz. ge i = λ i e i . ¿en notice that each e i⊗e j ∈ V⊗V , each
e i e j ∈ Sym2(V), each e i ∧ e j ∈ Alt2(V) is an eigenvector for g with eigenvalue
λ iλ j . Since vectors of this type form eigenbases of the corresponding spaces, we
conclude that:

χSym2(V) = ∑
i≤ j
λ iλ j and χSym2(V) = ∑

i< j
λ iλ j .

On the other hand,

χV(g)2 = (∑
i
λ i)

2

= 2∑
i< j
λ iλ j +∑

i
λ2i = 2χAlt2(V)(g) + χV(g2).

¿is gives the desired formulas.
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In practice one may want to remember that {e i e j ∶ i ≤ j} is a basis of Sym2(V) and
{e i ∧ e j ∶ i < j} one of Alt2(V).

12.3 Proof of the Frobenius-Schur formula

Proof. Let V be a C-linear, irreducible representation of G. We study G-covariant
bilinear forms on V and the representationW = BilK(V ×V ,K). (See exercise 11.4.1.)
Also let:

Ws = BilsK(V × V ,K) = {β ∈W ∶ β is symmetric},

and de�ne Wa likewise. Finally let ds = dimWs and da = dimWa . By Proposi-
tion 11.2.2, notice that:

• V is real i� ds = 1 and da = 0;

• V is purely complex i� ds = da = 0;

• V is quaternionic i� ds = 0 and da = 1.

So the integer ds −da ∈ {1, 0,−1} indicates the geometric type ofV . Wemust therefore
prove that the formula computes ds − da .

By de�nition of the tensor product and the dual space,

W ≃ HomK(V ⊗ V ,K) ≃ (V ⊗ V)∗ ≃ (V∗ ⊗ V∗) [K[G]-Mod].

It is not hard to see that this induces isomorphisms:

Ws ≃ Sym2(V∗) [K[G]-Mod] and Wa ≃ Alt2(V∗) [K[G]-Mod].

By Lemma 12.2.3, their characters are:

χWs(g) =
1
2
(χV∗(g)2 + χV∗(g2)) =

1
2
(χ∗V(g)2 + χ∗V(g2)),

and
χWa(g) =

1
2
(χV∗(g)2 − χV∗(g2)) =

1
2
(χ∗V(g)2 − χ∗V(g2)).

Now the space of symmetric, bilinear G-forms is:

G- BilsK(V × V ,K) = CWs(G) ≃ CSym2(V∗)(G).

Lemma 5.2.2 gave a formula for its dimension:

ds = dimG- BilsK(V × V ,K) = dimCWs(G) =
1
∣G∣
∑
G

1
2
(χ∗V(g)2 + χ∗V(g2)),

and likewise:

da = dimG- BilaK(V × V ,K) = dimCWa(G) =
1
∣G∣
∑
G

1
2
(χ∗V(g)2 − χ∗V(g2)).

¿erefore:
ds − da =

1
∣G∣
∑
G
χ∗V(g2).
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¿is looks like the desired formula, but there is a residual ∗. Fortunately ds and da are
integers, so �nally:

1
∣G∣
∑
G
χV(g2) =

1
∣G∣
∑
G
χ∗V(g2) = ds − da = ds − da .

12.4 Exercises
12.4.1. Exercise. Return to the decomposition β = βs + βa of Lemma 11.2.4. Prove that it
is compatible with expressing V ⊗ V ≃ Sym2(V) ⊕ Alt2(V) (viz. draw a suitable com-
mutative diagram).

12.4.2. Exercise.

1. Show that Symk V enjoys the following universal property:

any k-linear, symmetric map from V k to another vector space factor
uniquely through Symk V.

2. Find a similar universal property describing Altk V.

12.4.3. Exercise.

1. Suppose B is a �nite basis of V. Give bases of Symk(V) and Altk(V).

2. Compute characters.

3. Suppose that K has characteristic coprime to k!. Find subrepresentations of⊗k V(*)
isomorphic to Symk(V), resp. Altk(V).

12.4.4. Exercise. ¿e purpose of this exercise is to construct the character table over C of
G = Sym(5). Let χ4 = perm − triv, which is irreducible.

