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Each section corresponds to a lecture of 2 hours, with the introduction fitting into § 1.
The material is very standard. §$ 1-5 is one block; § 2 and § 3 may be exchanged. The
exercise session § 6 can be skipped, but at the risk of losing practical understanding of
phenomena. The three blocks §$ 7-8, §§ 9-10, and §§ 11-12 may be swapped freely; how-
ever § 10 uses some material from § 7. « The optional (and untaught) § 13 is a module-
theoretic rephrasing of §§ 1-5. Turkish students tend to be familiar with module ter-
minology early in their curriculum. If I were to teach the course again, I might opt for
module language and introduce the group algebra as soon as § 1.

Introduction

Group theory is the natural language for symmetries and was promoted as such. As a
matter of fact and contrary to modern-style expositions, groups first emerged as groups
of symmetries. Some symmetries (not to be mistaken for reflections) have undisputed



geometric origin, as in Klein’s Erlanger Programm. Some are more combinatorial or
algebraic in nature, as in Galois’ theory of polynomial equations. In either case, math-
ematical practice is full of groups of transformations, viz. of group actions. In the x1x'
century, groups were sets of bijections preserving some structure. ‘Abstract’ groups were
introduced later, around Burnside’s time, in order to achieve some unification and for
intrinsic interest.

The purpose of representation theory is to return to ‘concrete’ groups, viz. groups
acting somewhere. Permutation group theory embeds group theory into combinator-
ics, thus yielding counting arguments. But (linear) representation theory even embeds
group theory into linear algebra. There one conveniently relies on geometric intuition.

Just like a group action of G is simply a morphism G — Sym(X) for some set X,
a linear representation is simply a morphism from G to GL(V') for some vector space.
What is remarkable is that to some extent, G is’ the class of its representations. (There
is almost some phenomenological lesson here: an abstract object is entirely determined
by its concrete manifestations.) Equally importantly, complex representations of finite
groups are themselves determined by some number-theoretic functions called charac-
ters. As a result, the amount of group-theoretic information encoded in characters is
beyond first expectations; the strength of Frobenius’ character theory is a miracle.

The course will describe this theory, with some of its most classical and celebrated
applications to ‘pure’ finite group theory. All the material here is extremely standard;
neither the exposition nor the choice of contents has any claim to originality. (See the
Further reading section for deeper sources.) Before you start with the notes, let me re-
commend a lovely survey by a major contributor to the topic.'

Prerequisites

The class is for advanced undergraduate or graduate students.

Algebraic number theory: Almost none. The characteristic of a field; algebraically
closed fields. It is safe to assume K = C everywhere. (See ‘Note on fields’ be-
low.)

Group theory: Prerequisites corresponding to a full first course in pure group theory.
Groups, subgroups, normal subgroups and quotient groups; morphisms and fac-
torisation; cosets and Lagrange’s theorem on orders; conjugation and centralisers;
group actions, stabilisers, orbits. Advanced topics will occasionally involve semi-
direct products.

I shall use x” = y~'xy for conjugacy; a typical conjugacy class will be denoted
by y. I reserve c for left cosets, viz. subsets of the form ¢ = aH = {ah : h € H}
whenever H < G is a subgroup.

Linear algebra: Finite-dimensional vector spaces; linear maps, eigenvalues and trace
of an endomorphism; projectors; linear forms, dual space; bilinear forms, non-
degenerate bilinear forms, symmetric forms, Hermite-symmetric forms and com-
plex scalar products. The course tends to avoid bases and matrices but prefers
‘intrinsic’ arguments, so an abstract course in linear algebra is a prerequisite.

Module theory: Terminology helps, but no knowledge of module theory is required.
Familiarity with the tensor product is not required, as it will be briefly discussed.

'C. Curtis, Representation theory of finite groups: From Frobenius to Brauer. Mathematical Intelligencer 14,
No. 4, pp. 48-57,1992.



Note on fields. Most arguments need assumptions both on the characteristic of K and
its algebraic closedness.

Technically the conjunction (characteristic o and algebraically closed) defines the
class ACF, of algebraically closed fields of characteristic 0. Two examples are the field
of complex numbers C and the field of algebraic numbers, viz. the algebraic closure Q of
the rationals inside the complex field. Characteristic o theory naturally takes place over
number fields, viz. over finite extensions of Q. Now every number field embeds into Q,
so into C. (Moreover, C-vector spaces bear additional ‘Hermite structure, also known
as complex scalar products. This is the reason why working over C is so efficient.)

The beginner can safely assume K = C throughout. It is however a good exercise to
understand what assumptions are needed in each theorem, so we discuss characteristics
a little.

Most of the theory works similarly provided char K is not a prime factor of |G|; we
call this K has coprime characteristic with respect to G. One could introduce for each
finite G the class ACF|g). of algebraically closed fields of characteristic coprime to |G|,
viz. of good fields. For brevity, a good field will be an algebraically closed field of coprime
characteristic. Hence ‘algebraically closed of characteristic o’ implies good.

Definition. Let G be a finite group and K be a field.

« K has coprime characteristic with respect to G if (char K = o or char K does not
divide |G)).

o Kis good if it is algebraically closed of coprime characteristic.
Remarks.

« Coprimality makes sense only for finite G; so does goodness. Almost nothing
remains of the theory for infinite G. There is no general representation theory of
abstract infinite groups.

o Because the characteristic of a field is o or a prime number, this is equivalent to:
charK is o or does not divide the exponent exp G, which is the least common
multiple of orders of elements of G.

« The fields Q, C are universally good (viz. independently of G).

1 Representations

Abstract. This section is mostly terminology. § 1.1 introduces the main objects: rep-
resentations. These simply consist in an action on some vector space. § 1.2 discusses
subrepresentations, and we stress the importance of irreducible representations. Fi-
nally § 1.3 describes morphisms of representations.

1.1 Representations
1.1.1. Definition. Let G be a group and K be a field.
o A linear representation of G in a K-vector space V is a morphism p: G — GL(V).

o A linear representation of G over K, or K-linear representation, is a pair (V, p) as
above; one often omits V' or p from notation.

(Omitting V is less ambiguous than omitting p. Common practice can do either.)



1.1.2. Remarks.

In the notation above, let g € Gand v € V. Then p(g) € GL(V),so p(g)(v) € V.
As alternatives to this clumsy notation, one may write:

- p(g) - v (useful if there are several representations),
- g * v (useful to distinguish operators from vectors),

- g-v,orsimply gv (useful to save time).
By definition of a morphism, one has p(1) = Idy and p(gh™) = p(g) o p(h) ™.
Tradition calls degree of the representation the cardinal number degp = dim V.
Alinear representation p of G induces an ijective linear representation of G/ ker p.

Tradition calls faithful an injective representation, viz. one with ker p = {1}.

1.1.3. Examples.

The trivial representation is:

trivv G - GL(K)

g = 1
with dimension 1.

Let V be the K-vector space with dimension |G| and basis B = {e, : g € G}.
For g € G we define reg(g) on the basis 3 by letting reg(g)(es) = egs. Then
we extend linearly, meaning we let: reg(g)(X Anen) = X Anegp. This defines the
regular representation:
regg. G - GL(V)
g — reg(g)
(Check that one does have reg(g, g;") = reg(g,) o (reg(g,)) " in GL(V).)

From § 13 on, we shall drop unnecessary symbols and simply write g for e,.
Technically, the above is the lef-regular representation. (See exercice 1.4.4.)

The regular representation is a special case of a more general construction. Let G
act on some set X by g* x. Let V be the vector space with dimension #X and basis
B = {e, : x € X}. Now define perm(g) on the basis B by: perm(g)(ex) = egux>
then extend linearly. This defines the permutation representation associated to the
permutation group (G, X). Its kernel is exactly the kernel of the action.

The regular representation is thus the permutation representation associated to
the left-regular, ‘Cayley’ group action of G on itself: g * x = gx.

It is injective. Indeed, reg(g) = Idy implies reg(g)(e;) = Id(e,) = e, while
reg(g)(e;) = e;. So g =1and kerreg = {1}.

Not all representations are permutation representations, so the topic does not re-
duce to group actions.

1.1.4. Remarks (even more general representations).



+ One may represent other algebraic structures; for instance, a representation of an
(associative) ring R in a vector space V is simply a ring morphism R — End(V).

Actually, K-linear representations of a group G, correspond to representations
of the ‘group algebra’ K[G], by taking p:G — GL(V) to the linear extension
p:K[G] = End(V). (This is discussed in § 13.)

+ One may also represent algebraic structures in more general modules than vector
spaces. For instance, a representation of a group G in an abelian group A is simply
amorphism G - Aut(A). (This can be interesting, and bring new phenomena, if
A is for instance the torsion subgroup of the circle group S* ~ SO, (R), which is
no vector space.) Likewise, one may represent associative rings, or even Lie rings,
dropping linearity.

o Linear algebra gives intuition and tools, and linear representations of a given
group G already encode much information about it.

The purpose of this course is to give general notions on linear representations of
finite groups in finite-dimensional vector spaces over good fields, such as C. This is a
well-chartered territory, but it has striking applications. The following basic lemma is
used throughout.

1.15. Lemma. Let G be a finite group and K be a good field. Let p:G — GL(V) be
a K-linear, finite-dimensional representation. Then each p(g) is diagonalisable, and its
eigenvalues are roots of unity.

Proof. Each g € G has finite order g¥ = 1, so p(g) is annihilated by the polynomial
X* — 1, which is split with simple roots over K. Moreover, eigenvalues of p(g) must
satisfy X* —1 = 0 in K: so they are roots of unity. O

1.1.6. Remark. In general the various p(g)’s cannot be diagonalised simultaneously.

1.2 Subrepresentations and irreducibility

We discuss subobjects.

1.2.1. Definition. Let G be a group and K be a field. Let (V, p) be a K-linear represent-
ation.

o A subrepresentation is a K-linear subspace W < V which is also G-invariant,
viz. (Vg e G)(Ywe W)(g-we W).

(This is the same as a K[ G]-submodule; see § 13.2.)

o A nonzero representation V is irreducible if the only G-invariant subspaces are
{o}and V.

(This is the same as simplicity as a K[G]-module; see § 13.1.)
Notice that by convention, {0} is not irreducible (similar to ‘1 is not a prime’).

1.2.2. Examples.



1. If A is an abelian group and K is an algebraically closed field, then every finite-
dimensional, K-linear representation of A is actually 1-dimensional. This is an
important fact (exercise 1.4.3).

2. This need not hold over arbitrary K. Let G = SO, (R) be the real unit circle, acting
by rotations on V' = R?. This representation is irreducible because no vector line
is invariant under rotations.

Irreducible representations are the building blocks, the ‘atoms’ of more elaborate
representations (accordingly thought of as molecules). This analogy underlies the entire
theory over good fields and is developed in §$ 3-4.

1.2.3. Lemma. Let G be a finite group and K be a field.
(i) Every irreducible linear representation is finite-dimensional.

(ii) Every nonzero linear representation contains an irreducible representation.

Proof.

(i) Let V beirreducible. Letv € V \ {o}. Now the set X = {g-v : g € G} is finite,
hence spans a finite-dimensional subspace W < V. Any g € G acts on X, so
it leaves W invariant. Hence W < V is a subrepresentation. Since o # v € W,
irreducibility implies V = W, which is finite-dimensional.

(ii) Let V # o be arbitrary. Here again, V contains a finite-dimensional subrepres-
entation W. Now a finite-dimensional subrepresentation of minimal dimension
is irreducible. O

1.2.4. Remarks.

« Some infinite groups do not have a non-trivial, finite-dimensional representation
(even reducible). See exercise 1.4.5.

« Some groups, and even some finite groups, do not have a injective irreducible
representation. See exercise 1.4.6.

o Still, every group has a injective representation—for instance the regular one.

1.2.5. Remark (quotient representations). If V is a K-linear representation and W < V
a subrepresentation, then the quotient group V/W naturally bears the structure of a
K-linear representation of G, called quotient representation.

Due to Maschke’s splitting phenomenon discussed in § 3.2, quotient representations
turn out to be avoidable in a first course, very much like quotient vector spaces are usu-
ally omitted from basic treatments of linear algebra.

1.3 Morphisms and isomorphisms of representations

We discuss arrows.

1.3.1. Definition. Let G be a group and K be a field. Let (V;, p,) and (V,, p,) be two
K-linear representations of G.



o A morphism of representations, also called a G-covariant morphism, is a function
f: Vi = V, whichisboth K-linear and compatible with G, viz. in obvious notation:

f(pi(g) - vi) = pa(g) - f(nh).
In lighter notation, this rewrites as f(g-v,) = g+ f(v,).
o This is the same as a morphism of K[ G]-modules. (See § 13.2.)

+ We let Homg(g)(p:, p») be the set of morphisms of representations.

More casual notations are Homg1( Vi, V2 ), or Homg (p,, p, ), or Homg (V;, V).

o If V, = V, = V (implicitly we request p, = p, = p; see remarks 1.3.3), we simply
write Endg[g1(p). (More casual: Endg (p) or Endg(V).)

An alternative notation could be Cgpq, (v)(G), because it consists of those K-
linear maps f € Endg (V) which commute with the ‘Hom’ action of G, in the
sense of § 2.4.

« An isomorphism is a bijective morphism. Notice that the inverse of an isomorph-
ism is an isomorphism.

o Tradition calls equivalence an isomorphism of representations.

1.3.2. Remark. A K-linear map f: V; = V, is G-covariant iff for all g € G the following
diagram is commutative, viz. the two possible compositions define the same morphism:

Vi v,

Pl(g)l lpz(g)
f

Vi—— V..

1.3.3. Remarks.

+ Homgg)(Vi, V) is a slightly ambiguous notation: what matters is not V;, but
truly (V;, p;). Hence Homgg)(ps, p.) is clearer but one has to accept ‘arrows
between arrows.

« In more modern notation, (p, — p,) would be in order, meaning;: those arrows
from p, to p,, being well understood that p,, p, live in the category of K[G]-
modules. Another option is (p, = p,: K[G]-Mod), for those arrows in the cat-
egory K[G]-Mod.

1.3.4. Remark. Isomorphisms are classically denoted by ~. Since there will be a con-
stant tension between isomorphisms of underlying vector spaces, and isomorphisms of
representations (which are stronger), we prefer explicit notation.

The notion of an isomorphism is relative to a category. For isomorphisms of K-
vector spaces, we write V; ~ V, [K-Mod] (‘isomorphism of K-modules’). For iso-
morphims of K-linear representations of G, we write V; ~ V, [K[G]-Mod] (‘iso-
morphism of K[ G]-modules’). (See § 13.)

1.3.5. Notation. Let G a group and K be a field. Let Irrg(G) denote the class of the
irreducible, K-linear representations of G up to isomorphism.

Truly elements of Irrk (G) are not representations, more isomorphism classes.



1.3.6. Remarks.

o In general, Irrg (G) need not be finite. But if G is finite then so is Irrg (G). This is
proved in exercise 1.4.7.

o Actually if G is finite and K is good then # Irrg (G) is the number of conjugacy
classes in G, as proved in Theorem 5.1.1. In particular, # Irrc (G) = # Conj(G).

o For algebraically closed K of characteristic dividing |G|, the number # Irrk (G)
takes another value found by Brauer®. For non-algebraically closed K, matters
are more involved.

1.4 Exercises

1.4.1. Exercise. Let G = Sym(3), which is generated by (12) and (123). Let V ~ C* have
basis B = (e, e,). Now let p((12)) swap e, and e,, while p((123)) does the following:

p((123))(e) =e.  and  p((123))(e2) = —e1 — ea,
1. Prove that it defines a linear representation.
2. Write the matrix Matg p(g) for every g € G.
1.4.2. Exercise. Let G = Sym(n) be the symmetric group over n symbols.

1. The sign representation of G is:

e G ~ GL(K"Y)
g +e(g)

where €(g) is the usual signature of g. Show that it is a representation.

2. Let p:G — GL(V) be a K-linear representation. Show that p'(g) = €(g) - p(g) is
another K-linear representation. (More generally see tensor representations, § 2.3.)

1.4.3. Exercise.

1. Let A be a finite, abelian group and p € Irrc(A). Show that dimp = 1. Hint:
eigenvalue. Does this generalise to nilpotent groups?

2. Let A be an abelian subgroup of a finite group G. Let p € Irrc(G). Show that
dimp < [G: A].
3. Characterise which finite groups have a non-trivial, complex, 1-dimensional repres-

entation p # triv. Did you use properties of the field?

1.4.4. Exercise. The right-regular representation is defined as follows. Let V have basis
{eg: g € G}. Now let reg°®(g)(en) = ep.g, and extend linearly. Prove that reg and reg®®
are isomorphic.

1.4.5. Exercise. Let G be a group.

1. Prove that the following are equivalent:

2R. Brauer, Uber die Darstellung von Gruppen in Galoisschen Feldern. Actualités scientifiques et industri-
elles 195. Hermann & Cie, Paris, 1935.



*)

(i) if X € G is any subset, there are finitely many x,,...,x, € X such that
CG(X) = CG(XI, e ,xn);

(ii) every ascending chain of centralisers Cq(X,) < Cg(X,) < ... is stationary;

(iii) every descending chain of centralisers Cg(X,) > Cg(X,) > ... is stationary.
Hint: CCC = C.

2. A linear group is a subgroup of some GL,,(K) for some integer n and some field K.
Prove that every linear group satisfies the above condition. Hint: use M, (K).

3. Let Alt(N) be the set of permutations of N with finite support and signature 1. De-
duce that every finite-dimensional representation of Alt(N) is trivial.

1.4.6. Exercise. Let N ~ C# be generated by e,, e,, e;,e,. Now let (¢) ~ C, act on N as
follows:

o _ g _ g _ o _
€, =€, € =e€e, € =, €, =ee,.

Let G = N x (0). Show that G has no injective irreducible representation over C. Hint:
diagonalise N simultaneously.

Note. Characterisation of finite groups admitting a injective irreducible representation is
a classical topic.?

1.4.7. Exercise. Let G be a finite group, and let K[ G| denote the left-regular representation.

1. Prove that every irreducible representation V is isomorphic to some V' < K[G].
Hint: fix a non-zero linear form ¢ € V* and consider f(v) = ¥, 9(g7'v)eg.

2. Suppose that V,, ..., V, < K[G] are pairwise non-isomorphic irreducible represent-
ations. Prove that 3. V; = @ V; is a direct sum. Hint: if V, < @V}, consider the
projectors 7;: V, = V; onto the i coordinate.

3. Deduce that G has finitely many irreducible representations up to isomorphism.

Note. With more tools (and provided charK + |G|), there are other arguments relying on
the Artin-Wedderburn theorem applied to the algebra K[G].

2 Algebraic constructions

Abstract. We build new representations from existing ones. Direct sum represent-
ations (§ 2.1) are easily understood. Dual representations (§ 2.2) offer the opportun-
ity to return to algebraic duality and dual bases in finite-dimensional spaces. Tensor
representations (§ 2.3) endow the vector tensor product of two spaces with an action
of G. Last, Hom-representations (§ 2.4) connect to dual and tensor constructions.
In general, irreducibility is lost.

This section contains almost no representation theory except a couple of definitions
(dual representation, tensor representation, Hom representation). There are no assump-
tions on K. Throughout we pay attention to traces as they will underlie character theory.

3W. Gaschiitz, Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen. Math. Nach. 12, pp. 253-
255, 1954.



2.1 Direct sum representation
Direct sum space. The notion of a direct sum space is expected to be familiar.

2.1.1. Definition. Let V; and V, be two vector spaces over the same field. Their (external)
direct sum is the vector space V,®V, of pairs (v,, v, ), equiped with componentwise linear
structure.

2.1.2. Remarks.

+ V; and V, naturally embed into V; @ V,. There, their internal direct sum equals
VieV,.

o In particular if V; has basis BB, and V, has basis I3,, then V, @ V, has basis B, U 5,.
+ Not to be mistaken with the direct product space—though isomorphic as long as
only finitely many vector spaces are involved.
Direct sum representation. The simplest possible construction is as follows.

2.1.3. Definition. Let (V,,p,) and (V,, p,) be two representations of the same group
over the same field. The direct sum representation is (V, @ V,, p, @ p,) given by:

(P ®p.) (), =pi(g) and  (p, ®p.)(Q)v, = p=(g)-

This means that g acts on V, @ V, componentwise; in finite dimension, one may use
‘block matrices. The following is therefore obvious.

2.1.4. Remark. Let V; and V, be finite-dimensional representations of G. Then for g € G
one has tr(p, ® p,)(g) = trp,(g) +trp,(g).

2.2 Dual representation

Dual space. We first review some properties of the dual space of a vector space, with
no reference to representation theory.

2.2.1. Definition. Let V be a K-vector space.
o Alinear form on V is alinear map V — K.

o 'The dual space of V is the space V* of all linear forms on V, equiped with the
following linear structure in obvious notation:

- (9 +92) (V) = 0i(v) + 92(v),
- (A@)(v) = Ao (v).

2.2.2. Remark (duality pairing). Thereisa ‘pairing’ V*xV — K, given by (¢|v) = ¢(v).
Now if f: V' — V is a linear endomorphism, it induces f*: V* — V* defined by:

f(9)=9of.
Notice that (f*(¢)[v) = ¢ o f(v) = (9l f(v)).
2.2.3. Lemma (and definition: dual basis). Let V be a finite-dimensional vector space.

(i) dimV* =dimV.

10



(i) IfB={e,,...,e,} isabasisof V, let e € V* be the linear form such that e} (e;) =
0ij. Then B* = {e},...,e;} is a basis of V*, called the dual basis.

(iii) Let f € End(V). In the notation above, Matg+ f* = (Matg f)".
(iv) In the notation above, tr f = tr f*.