1. Prove that Alt2 χ4 is irreducible and has dimension 6.

2. Prove that Sym2 χ4 is the sum of three irreducible characters.

3. Find an irreducible character of dimension 5.

4. Complete the character table of Sym(5).

12.4.5. Exercise. Return to the character tables of Alt(4), Sym(4), Alt(5), Sym(5). Find
out which representations are real, purely complex, quaternionic.

13 ¿e group algebra
Abstract.¿is section recasts representation theory inmodule theory (§ 13.1). ¿e
group algebra of G over K (§ 13.2) is precisely the associative K-algebra encoding
the representation theory of G. We then translate orthogonality relations in terms
of central idempotents (§ 13.3).
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13.1 Modules, submodules, morphisms
13.1.1. De�nition. Let R be a ring. An R-module is a abelian groupM equipped with an
action of R onM such that, for all r, s ∈ R and m, n ∈ M:

• (r + s) ⋅m = r ⋅m + s ⋅m;

• 1 ⋅m = m;

• (r ⋅ s) ⋅m = r ⋅ (s ⋅m);

• r ⋅ (m + n) = r ⋅m + r ⋅ n.

(¿ese do imply 0 ⋅m = 0.) With the notion of a module comes that of a submodule.

13.1.2. Examples.

• ¿e Z-modules are the abelian groups. ¿en Z-submodules are subgroups.

• If K is a �eld, the K-modules are the K-vector spaces. ¿en K-submodules are
K-linear subspaces.

• IfK is a �eld, theK[X]-modules are theK-vector spaces equipped with one dis-
tinguished linear endomorphism f . ¿enK[X]-submodules are f -invariant sub-
spaces.

13.1.3. De�nition. Let R be a ring. An R-module M is simple, or irreducible if the only
two R-submodules ofM are {0} andM.

We now introduce the suitable notion of morphism.

13.1.4. De�nition. Let R be a ring andM1 ,M2 two R−modules.

• An R-morphism is a map φ∶M1 → M2 such that for all r ∈ R and m,m′ ∈ M1:

φ(r ⋅m +m′) = r ⋅ φ(m) + φ(m′).

One sometimes says that φ is R-covariant.

• Let R be a ring and M1 ,M2 be two R-modules. We let HomR(M1 ,M2) stand
for the collection of R-morphisms from M1 to M2. (A better notation would be
(M1 → M2∶R-Mod).)
If R is clear from context, one simply writes Hom(M1 ,M2).

• An R-isomorphism is a bijective R-morphism. We write M1 ≃ M2 [R-Mod]
(isomorphism in the category of R-modules).

Notice that HomR(M1 ,M2) itself is an abelian group. However, in general it does
not bear a natural R-module structure.

13.1.5. Examples.

• AZ-morphismbetweenZ-modules is a groupmorphismbetween abelian groups.

• AK-morphism betweenK-vector spaces is aK-linear map.

• A K[X]-morphism between K[X]-modules (V1 , f1) and (V2 , f2) is a K-linear
map φ∶ f1 → f2 such that φ ○ f1 = f2 ○ φ.

We do not introduce tensor products over arbitrary rings. ¿is would only create
confusion since in this course, we only tensor overK, never over the group algebra.
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13.2 ¿e group algebra and representations
13.2.1. De�nition. Let K be a �eld and G be a group. ¿e group algebra of G over K is
the following associativeK-algebra:

• letK[G] be the vector space with basis {g ∶ g ∈ G};

• de�ne multiplication onK[G] by extendingK-linearly multiplication on G.

¿us dimKK[G] = ∣G∣. ¿e identity element is 1. ¿e group algebra is associative be-
cause G is, but it is commutative i� G is.

13.2.2. Remark. Analysts like to think of K[G] as the algebra of all functions G → K.
It is then equiped with the convolution product:

( f1 ∗ f2)(g) = ∑
x ,y∈G∶
x y=g

f1(x) f2(y).

One should check at once that (K[G];+, ⋅) and (KG ;+, ∗) are naturally isomorphic
as associativeK-algebras: just take∑G λg g to the map (x ↦ λx).

13.2.3. De�nition. LetK be a �eld and G be a group.

• AK-linear representation of G is aK[G]-module.

• A representation is irreducible if it is a simpleK[G]-module.

• Amorphism of representations is aK[G]-morphism.