Proof.
(i) isa consequence of (ii).

(ii) We prove both linear independence and generation. Suppose Yi_, A;ef = o,
in obvious notation. Then evaluating at each e; gives A; = o: whence linear
independence.

Nowlet 9 € V*. Fori e {1,...,n},let A; = ¢(e;). Then notice that ¢ — 3" A;e¥
vanishes on B, so on V. Thus ¢ = )" A;e}, which proves generation. Hence B*
is a basis of V™.

(iii) Say Matg f = M = (m;,;), so that Col; Matg f = Coordg f(e;), viz. f(e;j) =
>im;jje;. Letv =3 Aie;. Compute as follows:

FEM) = ¢ (F()
= (¢} o (D die)

- (DA (e)
= e;(ZAi Z Mg iex)
ik
= z)timk,ie;(ek)
ik
= Z)Limj,i
=S, el (),
whence f*(e}) = X;(M"), je; . This is our claim.

(iv) Obvious from (iii). O

2.2.4. Remark. This nolonger holdsif dim V is infinite. One can still define linear forms
e, which remain linearly independent, but they no longer generate V*.

Dual representation. We now put a G-structure on the dual vector space of a repres-
entation of G, in the most natural way.

2.2.5. Definition. Let (V, p) be a K-linear representation of G. Its dual representation
is (V*,p*), where:
P (&)(9)=gop(e)™

In alternate notation, this rewrites (g- ¢)(v) = ¢(g7'v).

2.2.6. Remarks.

11



« Notice that (p*(g)(¢)lp(£)(v)) = ¢ 0 p(g) ' (p(g)V)) = @(v), viz.:
(¢-9lg-v)={ol).
The dual representation is defined precisely in order to preserve the duality pairing.
« Suppose V is finite-dimensional with basis 3; let 3* be the dual basis. Then:
Matg- p*(g) = (Matg p(g)) ™",
where M™" = (M")™ = (M™)" is the inverse-transpose matrix.
« In the notation above, tr p*(g) = trp(g™").
o Important fact: V is irreducible iff V* is. A general proof is in exercise 2.5.5, but
faster proofs in special cases are given in Remarks 3.3.8 and 5.3.2.
2.3 Tensor representation
In this course we only tensor over K, never over K[G].
Tensor product of vector spaces. Informally speaking, the tensor product converts
bilinear maps to linear maps.

2.3.1. Proposition. Let V,, V, be K-vector spaces over the same field K. Then there is a
(unique) initial pair (W, B) where W is a K-vector space and 3: V, x V, » W is bilinear.

This means that there is a unique pair (W, f8) as above such that for any other pair
(W', B"), one may uniquely factorise 5’ = h o .

VixV,
X
g W
Wl

Proof. Say V; has basis B;. Let C = B, x B3,; let W have basis indexed by C. Map
(b,,b,) €C to the corresponding vector in W and extend bilinearly. This defines f.

We have to check that (W, 8) meets the requirements. So let (W', ') be another
pair. On S(b,,b,) we let h(S(b,,b,)) = B'(b,,b,). This is well-defined. Then we
extend h linearly. So 8 factor through . Moreover we had no other choice.

We now check that (W, f8) is unique up to isomorphism. Indeed, if (W', ') is
another initial pair, then there are unique h, h’ such that 8 = h’ o ho 8. But = Idyy of8
would have worked as well, so h’ o h = Idyy. Likewise, h o h’ = Idyy+. So h and h’ are
linear isomorphism and we are done. O

2.3.2. Definition. Inthe notation above, one writes W = V,®x V, and (v,,v,) = v,®v,.
This is called the tensor product of V, and V, over K.

Of course the tensor product is more an isomorphism type than a given realisation;
in particular one may always pick bases B, and 3, more adapted to specific problems.

12



2.3.3. Remarks.

o Write B, ® B, = B, x B,. This is a basis of V; ® V,. In particular, dim(V, ® V,) =
dim V; - dim V.

« Everyelement of V,®V, is therefore a unique linear combination of basic elements
b, ® b,. However, it is useful to forget about bases. Thus every element is a linear
combination of ‘elementary tensors’ v, ® v,, but not every element of V, ® V, is
an elementary tensor. (Physicists call this phenomenon ‘intrication’)

+ A remark on the construction. The general notion of a tensor product over a
ring R is more involved and requires some factorisation. Since vector spaces are
free modules, our construction is (fortunately) much simpler than the general
module-theoretic one.

Tensor representation. We now equip the vector tensor product of representations
with the structure of a representation (viz. a G-action).

2.3.4. Definition. Let G be a group and K be a field. Let (V;, p,), (V,, p,) be two K-
linear representations. The tensor representation is (V1 ®k Vo, p ® pz) where:

(Pr®p2)(g) (i ®V,) = (gv: ® gvs).

2.3.5. Lemma. tr(p, ® p,)(g) = (trp.(g)) - (trp.(g)).

Proof. Let B, = {e,,...,e,} beabasis of V, and B, = {f,,..., f;} be one of V,; then
{ei ® fi} is one of V, ® V,. By definition there are matrices M = (m; ;) and N = (ny.,)
such that:

pi(g)-ej=> mije; and p,(g)-fe=) nrefr
i k

Thus:
(pr®p.)(g)- (Ej ® f) = Z;mi,j”k,f(ei ® fk)-

Summing diagonal terms, we find:

tr(p, ® p.)(g) = Z;mj,jnf,f = (X mj,j)(; nee) = (trp.(g))(trpa(g)). O
I J

2.4 Hom-representation

The definition.

2.4.1. Definition. Let V;, V, be K-vector spaces. Let Homg (V;, V,) be the space of
linear maps V; - V,, equiped with the following linear structure in obvious notation:

o (f+g)(n)=f(n)+gn),
« AN)(n) = Af(n).
Thus V* = Homg (V, K).
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2.4.2. Definition. Let (V;, p,), (V,, p,) be two K-linear representations of G. The Hom-
representation is (Homg (V;, V,), pom ) Where:

prom(&)(f) =p(g)ofop(g) =g f- g

2.4.3. Remark. A K-linear homomorphism f:V; - V, is fixed under the Hom-action
of Gifand onlyif (Vg)(fop,(g) = p.(g) o f) ifand only if f is a K[ G]-morphism. In
symbols,

Chomy (vi,v,) (G) = Homg ) (V1, V2).

This simple observation is crucial in character theory (§ 5.2).

Hom and tensors. Let f: V; — V, be linear between finite-dimensional spaces. Sup-

pose V; has basis B = {e;,...,e,}. Then for x € V, one may write x = 3" 1;e;. Now
e/ (x) = Ai,s0x = ¥ €7 (x)e;. Notice that this amounts to writing, as functions:
*
Id = Z ejej.
j

Furthermore f(x) = f (Zj e} (x)ej) = Y. e;(x)f(e;). Thus as functions from V; to V,
we have:
=Y efe).
j
The proper place to deal with the right-hand is the tensor space V;* ® V,. This motivates
the following.

2.4.4. Proposition. Let V,, V, be two finite-dimensional K-vector spaces.

(i) There is a natural K-linear isomorphism:

Homg (V;, V,) ~ V" @k V, [K-Mod].

(ii) Ifin addition V,, V, are representations of G, then the above is even an isomorphism
of representations, viz.:

Homg (V,, V,) =~V ®x V., [K[G]-Mod].

In (ii) one has a K[ G]-isomorphism, but one still tensors over K.

Proof.

(i) First notice that dimensions agree, so it is enough to find a linear injection. Let
B={e,,...,e,} beabasisof V, and B* = {e, ..., e; } be the dual basis.

To f € Homg(V;, V,), associate the element:
n
T(f)=) e ®f(e)) eV, ®k Va.
This is well-defined. Moreover, T: Homg (V,, V,) — V,* ®k V, is clearly linear.

Now suppose T(f) = o. Expressing f(e;) over any basis of V,, we see that
the non-zero e] ® f(e;) are linearly independent in V* ® V,. So all are zero,
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meaning f(e;) = o on B. This implies f = o, and T is injective. The dimensional
argument gives the conclusion.

(i) Let f:V, = V, and g € G. We shall compute and compare T(g- f) with g- T(f).

Consider the linear map:

u= (g—l)*: V* > V)('
I A
Let M = Matg(g™') have coeflicients (m; ;), so that g7*(e;) = X, m; je;.

Then by Lemma 2.2.3, we know that Matg+ u = M. This means that u(e;) =
> i mj ie;. We are ready for computation.

T(g-f)=Tlxw gf(g'x)]
= e ®gf(ge)

-3t gm0

- :zilg(mk,ier)@(g-f(ek))
- S u(ei) ® (¢f(r)

- et oo g flen)
- e e (g S(e0)
“¢(Zeoste)

=g T(f)-
We are done. O

2.4.5. Remark. This does not hold if dim V; is infinite; see exercise 2.5.2. It is however
enough to have dim V] < oo; see exercise 2.5.3.

2.5 Exercises
2.5.1. Exercise. Let V,,V,, V; be K-vector spaces.

1. Show that there are natural linear isomorphisms: « V,®@ V, 2 V,@V,, e Vi@ (V,®
V)x(VieV,)eV, e e(V,oaV,)x(V,eaV,)eV, « VeV, 2V, 0V,
VRV, VeV = (Ve V) s VeV (Ve V)"

2. Show that if V}, V, are K-linear representation of G, the above is an isomorphism
of representations.

2.5.2. Exercise. Let V, W be K-vector spaces. Show that in general, V* @g W ~ {¢ €
Homg (V, W) : dimim ¢ < oo }.

2.5.3. Exercise. Show that Proposition 2.4.4 still holds if V, is finite-dimensional, regardless
of V,. Hint: explicitly give the converse isomorphism.
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2.5.4. Exercise. Let V,, V, be two K-vector spaces and 3: V, x V, - K be a bilinear form.
Suppose 5 is non-degenerate, viz.:

o (Vv e V)[(Yv, e V,)(B(vy,v,) =0) > v, =0];
o (Vv e V)[(Yn, € V))(B(vy,v,) =0) > v, =0]/
1. Find natural linear embeddings V; = V" and V' - V,.

2. Deduce that if V, or V, is finite-dimensional, then both are and V, =~ V}.

2.5.5. Exercise. For this exercise it is preferable to know about quotient vector spaces.
Let V be a finite-dimensional vector space.

1. For W < V a subspace, let W+ = {¢p € V* : (VYw e W)(¢o(w) = 0)}. Prove that
dim Wt = dim V - dim W.

2. Suppose in addition that V is a representation of G. Prove that V is irreducible iff
V*is.

2.5.6. Exercise. Return to Proposition 2.4.4. Prove that T(f) does not depend on the
choice of the basis. Deduce another proof that T is G-covariant.

3 Around reducibility

Abstract. Schur’s Lemma (§ 3.1) describes arrows between irreducible representa-
tions; there are extra claims if K is algebraically closed but the general part is worth
remembering. Maschke’s Theorem ($ 3.2) provides nice direct sum decompositions
and eliminates the need for quotient objects, but has assumptions on char K. We
then introduce isotypical components (§ 3.3).

From this section on, it is important to distinguish assumptions on algebraic closed-
ness (4 la Schur+’) from assumptions on the characteristic (‘a la Maschke’).

3.1 Schur’s Lemma

The phrase ‘Schur’s Lemma’ refers to various statements about morphisms between ir-
reducible representations. Some are extremely general; some hold in finite-dimensional
spaces; some require, in addition, the base field to be algebraically closed. But there are
no assumptions on the characteristic.

3.1.1. Lemma (Schur’s Lemma). Let G be a group and K be a field. Let (V,, p,), (V. p,)
be irreducible K-linear representations.

(i) If f:p, = p, is a morphism of representations, then either f = o or f is an iso-
morphism.

(i) Inparticular, if (V, p) is an irreducible representation, then Endg[;1(V') is a skew-
field.
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(iii) Suppose that K is algebraically closed. If (V, p) is a finite-dimensional, irreducible
representation over K, then Endgg)(V) = KIdy ~ K.

Proof.

(i) Suppose f # o. Then W, = ker f < V,. However, W, is G-invariant since for
x € W, and g € G one has f(gx) = gf(x) = g- o = o. By irreducibility of V,
one has W, = {0} and f is injective. Similarly, W, = im f > o is G-invariant,
hence by irreducibility W, = V, and f is surjective. It is thus a G-covariant linear
isomorphism, hence an isomorphism of representations.

(ii) A special case. Recall that the inverse of a K-linear, G-covariant isomorphism,
is again K-linear and G-covariant.

(iii) Of course every scalar map AIdy is G-covariant, so KIdy < Endgg)(V).
We prove the converse. Let 0 € Endg[g(V). By assumption, V is finite-
dimensional over K and K is algebraically closed. So any linear endomorphism
of V has an eigenvalue. Say A € K has a non-zero eigenspace E; (o) # {o}.
Then 7 = 0 — AIdy € Endg[g7(V) has a non-zero kernel. But Endgg1(V) is a
skew-field by (ii), so o = AIdy. Hence EndK[G](V) =KIdy ~ K. O

A useful consequence is that over an algebraically closed field, if both p, and p, are
irreducible, then dim Homg(¢}(p,, p.) is 0 or 1.

3.1.2. Remarks.

o Even starting with a commutative K, one can construct irreducible representa-
tions where Endy[1(V') is a non-commutative skew-field. We return to the topic
in § 11; meanwhile see exercise 3.4.1.

« The argument makes crucial use of commutativity of K. For vector spaces over
skew-fields, the maps A Idy are no longer K-linear. I am however not aware of a
developed representation theory over skew-fields.

3.2 Maschke’s Theorem

The phrase ‘Maschke’s Theorem’ refers to various statements about expressing arbitrary
representations as direct sums of irreducible ones. All require the characteristic to be
coprime to the order of the finite group, hence always work in characteristic o. (Gen-
eralisations to infinite groups would require higher-level structure.) But there are no
assumptions on algebraic closedness.

3.2.1. Theorem (Maschke’s Theorem). Let G be a finite group and K be a field. Suppose
that K has coprime characteristic. Let (V, p) be a K-linear representation. Then:

(i) Every G-invariant subspace W <V admits a G-invariant direct complement.
(ii) V is a direct sum of irreducible representations.

(iii) In particular, if V is finite-dimensional, then it is a direct sum of finitely many
irreducible representations.

3.2.2. Remarks.
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o (i) expresses complete reducibility, also known as semisimplicity of the group al-
gebra K[G]. (See § 13.2.)

« While (ii) does not require finite-dimensionality (it does require finiteness of G
though), it is the kind of claim that often disturbs beginners.

Proof.

(i) Let W < V be as in the statement. Because direct complements exist in the
category of vector spaces, we may take a linear subspace S < V such that V =
W @ S. The problem is that S need not be G-invariant. We shall ‘average it’ as
follows.

Let m: V. — W be the linear projector onto W parallel to S. Now let:

1

|G|

= S p(g ) omop(g) = i O g7 mg.

geG |G| geG

(The second formula is in implicit notation, which we now use.) We claim the
following.

o 7 is a linear, G-covariant map. Linearity is obvious since 7 is a sum of
linear maps. Now for fixed / € G, the map g — gh is a bijection of the
indexing set G so:

Ah = —

|G
-t

|G
-
-5
- h.

Z g'ng-h
geG

Y h-h"'g"-m-gh
geG

Y h-g'ng

g'eG

o 7 is a linear projector onto W. Recall that W is G-invariant. So for any
geGandv e V,onehas gv e V, then n(gv) € W, and g7'n(gv) € W.
Hence 71(g) € W and im# < W. Now 7 is the identity on W. So for
w € W, one has gw € W, then n(gw) = gw, and g"'n(gw) = w. Hence
fi(w) = w.

Summing up, im 7 < W and ﬂ‘w = Idy,. This is the definition of a linear
projector with image W.

Let § = ker 7. Being the kernel of the projector #, it is a direct complement of
W = im 7. Moreover it is G-invariant, because 77 is G-covariant. We are done.

(ii) This requires some maximality argument a la Zorn (and the proof may be omit-
ted by the unexperienced).

Let F be a family of irreducible subrepresentations of V whose sum is direct,
and maximal as such. (This exists by Zorn’s lemma, or the axiom of choice and
ordinal induction.) Let S = Y ez W = @ yer W.

If S < V, then by (i), there is a G-invariant complement T. Now T contains an
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irreducible representation W’ by Lemma 1.2.3. So F = F u {W'} is a family
of irreducible representations whose sum is direct. By maximality of F as such,
one has W’ € F. So W' < S, a contradiction. This proves S = V, as wanted.

(iii) A direct consequence of (ii), but it can also be proved directly by induction on
dim V. See exercise 3.4.4. L]

3.2.3. Remarks.

o If char K divides |G|, then Maschke’s theorem no longer holds (exercise 3.4.6), so
the theory of modular representations is more complicated.

o Maschke’s principle fails for infinite groups, even over C. However, it can be
salvaged for certain infinite groups bearing extra structure (typically, a Haar meas-
ure as used in Lie theory).

3.3 Isotypical components

We proceed to analysing reducible representations in terms of ‘atoms’ (viz. irreducible
representations).

3.3.1. Definition. Let G be a group and K be a field. Let V be a K-linear representation
of G. Also let T € Irrg (G).

o Let Cpy(T) = {W < V : Wisasubrepresentationand W ~ T} be the set of
isomorphic copies of T inside V.

e LetIsov(T) = Lwecp, (r) W be their sum, called the isotypical component of V
of type T.

These notions behave extremely well in presence of both Schur’s and Maschke’s phe-
nomena. The following can be read following the analogy with p-primary components
of abelian groups.

3.3.2. Theorem. Let G be a finite group and K be a field of coprime characteristic. Let V
be a K-linear representation. Then:

(i) Every irreducible subrepresentation of Isoy (T) is isomorphic to T.
(ii)) V= @TGIrrK(G) ISOV(T)'

(iii) If Vi, V, are two K-linear representations, and f:V, — V, is a morphism of repres-
entations, then f(Isoy,(T)) < Isoy,(T).

(iv) For every T € Irrg(G), there is a subfamily Fr c Cp,(T) such that Isoy(T) =
®Wefr w.

3.3.3. Remarks.
o Subrepresentations Isoy (T') are completely canonical, which is confirmed by (iii).

« However a family Fr as in (iv) is highly non-canonical. The simplest example is
a 2-dimensional vector space V as a representation of {1}. Certainly V is a direct
sum of two vector lines, but these are not uniquely determined.

19



o The theorem does not require algebraic closedness, but fails badly in characteristic
dividing |G]|.

Proof. We use quick lemmas.

3.3.4. Lemma. Suppose V', W < V are subrepresentations with W irreducible. Then
WnV' ={o}orW< V.

Proof. Let R = Wn V', which is a subrepresentations of W. If R = {0} we are done.
Otherwise, by irreducibility, W = R < V'. O

3.3.5. Lemma. Every sum Y. W; of irreducible subrepresentations W; < V is the direct
sum of a subfamily J € I.

Proof. Let S = Y ; W; be a sum of irreducible subrepresentations. Let ] € I be a
subfamily whose sum is direct, and maximal with respect to this property. (This
exists by maximality principles 4 la Zorn.) Now let $" = 3>, W; = @; W;. We claim
that §' = S.

If it is not the case, there is i € I with W; £ §’. By Lemma 3.3.4, W; n S’ = {o}.
So Ju {i} is a family properly containing J, whose sum is direct: a contradiction. So
S =§" = @; W; is the direct sum of a subfamily. O

3.3.6. Lemma. Suppose that all W; for i € I and W are irreducible subrepresentations
of V, with W < ¥} W;. Then W is isomorphic to one of the W;.

Proof. By Lemma 3.3.5, up to taking a subfamily we may assume }.; W; = @; W;.
So we may consider the projectors 77; onto W; parallel to the other summands. Since
W % {o}, there is i € I such that m;(W) # o. We fix one such and let f be the
restriction 77;)y: W — W;. Then f # o. Now both W and W; are irreducible, so by
Schur’s Lemma f is an isomorphism W ~ W;. O

(i) Immediate from Lemma 3.3.6.

(ii) By Maschke’s theorem, V is a sum of irreducible representations. Each lies in
some Isoy (T), whence V = Y repr, (6)-
We prove that the latter sum is direct; suppose not. Then there are distinct types
To, Th, ..., T, with n > 1 such that Isoy (T,) n (37, Isoy(T;)) # {o}. So there
is W € Cp,(T,) contained in Y/, Isoy (T;). By Lemma 3.3.6, T, is isomorphic
to one summand of some Isoy (T;), viz. T, ~ T}, a contradiction.

(iii) Let W, € Cpy, (T). Then f(W,) <V, is G-invariant, hence a subrepresentation.
By Schur’s Lemma, either f(W;) = {o} or f(W,) ~ W, ~ T. So in either case,
(W) < Is0u,(T).

(iv) Immediate from Lemma 3.3.5. L]

3.3.7. Corollary (and definition). Let G be a finite group and K be a field of coprime
characteristic. Let V be a K-linear, finite-dimensional representation. Then there are well-
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defined integers ny = ny (V') for T € Irrg (G) such that:

Ve @ T [K[G]-Mod].
Telrrg (G)

The integer n (V') is called the multiplicity of T in V.

Proof. The existence is a reformulation of Theorem 3.2.1 (iii). Write V as a direct sum
of irreducible representations; now sort them according to their isomorphism types.
It remains to show that the integers do not depend on the decomposition. Suppose
there is an isomorphism of representations f: @ T"" ~ @ T™". By Theorem 3.3.2 (iii),
it restricts to isomorphisms fr: T"" ~ T™7 for each T € Irrg (G). But then, ny dim T =
mpdim T, so nt = mr, as wanted. ]

Hence a finite-dimensional, K-linear representation of a finite group over a field of
coprime characteristic is entirely determined by the number of ‘atoms’ (viz. irreducible
representations) of each type in it.