• Hence two representations are isomorphic if they are, asK[G]-modules.

One should pause and check that de�nitions do match with their naive forms of § 1.
¿e above relies on a form of universal property: every groupmorphism ρ∶G → GL(V)
extends to a uniqueK-algebra morphismK[G] → EndK(V).We still denote it by ρ.

13.2.4. Remark. It is possible to tensorK[G]-modules overK[G], but this does not give
the tensor representation.

Let V = reg, which isK[G] as aK[G]-module. ¿en V ⊗K[G]V = K[G] = V , while
V ⊗K V has dimension (dimV)2 > dimV .

13.2.5. ¿eorem (Schur’s Lemma, revisited). Let R be any ring and V1 ,V2 be simple R-
modules.

(i) If f ∶V1 → V2 is an R-morphism, then either f = 0 or f is an isomorphism.

(ii) In particular, if V is a simple R-module, then EndR(V) is a skew-�eld.

(iii) Suppose that R is a �nite-dimensional associative K-algebra for some algebraically
closed �eldK. If V is a �nitely generated, simple R-module, thenEndR(V) = K IdV .

13.2.6. De�nition. Let R be a ring.

• An R-moduleM is semisimple if it a direct sum of simple R-modules.

• R itself is said to be semisimple if it is, as a (le ) R-module. See exercise 13.5.2.

13.2.7. ¿eorem. Let R be a semisimple ring and M be an R-module. ¿en:
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(i) Every submodule admits a direct complement.

(ii) M is a direct sum of simple submodules.

(iii) If M is �nitely generated, then it is a direct sum of �nitely many simple submodules.

13.2.8.¿eorem (Maschke’s¿eorem, revisited). Let G be a �nite group andK be a �eld
of coprime characteristic. ¿enK[G] is semisimple.

¿eorem 3.3.2 on isotypical components translates so immediately that we do not
reproduce it. We move to the isomorphism type of the group algebra.

13.2.9. ¿eorem. Let G be a �nite group and K be a good �eld. Let dρ = dim ρ be the
dimensions of the irreducible representations of G overK. ¿en as associativeK-algebras:

K[G] ≃ ∏
ρ∈IrrK(G)

Mdρ(K) [K-Alg].

¿is is a special instance of the Artin-Wedderburn theorem.13

Proof. Since dimVρ = dρ , one has Vρ ≃ Kdρ [K-Mod]. Hence HomK(Vρ ,Vρ) ≃

EndK(Kdρ) ≃ Mdρ(K) [K-Mod]. For each ρ we �x a basis Bρ of Vρ . So we have now
�xed an isomorphism:

∏
ρ∈IrrK(G)

EndK(Vρ) ≃ ∏
ρ∈IrrK(G)

Mdρ(K) [K-Alg].

For g ∈ G and ρ ∈ IrrK(G), let Mρ(g) = MatBρ(g). Each Mρ(⋅) is a group
morphism from G to GLdρ(K). Now to g ∈ G associate the family of matrices:

(Mρ(g))ρ ∈ Πρ∈IrrK(G)Mdρ(K).

¿is de�nes a multiplicative map G →∏ρ∈IrrK(G) Mdρ(K), which extends by lin-
earity to a morphism of associative K-algebras F∶K[G] → ∏ρ∈IrrK(G) Mdρ(K). We
claim that F is an isomorphism inK-Alg.
F is injective: if g acts trivially on every Vρ , then g acts trivially on any repres-

entation, so it acts trivially on the regular representation. But reg is injective, so g = 1.
Now F is surjective as well, because ∣G∣ = ∑ρ∈IrrK(G) d2ρ . It is an isomorphism.

An explicit isomorphism is discussed in § 13.4. We �rst return to orthogonality and
class functions.

13.3 Central idempotents
Let us reformulate orthonormality of the irreducible characters in abstract terms.

13.3.1. De�nition. Let R be a ring.

• An element x is central if (∀y)(xy = yx).

• An idempotent is a nonzero element 0 ≠ e ∈ R with e2 = e.

• Two idempotents e1 , e2 are orthogonal if e1e2 = e2e1 = 0.
13I have to teach this in the Village someday.
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• An idempotent e is primitive if it cannot be written as e = f1 + f2 where f i are
idempotents ≠ 0, 1.