3.3.8. Remark. Corollary 3.3.7 can be used to give a proof in coprime characteristic
that a representation V is irreducible iff V* is. (This holds with no assumptions on the
characteristic: see exercise 2.5.5.)

Suppose V is irreducible and write V* ~ @1 T"" [K[G]-Mod]. Then V ~ V** ~
@ (T*)"" [K[G]-Mod]. But V is irreducible, so there is only one term, and it has
multiplicity 1. Hence V* is irreducible. The converse also uses V** ~ V [K[G]-Mod].

In § 5, exercise 5.6.6 will give an explicit formula for the projector 77 onto Isoy (T

parallel to the sum of the other isotypical components.

3.4 [Exercises
3.4.1. Exercise. Let Hg = {+1, i, +j, +k} be the group of basic quaternions, satisfying:
i*=j=k*=-1, ,ij=k=-ji, jk=i=-kj, ki=j=-ik.

Let V ~ R* have basis 1, i, j, k, and extend linearly to define an R-representation of Hy in
V. Prove that it is irreducible, and determine Endgg) (V).

3.4.2. Exercise. Let G be a finite group and p € Irrc(G). Show that if p is injective, then
Z(G) is cyclic.

3.4.3. Exercise. Let p be the permutation representation of G = Sym(3), viz. the permuta-
tion action on V = Ce, ® Ce, ® Ce,. Check that L = (e, + e, + e;) is G-invariant. Give a
G-invariant complement. (Exercise 3.4.5 gives an instant method.)

3.4.4. Exercise. Return to Theorem 3.2.1. Suppose char K = o and dim V' < oco. Prove (iii)
by induction on dim V without using (ii).

3.4.5. Exercise (an alternative proof of Maschke’s theorem over C). Let G be a group
and V be a finite-dimensional, complex, linear representation of G. Let [-|-] be a complex
scalar product, viz. a sesquilinear, Hermite-symmetric, positive definite form V x V — C.
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1. Let [x]y] = 6] LgeG [gx|gy]. Prove that this is a complex scalar product.

2. Prove that for x,y € V and g € G one has [gx|gy] = [x|y].
3. Deduce a proof of Maschke’s theorem over C.

4. Extra question: if V is irreducible, show that all G-invariant complex scalar products
are multiples of [-|].

3.4.6. Exercise (failure of Maschke in native characteristic). Let G = C, be the cyclic
group with two elements. Let it act on V ~ F> by taking the generator to:

11
o 1)’
Prove that F, e, is G-invariant, but has no G-invariant complement.

3.4.7. Exercise. Let G be finite. Show that if all irreducible, linear complex representations
are 1-dimensional, then G is abelian.

3.4.8. Exercise. Determine which lemmas and which ads of Theorem 3.3.2 remain true
o if char K divides |G|, o if G is infinite.

4 Characters

Abstract. The definition of a character ($ 4.1) first looks ‘too simple to be useful,
and yet is extremely powerful. Character tables encode the values of the irreducible
characters. Characters are typical examples of class functions (§ 4.2). We then de-
scribe characters of representations obtained by the usual algebraic constructions
(§ 4.3).

4.1 Characters and character tables

4.1.1. Definition. Let G be a group and K be a field. Let p: G — GL(V) be a finite-
dimensional, K-linear representation. Its character is the map

X0 G = K
g = trp(g),

where tr denotes the trace. (When there is no ambiguity on p, one simply writes y.)
4.1.2. Remarks.
o A character need not be a morphism!

« Since the trace is invariant under conjugation, so is any character, viz. one has
x(g7*hg) = x(h). In particular, one really computes y(y) for y a conjugacy class
of G.

« Characters are especially useful if K is algebraically closed (so we have eigenval-
ues) and has coprime characteristic o (so we have complete reducibility). One
cannot imagine at first the strength of character theory over C.
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o It follows immediately from Corollary 3.3.7 that in coprime characteristic, for
every character yy there are integers ny for T € Irrg (G) such that:

Xv= >, NnrXT.

Telrrg (G)

« Interestingly enough, the n’s above are integers of K, meaning that in positive
characteristic p they are to be considered modulo p. Thus characters can, at best,
detect multiplicity modulo the characteristic.

For instance, the character of trive T? is Xtriv+ PXT = Xiriv- But as representations,
triv # (triv @ T?). So parts of character theory even require char K = o.

4.1.3. Lemma. Suppose K < C. Let G be a finite group and p: G -~ GL(V') be a K-linear
representation of G with character y. Then for all g € G:

x(&7) = x(g):
Proof. We know that p(g) can be brought to diagonal form, say one of its matrices is
diag(A,,...,4,). Hence p(g™") = p(g)™" is diagonalisable to diag(A,”, ..., 1,"). But
each A; is a complex root of unity, so A;* = A;. Therefore one of the matrices of g™" is
diag(\,,. .., A,), with trace:

x(g™) =trp(g™) = trdiag(hi,.. s An) = 254 = Y hi = trp(g) = x(g). O

4.1.4. Definition.

o An irreducible character is the character of an irreducible representation.

We let Irrk (G) be the set of irreducible characters. Because characters will de-
termine representations (at least in the irreducible case over good fields), this does
not conflict with the same notation for the set of irreducible representations.

o 'The character table of a finite group G over K is the table constructed as follows:
- listall conjugacy classes y,, ..., y, of G, with respective number of elements
say dy,...,d;.

- list all irreducible characters y;,..., yr of G over K. For good K, it is the
same number r (Theorem 5.1.1).

- Now tabulate values as follows:

G |yldl ... yrlxd]
X1 Xl()’l) Xl()’r)
xe | xe(y) o xe(yr)

When not otherwise specified, character tables are usually given over C (or Q).

4.1.5. Example. Here is the character table of Sym(3).

[10a] (12) ] (123) [x2]

Xtriv 1 1 1
Xe 1 -1 1
X 2 (¢] -1



4.1.6. Remarks.

o Such a table does not really give the representations themselves, nor the group
structure.

For instance, the dihedral group D,., and the basic quaternion group Hjg have the
same character table over C, although they are non-isomorphic.

« 'This cannot happen with finite simple groups, but we know this because we have
the full list of them. Actually the finite simple groups are determined by much
less information than their character tables—again because we have the list.

» However character tables encode much information on finite groups. Actually
some properties can be ‘read off” character tables; see exercise 7.4.2.
4.2 Class functions
Invariance under conjugation begs for a definition.

4.2.1. Definition. A class function (also: central function) is a function a: G — K satis-
fying: (Vg)(Vh)(a(g7hg) = a(g))-

More algebraically, these are functions which factor through the conjugation rela-
tion. For a class function & and a conjugacy class y, it makes sense to write a(y).

4.2.2. Lemma (and notation). Let G be a finite group and K be a field of coprime char-
acteristic.

(i) Class functions form a K-vector subspace of the space K¢ of all maps G — K.
We denote it by Cx (G) (or simply C if there is no ambiguity on K or G).

(ii) dimg Cx(G) is the number of conjugacy classes of G.

(iii) Cx bears a bilinear, symmetric, non-degenerate form given by:

(alB) = 1= > a(e7)B(g):

|G| geG

(iv) IfK = C, then Cc also bears a complex scalar product, given by:

L S a(@)B(g)-

geG

(v) WhenK < C and y,, x, are characters, both coincide: (y,|x2) = [xalx2]-

Actually (i) and (ii) do not require coprimality of the characteristic (as seen from the
proof). But dividing by |G| certainly does.

Proof.
(i) is clear.

(i) For y € G a conjugacy class, let 1, be the indicator function, viz. the function
which is 1 on y and o elsewhere. This map is in C. Let B = {1, : y a conjugacy
class}. We claim that it is a basis of Cx(G). Indeed, suppose 3 1,1, = o in
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obvious notation. Let § be a conjugacy class and let g € &; then Y 1,1,(g) =
As = o, which applies to every class. Now if « € C, then for every class y let
A, = a(y). Then a and ¥ A,1, agree everywhere.

(iii) Bilinearity is clear. Symmetry follows from reindexing:

@geiéﬁ(g")a(g) = @g;ﬁ(g )a(g ™) = (alB).

(Bla) =
We prove non-degeneracy. Let a € Ck be (|-)-orthogonal to all class functions.
Let y be a conjugacy class; then so is y™ = {g™" : g € y}. Let f = 1, be the
indicator function of y™*. Then since « is a class function:

o=|G|- (fla) = > flg)alg) = D 1,-(g7)a(g) = #y-a(y).
geG g¢G

Now #y =[G : Cg(g)] for any g € y, and therefore #y divides |G|. In particular,
#y is coprime to the characteristic (if positive), and it follows a(y) = o. This
holds for any conjugacy class: so « is zero globally.

(iv) Actually the formula defines a complex vector space on all of CC, as easily seen.

Since Cc is a vector subspace, the claim follows.

(v) Clear since by Lemma 4.1.3, x(g™") = x(g) for a character. O

4.2.3. Remarks.

4.3

There are other conventions (inverse on the right, complex-conjugation on the
right). What matters is the resulting theory, viz. side-invariant phenomena.

Over C there are two natural pairings of class functions: (:|-) and [+|-]. They return
the same values on characters but need not agree on all class functions. Only the
former is symmetric; the latter is merely Hermite-symmetric.

In particular they give rise to distinct notions of orthonormality, which however
agree on characters.

Analysts will favour working with [+|-], and algebraists will prefer (-|-).

Characters and algebraic constructions

§ 2 gave methods how to obtain new representations from existing ones. The proposition
below will describe the consequent behaviour of characters. It builds on the principle
that isomorphic representations have equal character.

4.3.1. Lemma. Let G be a finite group and K be a field. If p, ~ p, are isomorphic finite-
dimensional representations, then x, = ..

Proof. By definition, there is an isomorphism f:p, ~ p,, viz. a linear isomorphism
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Vi = V, such thatfor all g € G:

v, L,

P (g)l J,PZ(g)
f

Vi — V..

Another way to write it is p,(g) = f'p,(g)f. Taking matrices if necessary, one sees
trp,(g) =trp,(g) forall g € G, that s, y, = .. O

4.3.2. Remark. A converse will be seen: in good cases, representations with equal char-
acters are actually isomorphic (Theorem 5.1.1).

We return to the constructions of § 2 and determine their characters.

4.3.3. Proposition. Let G be a group and K be a field. Let (V,p),(Vi, p1), (Va, p.) be
K-linear, finite-dimensional representations with characters y, X1, X»-

(i) The character of p, ® p, is X1 + Xa-

(i) 'The character of p* is x*(g) = x(g™"). In case K < C, this also equals y(g).
(iii) The character of p, ®k p, is X1 Xa-
(iv) The character of Homg (p, p») is X; X»- In case K < C, this also equals ¥ - Xa.

Proof.

(i) By definition, p, @ p, is the natural action of G on V, ® V,, viz. G acts on V, via
p, and on V, via p,. So:

Xpvip. (&) = tr(ps @ p2)(g) = trpi(g) +trp.(g) = x(g) + x2(8)-

(i) By definition, p*(g): V* — V™ takes a linear form ¢ to the linear form v ~
¢(g™" - v). Working in coordinates if necessary, if 3 is a basis of V then:

Matg- p*(g) = (Matg p(g7™))",
50 x*(g) = x(g™"). In case K < C, this also equals y(g) by Lemma 4.1.3.

(iii) By definition, p, ® p, is the tensor action of G on V; ® V,, viz. G actson v, ® v,
by (p1 ® p2)(g) (v ® v2) = p,(g) (1) ® p,(g)(v,). Working in coordinates if
necessary,

Xpep. (&) =tr(pr ® p.)(g) =trpi(g) - trp.(g) = (prp2)(g)-

(iv) Recall from Proposition 2.4.4 (ii) that there is an isomorphism of representations
(viz. a K[ G]-isomorphism):

Homg[G1(Vi, V,) = V" @k V,  [K[G]-Mod].

By Lemma 4.3.1it is enough to give the character of the right-hand, and the claim
follows from (ii) and (iii). O
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4.3.4. Remark. Thus the character of T" is n yr. If K has positive characteristic dividing
n, this is the zero map. Similarly, triv @ T" has character yiy. This simply tells us that
the expected function:

{finite-dimensional K-linear representations} — {characters}

cannot be injective. This is as deep as saying that in positive characteristic, the base field
does not have infinitely many integers.
4.4 Exercises
4.4.1. Exercise.
1. Compute yreq for any finite group G.
2. Generalise t0 Xperm: prove that yperm(g) = #{x € X : gx = x}.

3. Let G = Sym(3). Inside perm, consider the line L = (e, +---+e;). Let V bea
G-invariant complement of L inside perm. Give yv.

4. Same question when n = 4.
4.4.2. Exercise. Give the character table of the cyclic group C,, over C.

For the next exercises, admit that the number of complex, irreducible representa-
tions of a finite group equals the number of conjugacy classes (Theorem 5.1.1).

4.4.3. Exercise. Give the character table of Sym(3) over C.

4.4.4. Exercise. Give the character table of Alt(4) over C. Hint: act on a regular tetra-
hedron in the usual 3-dimensional space.

5 Orthogonality relations

Abstract. The main Theorem (§ 5.1) says that irreducible complex characters of a
finite group form an orthonormal basis of the space of class functions. There are
numerous consequences, such as: every finite-dimensional, complex representa-
tion is determined by its character, or: every irreducible, complex representation
occurs in the regular representation with multiplicity equal to its dimension. The
proof builds on a simple lemma giving the dimension of the subspace of fixed points
of a representation (§ 5.2). Orthonormality is then proved in § 5.3 and generation
in§s5.4.

5.1 'The main theorem

We fix a finite group G and a good field K. Recall from § 4.2 that a K-valued class
function on a group G is a map a: G — K such that (Vx)(Vy)(a(x”) = a(x)).

« Class functions form a K-vector space Cx(G), and dimg Cx(G) = # Conj(G),
the number of conjugacy classes of G.

o Characters are class functions.
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¢ Cx(G) bears a natural bilinear, symmetric, non-degenerate form:

(alf) = 17 2 (g B(e)

g¢G
o IfK = C, then Cc(G) also bears a natural complex scalar product:

[«]B] = ‘G| > a(g)B(g).

geG

« These agree on characters, so for that matter one may work with either.
5.1.1. Theorem. Let G be a finite group and K be a good field.

(i) Irrx (G) forms an orthonormal basis of the space of class functions on G. In partic-
ular, #Irrg (G) = dimg Ck (G) = # Conj(G).

In case K < C, the same holds with respect to [-|-]-orthonormality.

(ii) Let V be a K-linear, finite-dimensional representation. Then, as functions from G
to K, one has yv = ¥ cirer () (XvIxT) X7

(iii) Every irreducible representation is determined by its character. If char K = o, then
every finite-dimensional representation is determined by its character.

(iv) Let reg be the regular representation of G over K. Then reg ~ @ rerrry () TdimT,
5.1.2. Remarks.

« Asaconsequence of (iii), it is safe to let Irrx (G) be the set of irreducible characters.
Likewise, it is safe to write Isoy (y) instead of Isoy (T).

o The general case in (iii) fails in characteristic p > o (even over good fields).
Indeed, for any representation W, letting V' = triv @ W? one gets yy = triv. But
V ¢4 triv [K[G]-Mod].

« Another way to write (iv) is:

Xeeg= 2, x(1)-x

xelrrg (G)

This immediately implies:

|G| = dimreg = xreg(1) = Z x(1)%
xelrrg (G)

so |G| is a sum of # Conj(G)-many squares.

5.1.3. Remark. Although Conj(G) and Irrk (G) have the same number of elements (so
they are equipotent), there is in general no distinguished bijection between them.

An interesting exception is the symmetric group Sym(n) where one can attach to
each conjugacy class an irreducible character, in a systematic way. This is the theory of
Young tableaux.*

4For example, see § 28 in the Curtis-Reiner book (‘Further reading’).
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5.2 Trivial spaces

5.2.1. Definition. Let V be a K-linear representation of a group G. The space of fixed
vectors, or the G-trivial subspace of V, is the subspace:

Cv(G)={veV:(VgeG)(gv=v)}.

It should be obvious that Cy (G) is indeed a linear subspace. An alternative notation
is V9; we avoid it.

5.2.2. Lemma. Let G be a finite group and K be a field of coprime characteristic. Let
V, Vi, V, be K-linear, finite-dimensional representations with character y, x1, Xa-

(i) dimg Cy(G) = g Zgec X(8)-

(i) dim Homg[g)(Vi, V2) = (xalxa)-

One should be careful that these are formulas in K. The right-hand could be o for a
bad reason; typically if the left-hand is divisible by the characteristic.

Proof.

(i) Consider the following linear endomorphism of V:

1

=@Zg-

geG

4

For h € G one has:
1 1
hom=— > hg=— hg=m.
6 %" e &,
It follows that 7> = ﬁ Yheg hm = ﬁ Y heg 7 = 7. So 7 is a linear projector. Let

us determine its image. If v € Cy(G) then n(v) = v. Conversely, if v € V, then
for any h € G one has hn(v) = n(v), so n(v) € Cy(G).

Thus 7 is a projector with image Cy (G) (we do not care for its kernel). Now for
any projector, tr 7 = dim im 7; here this gives:

dim Cy(G) =dimimn =trm = — Yotrg= — > x(g).
|G| geG |G| g¢G

(ii) Consider the K-linear representation of G:
Homg (V;, V),

whose character is x; y, by Proposition 4.3.3 (iv). We investigate the G-trivial
space.

A K-linear map f:V; — V, is invariant under the action of G iff g - f = f iff
pa(g)o fop(g™) = fiff p,(g) o f=fopi(g)iff fisG-covariant. Hence:

Chiomy (v,,v,) (G) = Homy[61(V3, V2).
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The dimension of the above is given by (i):

dim Homg1(Vi, Va) = 7= 2 X1 (&) x2(8) = (lxz) - =

|G| geG

5.3 Orthonormality

5.3.1. Lemma. Let G be a finite group and K be a good field. Let V,, V, be two K-linear,
finite-dimensional representations with characters x,, X..

1 ifvi=2V,

(i) If V, and V, are irreducible, then (x,|x.) = { o othermise

(ii) Every irreducible representation is determined by its character. If charK = o, this
extends to every finite-dimensional representation.

(iii) The multiplicity of an irreducible representation T in reg is exactly dim T, viz.:

reg ~ @ Tdim T‘
Telrrg (G)

Proof.
(i) Recall from Lemma 5.2.2 (ii) that dim Homg[61(Vi, V2) = (xilx2)-

o If V; and V, are two non-isomorphic, irreducible representations, then
Homgg)(V;, V,) = {0} by Schur’s Lemma, so (x,[x.) = o.

o If V; and V, are irreducible and isomorphic, then on the one hand y, = y,,
and on the other hand, always by Schur’s Lemma, Homg g (i, V) 2K

is 1-dimensional. So (y,|x.) = ﬁ -

(ii) The irreducible case is trivial from (i). Now suppose charK = o. Let V be a
finite-dimensional representation V; then by Corollary 3.3.7, there are integers
nt such that:

v p T1".
Telrrg (G)
Then yv = ) nryr where yr is the character of T. By linear independence of
the orthonormal family, yv completely determines the elements n € K.

Now the ring morphism Z — K is injective in characteristic o, so yy even de-
termines the integers ny € Z. It therefore determines the isomorphism type.

(iii) A priorireg =} n,x where the sum ranges over irreducible characters. We now
determine the integers n,. By orthonormality, for any irreducible y one has:

(regly) = 35 (mudlw) = 0 mydpy = ny (yly) = ny.

xelrrg (G) xelrrg (G)

Now reg is the permutation character attached to the regular representation: if
g # 1, then g e, = eg,. So the matrix coding the action of g is a permuta-
tion matrix avoiding the diagonal, meaning reg(g) = o. In particular, for any
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character y one has:

1 1

(regly) = 1= 2 reg(g7)y(g) = ;~reg()y (1) = v (1).
Gl ¢G Gl
Applying to irreducible x, we get n, = (1) = dim y, as wanted. O

Notice that the above also holds of [-|-] when working over (a subfield of) C.
5.3.2. Remarks.

o Lemma 5.3.1 can be used to give a quick proof in characteristic o that a finite-
dimensional representation V is irreducible iff V* is. (This is true in any charac-
teristic, but the general argument is more geometric: see exercise 2.5.5. Also see
Remark 3.3.8.)

Indeed, V is irreducible iff (yv|yv) = 1. This is because a priori, V ~ @1 T"7;
now (yv|xv) = X n% in K. But in characteristic o, this can equal 1 iff there is a
unique non-zero #nr, which equals 1. This proves the claim.

Finally notice that (x7|x7) = (xvixv)-

« The above proof does not work in positive characteristic p > o (even over a good
field). Indeed, for V = triv @ T? one gets (yv|yv) = 1 but V is certainly not
irreducible. The reason is that here, (yv|xv) is not an absolute integer € Z, but
an element of the prime field of K.

5.4 The space of class functions

We need one last fact to prove Theorem 5.1.1.

5.4.1. Proposition. Let G be a finite group and K be a good field. Then Irrg (G) spans
Ck(G).

Proof. Let a: G — K be a class function. We shall prove that a = ¥, ¢+ (6) (xla) x-
Considering the difference a = ¥, 1,1k () (X&) x it suffices to prove that a class func-
tion orthogonal to all irreducible characters is trivial.

So let a be such. Let V = reg be the regular representation and

1

UNTeT

Z a(g)g € Endg (V).
g¢G

Since « is a class function, one can easily show that f is G-covariant (see exercise 5.6.4),
hence f € Endgg(reg).