• A complete set of central primitive idempotents is a family of central, primitive
idempotents summing to 1.

13.3.2. ¿eorem. Let G be a �nite group and K be a good �eld. For χ ∈ IrrK(G), let
eχ = χ(1)

∣G∣ ∑g∈G χ(g−1)g. ¿en {eχ ∶ χ ∈ IrrK(G)} is both:

(i) aK-linear basis of the centre ofK[G];

(ii) a complete set of central primitive idempotents ofK[G].

Proof. ¿is is essentially repeating the orthogonality relations; here are themain lines.

(i) ¿e space CK(G) of class functions is exactly the centre of K[G]. Indeed, f =
∑g λg g ∈ K[G] is central i� (∀h ∈ G)( f h = h f ) i� (∀g , h ∈ G)(λgh = λhg).
Since characters are class functions, we do have eχ ∈ Z(K[G]).

¿ey form a family of cardinal # IrrK(G) = #Conj(G) = dimCK(G) =
dim Z(K[G]). So it only remains to prove linear independence, which will fol-
low from (ii).

(ii) We analyse reg term by term.

Let (W , σ) be an irreducible representation with character ψ. Since eχ ∈
Z(K[G]), one has σ(eχ) ∈ Z(σ(K[G])), so σ(eχ) is G-covariant. By Schur’s
Lemma, there is λχ ,ψ ∈ K such that σ(eχ) = λχ ,ψ IdW . Now:

λχ ,ψψ(1) = λχ ,ψ dimW = tr σ(eχ) =
χ(1)
∣G∣

∑
g∈G

χ(g−1)ψ(g) = χ(1) (χ∣ψ) .

By orthogonality, λχ ,ψ = δχ ,ψ . ¿us σ(eχ) = λχ ,ψ IdW is 0 on irreducible rep-
resentations non-isomorphic to χ, and Id on irreducible representations iso-
morphic to χ.
Since regG is a direct sum of irreducible representations, eχ = reg(eχ) is the
identity on Isoreg(χ) and the zero map on other isotypical components: thus eχ
is the projector onto Isoreg(χ) parallel to the other terms.
It follows that eχ is an idempotent, and eχeψ = 0 whenever χ ≠ ψ. Finally,
∑ eχ = Idreg = 1. ¿is certainly implies linear independence, and also completes
the proof of (i).

13.3.3. Remark. One sometimes uses the following Z-basis of Z[G]. For γ ∈ Conj(G)
a conjugacy class, let eγ = ∑g∈γ g. ¿en {eγ ∶ γ ∈ Conj(G)} is a Z-basis of Z[G]. It can
be proved that every eγ is an algebraic integer of the ringK[G]. (¿is is what we did in
¿eorem 7.3.1, Step 1.)

13.4 Fourier transform(*)

Let G be a �nite group andK be a good �eld. By the Artin-Wedderburn theorem (¿e-
orem 13.2.9), there are �nite-dimensional vector spaces V1 , . . . ,Vr and an isomorphism
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of associativeK-algebras:

K[G] ≃
r
∏
i=1

EndK(Vi) [K-Alg].

(We do mean EndK and certainly not EndK[G].) ¿e present, completely optional, sub-
section elaborates on this fact and gives an explicit isomorphism: the Fourier transform
on the group.

Notation. Even though we work over an arbitrary good �eld, we adopt the analytic
point of view on the group algebra. So K[G] is the K-algebra of functions f ∶G → K,
equiped with the convolution product

( f1 ∗ f2)(g) = ∑
x ,y∶
x y=g

f1(x) f2(y).

(In algebraic terms, if f = ∑ λg g, one simply lets f (g) = λg .)
¿us f (g) makes sense, and is a scalar. Below we shall also consider functions

φ∶ IrrK(G) → S for some set S. ¿en φ(ρ) will make sense. (Here, φ will not stand
for a linear form.)

¿e Fourier transform takes functions f (viz. functions from G to K) to functions
φ (viz. certain functions from IrrK(G) to S). ¿e inverse Fourier transform does the
converse.

¿e general case. In physics the Fourier coe�cients are not pure numbers. At each
frequency one has an energy; these quantities have very di�erent natures; energies are
parametrised by frequencies. In non-abelian group theory, the Fourier ‘coe�cients’ are:

• linear operators,

• parametrised by irreducible representations.