Let W < reg be any irreducible subrepresentation, with character y. By construc-
tion, W is f-invariant; moreover f remains an endomorphism of W. So by Schur’s
Lemma there is A € K such that fi;; = AI1dy. Then:

. 1 *
Adim W =tr fiy = @ Z a(g) trgw = (x"|a).
geG ——

=x(g)

Now x* is an irreducible character, so by assumption the above is o; hence A = 0 and
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ﬁW = 0.

So f vanishes on all irreducible subrepresentations of reg. The latter is a direct
sum of irreducible representations by Maschke’s Theorem, so f = o globally. Finally
fle) = ﬁ Ygec ®(g)eg = 0, meaning that « is identically o. We are done. O

5.5 Column orthogonality

Orthogonality has uncountable consequences. A useful tool is provided by the following
lemma.

5.5.1. Lemma (column orthogonality). Let G be a finite group and K be a good field.
Then for any two conjugacy classes y,,y,, one has:

Gl ey =
> X()’fl))((yz):{ L iy, =y,

el (G) o otherwise.

Proof. We use matrix theory. Let A = (x(y)),., be the character table. We also need
the version with inverses: B = (x(y™')).y- Last, let ] be the diagonal matrix:

#71
IG]

#yr
€]

By orthogonality, the ( x;, x,)-entry of the product BJA" is:

N 1 .
BIA) = S O Z ) == Y@ = 8
yeConj(G) |G| |G| g€G

Hence BJA' = I is the identity matrix. This implies AJB’ = I, and BA = J'. The latter
gives, at (y,,7,):
|G|

Z x(n ) x(y2) = (BtA)ynyz = (]71)%% =0y, - O
xelrrg (G) #1

5.6 Exercises

5.6.1. Exercise. Let V be an irreducible representation and L be a 1-dimensional repres-
entation. Prove that V ® L is irreducible.

5.6.2. Exercise (column orthogonality). Let G be a finite group and K be a good field.
1. Prove that x, y are conjugate iff (V x € Irrc (G) ) (x(g) = x(h)).
2. IfK < C, prove that the square matrix (x(y) -/ %) is unitary.

5.6.3. Exercise. Let G be finite and V be a linear, complex, irreducible representation.
Prove that (dim V)* < [G : Z(G)].
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*)

5.6.4. Exercise. Let a: G — K be any map. For V a K-linear representation of G, let:

1

foc,V =T
|G|

Y a(g)gV - V.
geG

Prove that the following are equivalent:
(i) « is a class function;
(ii) for every representation V, f, v is a G-covariant endomorphism of V;
(iii) fa,reg is a G-covariant endomorphism of reg.
5.6.5. Exercise. Let G be a finite group and K be a good field of positive characteristic. Let

V, V' be finite-dimensional representations with the same character. Prove that there are
natural integers n and n’, with T € Irrg (G) such that:

o foreach T, at least one of nt or n’ is o,
o for each T, both nt and n’;. are divisible by charK,
o one has:

Vo@PT' =V e@T" [K[G]-Mod].
T T

5.6.6. Exercise. Let K be a good field. Let V be a K-linear, finite-dimensional represent-
ation and T € Irrg (G). Prove that the projector onto Isor (V') parallel to the other terms
Dot Isor (V) is given by:

dim T
|G|

T =

> xr(g g

geG

6 Computing character tables

Abstract. A problem session.

We give a couple of character tables over C. For each, I try to give a flow of natural
arguments to determine it, and then a flow of natural comments on it. But there are
many approaches to the same problem, so some of the remarks could be used in the
determination process. The only way to read the notes for this section is by actually trying
to construct the tables yourself.

Sym(1)=Alt(2)

« There is nothing to say before or after.

Sym(1) | 1[x1]

triv 1
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Alt(3)
o Alt(3) is abelian.
« By abelianity, conjugacy classes have one element, so there are three of them.

« By abelianity again, the irreducible representations have dimension 1, hence are
simply morphisms Alt(3) — C*. We need three of them (including triv).

o For a non-trivial morphism Alt(3) — C*, the image of (123) in C* must have
orders3. Letj=e .

Alt(3) ‘ 10x1]  (123) [x1]  (132) [x1]

triv 1 1 1
X 1 j J:
¥ 1 J J

« Here the orthogonality relations essentially reduce to: 1+1+1 = 3,and 1+ j+j* = o.

o Observehow x; = v, = 1, ® xi-

Sym(3)
o There are three conjugacy classes and we easily find their cardinalities.
o Therefore there are three irreducible representations.
« In addition to triv, there is the signature representation sign. We miss one more.

o Let d be its dimension. Since (dim triv)* + (dimsign)> + d* = | Sym(3)| = 6, the
last irreducible representation is 2-dimensional. Call it y,.

« One can predict that y, is real-valued, and vanishes on (12). Indeed:

- By exercise 2.5.5 or Remark 5.3.2, x} is an irreducible, 2-dimensional repres-
entation. But only y, is irreducible and 2-dimensional, so y, = x,, which
means it is real-valued.

- X, ®sign is an irreducible, 2-dimensional representation (exercise 5.6.1), so
X2 ®sign = x,. But sign((12)) = -1, s0 y,((12)) = 0.

One could use orthogonality to find y,((123)), but geometry is more natural.

o Let perm, be the permutation representation, which is 3-dimensional. Clearly
perm, (1) = 3, perm,((12)) = 1, and perm, ((123)) = o. Thus, (perm3|perm3) =
s(9x1+1x3+0x2) = 2. So perm, is the sum of two irreducible representations.
One of them must have dimension 2: thus y, is a subrepresentation of perm.,.

« Ofcourse e, +e, +e; € perm, is fixed by Sym(3), so perm, contains a copy of triv.

« By the above, y, = perm, - triv, and we get the table.

Sym(s) ‘ 1 [x1] (12) [x3] (123) [x2]

triv 1 1 1
sign 1 -1 1
X 2 o -1

34



Let us check orthogonality: e 1> x 1+1* x 3 + 1> x 2 = 6 expresses (triv|triv) = 1; o
1® x1+ (—1)*x3+1* x 2 = 6 expresses (sign |sign) =, e1x1+(-1) x3+1x2=0
expresses (triv|sign) = o; » and so on.

As predicted, x, = x5 = x» - sign.

Alt(4)

One should be careful with conjugacy classes. Although (123) and (132) are con-
jugate in Sym(4), the Sym(4)-conjugacy class ‘breaks’ into two when going down
to Alt(4). This produces two Alt(4)-classes of the same size. With this in mind,
or just remembering Alt(4) ~ C2 % C,, we find 4 conjugacy classes and count their
elements.

There are 4 irreducible representations and triv is one of them. (For Alt(n), by
definition sign = triv.) We need three more.

Let K = {1,(12)(34), (13)(24), (14)(23)} < Alt(4), the (very important) sub-
group of bitranspositions. It is normal and Alt(4)/K has order 3, hence is abelian.
Now each representation of Alt(4)/K gives one of Alt(4) (by letting K act trivi-

ally).

This way we gain two 1-dimensional representations of Sym(4): just lifting’ those
of Sym(4)/K ~ Sym(3). Call them y, and y,.

We need one more. Its dimension satisfies 3 + d* = 12, so the dimension is 3.

Of course it is perm, — triv, which is indeed irreducible by computation.

Alt(4) | 100l (123) xal  (132) [xa]  (12)(34) [x3]

triv 1 1 1 1

X 1 j J 1

vi=x | 1 J: j 1
X3 3 o) o) -1

Orthogonality can be checked, or simply deduced. Indeed, since y; = perm, —triv
is irreducible, it must be the missing irreducible character. By orthogonality, we
know it is orthogonal to the others.

Here is the geometric realisation of ;.

Consider the tetrahedron centered at the origin, whose vertices are:
vw=(11), v,=(,-1,-1), v;=(-1,1,-1), v,=(-1,-1,1).

Alt(4) acts on this tetrahedron. It is a good exercise to explicitly write the matrices
in {e,, e,, e;}, but we simply determine the character—in the basis {v,,v,,v;},
where computations are easy.

- (123) is a circular permutation of the same basis; the trace is 0. The same
applies to its inverse.

- Now (12)(34) swaps v, and v,, but takes v, to v, = —=v, = v, —v,. So the trace
is -1

And we retrieve ;. This geometric argument gives it directly, and not as a quo-
tient of perm,,.
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Sym(4)

There are 5 conjugacy classes.

We already know two irreducible representations: triv and sign.

Now perm, - triv is again irreducible, and we can compute its character y;.

Then y; = x;, but x;sign # y;, so we just produced a fourth irreducible repres-
entation.

Computation reveals that the missing one has dimension 2. One can predict y, =
X (real values) and y, sign = y, (so it vanishes where sign = —1). One could then
use orthogonality to compute the missing values.

Now K = {1,(12)(34), (13)(24), (14)(23) } remains normal in Sym(4). This is
most remarkable as normality is not transitive in general. Here, K = Alt(4)" and
Alt(4) = Sym(4)’ are so-called characteristic subgroups, and being characteristic
is transitive.

Then Sym(4)/K ~ Sym(3). It suffices to extend the irreducible 2-dimensional
representation of Sym(3) by letting K act trivially. Now in any isomorphism
Sym(4)/K ~ Sym(3), the image of a 4-cycle becomes a transposition, while a
bitransposition becomes the identity: this gives the values of y,.

Sym(4) 10x]  (12) [x6] (123) [x8] (1234) [x6] (12)(34) [x3]
1 1

triv 1 1 1

sign 1 -1 1 -1 1

X2 2 o -1 o 2

X3 3 o -1 -1
Yy =)x; ®sign | 3 -1 o 1 -1

 Here again, the geometric interpretation of y, is by acting on the tetrahedron.
In the notation above, (12) swaps v, and v,, but fixes v; (and v,). So x;((12)) =
1. Likewise, (1234) takes v, to v,, v, to v;, and v; to v, = —v, — v, — v5; thus
x:((1234)) = —1.

« The geometric interpretation of y, is different. Since K < Sym(4), there is a con-

jugation action on the set X = Kx{1}. Itis transitive. This gives us a 3-dimensional
permutation representation.

Whenever one has a permutation representation, the vector ) y e, is fixed by G,
so here perm, contains (at least) a copy of triv.

One checks that x, = perm — triv.
Alt(5)

o Since Alt(s) is simple, the situation is completely different now (and interesting
at last).

o In Alt(s), (123) is conjugate to its inverse (132). One may not use (23) ¢ Alt(s) to
perform this conjugation, but (23)(45) € Alt(s) does as well.
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However, (12345) is not Alt(s5)-conjugate to its inverse (15432): the Sym(5)-class
of 5-cycles breaks into two Alt(5)-classes of equal size.

In addition to triv, one easily finds the irreducible character perm — triv; it has
dimension 4. We need three more, and number theory gives dimensions 3, 3, 5.

There are no subgroups of index 3 or 4, so actions on coset spaces are limited.
Also, the action on cosets of Alt(4) < Alt(s) is equivalent to perm: this gives
nothing new.