Hence IrrK(G) plays the role of the spectrum, viz. the set indexing the Fourier compon-
ents, and each component is in EndK(ρ).

13.4.1. Notation.

• For ρ∶G → GL(V) a representation ofG we still denote by ρ its natural extension
K[G] → EndK(V), which is a morphism ofK[G]-algebras.
Hence, always seeing f as a function G → K:

ρ( f ) = ∑
g∈G

f (g)
±
∈K

ρ(g)
±

∈EndK(V)

.

Notice that ρ( f ) ∈ EndK(V); in general ρ( f ) need not be G-covariant.

• For f ∈ K[G] we let: f̂ (ρ) = ρ( f ) = ∑g∈G f (g)ρ(g).

13.4.2. Remark. Technically, f̂ is thus a map from IrrK(G) to ⊔ρ∈IrrK(G) EndK(Vρ).
However, at each ρ, one has f̂ (ρ) ∈ EndK(Vρ), and therefore:

f̂ ∈ ∏
ρ∈IrrK(G)

EndK(Vρ).

(If G is abelian, this will simplify dramatically.)
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13.4.3. ¿eorem. Let G be a �nite group andK be a good �eld.

(i) For f ∈ K[G] let f̂ (ρ) = ∑g∈G f (g)ρ(g). ¿en F( f ) = f̂ de�nes an isomorphism
ofK[G]-algebras:

K[G] ≃ ∏
ρ∈IrrK(G)

EndK(ρ) [K-Alg].

(ii) For φ ∈ ∏IrrK(G) EndK(ρ), let φ̌ = F−1(φ) be the inverse. ¿en:

φ̌(g) = ∑
ρ∈IrrK(G)

dim ρ
∣G∣

tr [ρ(g−1)φ(ρ)] .

13.4.4. Remarks.

• We always consider EndK(ρ), since EndK[G](ρ) is only 1-dimensional by Schur’s
Lemma. (Cf. abelian case below.)

• F is amorphismof associativeK-algebras, butnot amorphismofK[G]-modules.

Proof. For brevity we let Π = ∏ρ∈IrrK(G) EndK(G).

(i) Clearly F∶K[G] → Π is well-de�ned, and linear. Recall that K[G] is equiped
with the convolution product (which extends the group law on G), and Π is
equiped with its Cartesian product structure, viz. we compose componentwise:
(φ1 ⋅ φ2)(ρ) = φ1(ρ) ○ φ2(ρ). So F is multiplicative and takes 1 to (Idρ ∶ ρ ∈
IrrK(G)). Hence it is a morphism ofK-algebras.
Now dimensions match, so it su�ces to prove injectivity. Suppose F( f ) = 0.
¿en in each irreducible representation, (the image of) f acts trivially. But the
regular representation is a direct sum of such, so f acts trivially on reg ≃ K[G].
SinceK[G] has a unit (viz. since reg is injective), this means f = 0.

(ii) ¿is may look di�cult but the formula is given, so it is a simple matter of check-
ing it. ¿e linear map F−1 is well-de�ned. Let:

G(φ) =
⎡
⎢
⎢
⎢
⎢
⎣

g ↦ ∑
ρ∈IrrK(G)

dim ρ
∣G∣

tr (ρ(g−1)φ(ρ))
⎤
⎥
⎥
⎥
⎥
⎦

,

which is clearly linear from Π toK[G]. We want to prove G = F−1.

Let h ∈ G. When seen in K[G], viz. when seen as a function G → K, h is the
‘Dirac mass’ δh(x) = δh ,x , which equals 1 at h and 0 everywhere else.
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¿en F(δh) = [ρ ↦ ρ(h)], so at any g ∈ G one has:

G(F(δh))(g) = ∑
ρ∈IrrK(G)

dim ρ
∣G∣

tr (ρ(g−1)ρ(h))

= ∑
ρ∈IrrK(G)

1
∣G∣

⋅ dim ρ ⋅ χρ(g−1h)

=
1
∣G∣

regG(g
−1h)

=
∣G∣

∣G∣
δg−1h(1)

= δh(g).

¿is also equals F−1(F(δh))(g), and equality holds at every g. ¿us, as func-
tions, G(F(δh)) = F−1(F(δh)). ¿erefore G and F−1 agree on {F(δh) ∶ h ∈
G}, which is a basis of Π. By linearity, they agree everywhere.

¿e abelian case. Let A be a �nite abelian group.
If ρ ∈ IrrK(A) then dim ρ = 1. Although a 1-dimensional vector space V is non-

canonically isomorphic to K, the ring End(V) is canonically isomorphic to K. Here
ρ∶A → GL(V), so we may assume ρ∶A → K×. ¿us irreducible representations are
elements of the dual group Â, viz. the group of all morphisms A → K×. Hence, here,
IrrK(A) = Â bears an additional group structure.

Return to ρ ∈ Â and to the canonical isomorphism EndK(ρ) ≃ K. ¿erefore:

∏
ρ∈IrrK(A)

EndK(ρ) ≃∏
Â
K ≃ KÂ [K-Alg].

¿e right-hand is no longer formed of operators but of Fourier coe�cients.

13.4.5. Remark. Be careful that KÂ, as a K-algebra, is still equiped with the compon-
entwise product, which is not the same as the convolution product. (¿is simply means
KÂ /≃ K[Â] [K-Alg].) ¿ere is no escaping from the fact that Fourier changes convolu-
tion to componentwise, and vice-versa.

¿e inverse transform rewrites as follows. Since every linear endomorphism u of a 1-
dimensional vector space is the scalar action of λu = tru, the inverse transform formula
simpli�es to:

φ̌(a) = ∑
ρ∈Â

1
∣A∣

ρ(−a)φ(ρ).

13.4.6. Remark. First notice that the direct transform can rewrite as:(**)

f̂ (ρ) = ∑
a∈A

f (a)ρ(a) = ∣A∣ ( f ∗∣ρ)A ,

where (⋅∣⋅)A is the usual bilinear form on CK(A).
With perversity one may move to the bidual group ˆ̂A and rewrite the inverse trans-

form using it. Let eva ∶ Â → K× take ρ to eva(ρ) = ρ(a) (‘evaluation map’). It is not
hard to see that ev∶ a ↦ eva is a natural isomorphism A ≃ ˆ̂A. ¿e eva are the irreducible
characters of Â.
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¿en the inverse formula de-simpli�es to:

φ̌(a) = ∑
ρ∈Â

1
∣A∣

ρ(−a)φ(ρ) = ∑
ρ∈Â

1
∣Â∣

(eva(−ρ))φ(ρ) = (eva ∣φ)Â ,

where (⋅∣⋅)Â is the usual bilinear form on CK(Â).

13.5 Exercises
13.5.1. Exercise. LetK be a �eld, G1 ,G2 be two groups, and φ∶G1 → G2 be a groupmorph-
ism.

(i) Show that φ naturally induces a morphism ofK-algebras Φ∶K[G1] → K[G2].

(ii) Show that φ is an isomorphism i� Φ is an isomorphism.

Note. It is an open problem in group theory whether one can have K[G1] ≃ K[G2] as
abstractK-algebras without having G1 ≃ G2 as groups.

13.5.2. Exercise. Let R be a ring. Prove that R is semisimple as a le R-module i� it is as
a right R-module.

13.5.3. Exercise. Let A be a �nite abelian group.

1. Let B ≤ A be a subgroup. Prove that every morphism B → C∗ extends to A.

2. Prove that Â is isomorphic to A, and that ˆ̂A is canonically isomorphic to A.

Further reading
• C.Curtis,Pioneers of representation theory: Frobenius, Burnside, Schur,andBrauer.
History ofMathematics, 15.AmericanMathematical Society, Providence, RI, 1999.

• C. Curtis and I. Reiner, Representation theory of �nite group and associative algeb-
ras. Reprint of the 1962 original. AmericanMathematical Society, Providence, RI,
2006.

• M. Isaacs, Character theory of �nite groups. Pure and applied mathematics, 69.
Academic Press, New York–San Francisco–London, 1976.

• J.-P. Serre, Linear representations of �nite groups. Translated from the French by
L. Scott. Graduate Texts in Mathematics, 42. Springer-Verlag, New York, 1977.

• J.-P. Serre, Finite groups: an introduction. International Press, Somerville, 2016.
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