An educated guess and 5-dimensionality suggest to look for a permutation rep-
resentation on 6 elements, and Sylow theory provides one.

Alt(5) has exactly 6 Sylow 5-subgroups, all of order 5.

Let P = ((12345)); this is a Sylow 5-subgroup. Then [G : Ng(P)] = 6 so Ng(P)
has order 10.

This implies that in the conjugation action, an element of order 3 fixes no Sylow
5-subgroup.

|NG (P)| = 10 also implies that P is acted on by (the group generated by) a bitrans-
position; in abstract terms, N (P) ~ C x C,.

The bi-transposition (12)(34) fixes exactly two Sylow 5-subgroups: the one gen-
erated by (12354), and the one generated by (12453 ). (This can be seen because it
inverts said generators.) But it fixes no other Sylow 5-subgroup and this remains
to be seen.

A good approach is by Burnside’s classical ‘fixed point formula. For any finite
group action G ~ X, one has:

D #Fixg= ) 1g4-y = . |Stabg(x)].
G

(G,X) X

Here, the identity fixes 6 elements, a 3-cycle fixes o, a 5-cycle fixes 1 (because if
a 5 element normalises a Sylow 5-subgroup, it is already inside). There remains
15- # Fix(12)(34) = 60 — 6 — 12 — 12 = 30, and therefore # Fix(12)(34) = 2.

This gives us permg,;, and we can check that x; = permyg,, — triv is irreducible and
5-dimensional.

We miss two more irreducible characters, say ¢, and ¢;. We do not know whether
they will be complex-conjugate, or if each will be sel-dual (real-valued). We then
use brute force: orthogonality relations.

Let a = ¢,((123)), b = 9;((12)(34)), ¢ = ¢5((12345)) and d = ¢,((15432)).
Define a’,b’, ¢/, d’ similarly.

By orthogonality:

o = |G| (triv|p;) = 3 + 20a + 15b + 12¢ + 12d
0= |G| (x4]@;) = 12 + 20a — 12¢ — 12d

0 = |G| (xs|¢;) =15 — 20a + 15b.

This immediately yields a = o, then b = —1,and c +d = 1.
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o We also have:
60 = |G| (@3]p3) = 9 + 15 +12¢> + 1247,

which gives ¢* + d* = 3.

o Together with ¢ + d =1, this solves into:

{c,d} = {l_ﬁHs} ={c.d'},

2 2

and we finally get the character table.

Alt(s5) | 1[x1]  (123) [x20] (12)(34) [x15] (12345) [x12] (15432) [x12]
triv 1 1 1 1 1
b | 3o -1 = =
% |3 o -1 =2 =2
X4 4 1 o -1 -1
xs 5 -1 1 0 o)

« Although ¢, and ¢; are self-dual, they are indeed related by a Galois action (but
not that of Gal(C/R), which is generated by complex conjugation).

+ Representations ¢, and ¢; arise in nature, as embeddings Alt(5) < SO, (R). They
are the symmetry groups of the regular icosahedron/dodecahedron.’

6.1 Exercises

6.1.1. Exercise. Give the character tables of the group of isometries of the square (viz. D,.,).
Same question with the group of basic quaternions (viz. Hg = {1, +i, £, £k}).
Note. Thus, two non-isomorphic groups can have the same character table. ©

6.1.2. Exercise. Let G be the group of isometries of the Euclidean cube. Give its character
table.

6.1.3. Exercise. Let D,., be the dihedral group of order 2n, viz. the group of transforma-
tions of a regular n-gon in the usual plane. Give its character table.

6.1.4. Exercise. Compute the character table of Sym(s). You should find:

Sym(s) | 1 (12) (123) (1234) (12)(34) (12345) (12)(345)
[x1] [x10] [x20] [x30] [x15] [x24] [x20]

triv 1 1 1 1 1 1 1
sign 1 -1 1 -1 1 1 -1
X4 4 2 1 o 0 -1 -1
X4-Sign | 4 -2 1 o o] -1 1
Xs 5 1 -1 -1 1 o 1
Xs-sign | 5 -1 -1 1 1 0 -1
X6 6 0 o} o} -2 1 o

5T have to teach this in the Village someday.
5Quite interestingly, the same cannot happen with the earlier, rival theory of group determinants. See
E. Formanek and D. Sibley, The group determinant determines the group, Proc. Amer. Math. Soc. 112(3),
Pp- 649-656, 1991.
Thanks to Baran Cetin for pointing this out.
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6.1.5. Exercise. Read something about Young tableaux and representations of the sym-
metric group.

7 Number-theoretic aspects

Abstract. From here on we shall be working in characteristic o. The kernel of a
representation is often called the character kernel (§ 7.1); every normal subgroup is
an intersection of irreducible character kernels. We then move to using algebraic
number theory in character theory (§ 7.2). A first application is a theorem by Burn-
side: the dimension of an irreducible complex representation divides |G| (§ 7.3).

7.1 Character kernels and their intersections

7.1.1. Definition. Let G be a group and K be a field. Let (V, p) be a finite-dimensional,
K-linear representation with character y. We let ker y = ker p and call it the kernel of .

This is a slight abuse of terminology since y itself is not a morphism.

7.1.2. Lemma. Let G be a finite group and K be a field. Let (V, p) be a finite-dimensional,
K-linear, representation with character .

(i) ker y is a normal subgroup of G.
(ii) Suppose that K has characteristic o. Thenker y = {g € G : x(g) = x(1) }.

Proof. (i) is completely obvious since ker y = ker p, a kernel in the usual sense. So we
prove (ii). If g € ker y, then p(g) = Idy so y(g) = trIdy = y(1). Conversely suppose
x(g) = x(1); we must prove p(g) = Idy.

As above, y(1) = trldy = dim V. Also, g has finite order, so there is an integer
k with g5 = 1, and p(g)* = Idy. Therefore all eigenvalues of g, even in an algebraic
closure, must satisfy this equation.

We finish the proof with K = C (see Remark 7.1.3). Then p(g) € GL(V) is an
element of finite order say k. Since the polynomial X* — 1 is split with simple roots,
p(g) is diagonalisable. Moreover, all its eigenvalues A,, ..., dgim v satisfy A¥ = 1, so
they lie on the unit circle. By assumption, their sum is dim V. This is possible only if
each A; = 1. So p(g) diagonalises to the identity, implying p(g) = Idy, as wanted. [

7.1.3. Remark. It is enough to have char K = o. Indeed, all coefficients and eigenvalues
of p(g) will live in an algebraic extension of @, so all in Q < C, and we safely conduct
the argument there.

However (ii) no longer holds in non-zero characteristic. As opposed to many results,
this one already fails in good fields of positive characteristic.

7.1.4. Theorem. Let G be a finite group and K be an algebraically closed field of charac-
teristic o.

(i) ﬂxelrrK(G) keI'X = {1}
(ii) Let N < G be a subgroup. Then N < G iff there is ] € Irrg(G) such that N =
Myes ker y.
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Proof.

@

(ii)

Let K = M yerrry () Ker y; an intersection of normal subgroups. We must show
K = {1}. Let us fix some notation. First, let 7x: G — G/K be the canonical
projection.

Let y € Irrg(G). Then y is the character of some irreducible, complex, linear
representation (V,, p,), viz. we have a morphism p,: G - GL(V}). Since K <
ker p, one may factor and consider:

P G/K - GL(V,).

By definition, p, = p, o k.

We claim that p, is an irreducible representation of G /K. This is obvious since
K acts trivially on V), so G-invariant subspaces are the same as G/K-invariant
subspaces.

Let x be the character of . Thus y € Irrg (G/K). Again, x = yor. It follows that
if y, # x» inIrrg (G), then §, # ¥, inIrrg (G/K). So characters  for y € Irrg (G)
are distinct elements of Irrg (G/K), meaning { ¥ : y € Irrx (G) } < Irrx (G/K).

By the orthogonality relations:

Gl= X x@'= X} @< >  y@)=IG/K]

xelrrg (G) xelrrg (G) yelrrg (G/K)
which proves |K| = 1, as desired.

The converse implication is obvious, so suppose N 4 G. Let ny:G — G/N
be the canonical projection. We consider Irrg (G/N), whose elements are the
irreducible characters v, attached to morphisms oy,: G/N - GL(V,).

For y € Irrg (G/N), let:

py =0y omN:G = GL( V).

We claim that p,, is an irreducible representation of G. Indeed, a G-invariant
subspace of V, is also G/N-invariant, hence {0} or V,, by irreducibility of oy,.

Let § be the character of p,. Thus ¢ € Irrg (G). Again, = y o my. It follows
that if y, # v, in Irrg (G/N), then §, # ¥, in Irrg(G). (This is because ny is
onto.) So J = {§: y € Irrg (G/N) } is a family of irreducible characters of G.

We claim that N =, ker y. Indeed,

(kery= () kerpy= () ker(ol,,onN):an( N keraw).

xeJ yelrrg (G/N) Irrg (G/N) Irrg (G/N)

By (i) applied to G/N, the latter intersection is {1 mod N}, so N ker y =
N (1) = N, as wanted. O

40



7.2 Algebraic integers

7.2.1. Definition. Let R be a ring with 1. An element x € R is integral (over Z) if there is
a polynomial P € Z[ X] with leading coefficient 1 such that P(x) = o.
One often denotes by O the set of integral elements of R.

7.2.2. Remark. Since R[x] is always commutative, commutativity of R is not required
for the general definition. (But one needs 1 € R for the definition.)

If R = C, one calls x an algebraic integer; we simply write O = Oc.

7.2.3. Remark. Algebraic integers are not to be mistaken with algebraic numbers, where
the condition on the leading coefficient is removed. Algebraic numbers exactly form the
field Q; but O is a proper subring of Q.

7.2.4. Example. /2 is an algebraic integer; 2 is not.

2
7.2.5. Proposition. If R is a commutative ring with unit, then Qp is a subring of R.

Proof. Clearly o, 1 are in O, and Oy, is closed under —; so we need closedness under
+and -.

7.2.6. Lemma. Let x € R. Then x € Qy, iff Z| x] is finitely generated as an abelian group.

Commutativity of R is not required in the Lemma, since R[x] always is commut-
ative.

Proof. If x is integral and P(X) = X" + a,_, X" ™" + -+ + g, € Z[X] vanishes at x,
then clearly Z[x] is generated by {1, x,...,x" ™"} as an abelian group.

We prove the converse. For n € N, let R, be the abelian group generated by
{1,...,x"7'}. Then (R,) is an ascending chain of abelian subgroups with union
Z[x]. But the latter is finitely generated, so there is n such that R,, contains all gen-
erators. Then R,,;, = R,.. This implies x"** € R,, so x is integral. O

If x and y are algebraic integers, then Z[x] and Z[ y] are finitely generated, and
so is their tensor product Z[x] ®z Z[ y], which maps onto Z[x, y]. The latter contains
Z[x + y] and Z[x - y]. It is not true in general that subgroups of finitely generated
groups are finitely generated, but this holds of abelian groups. O

7.2.7. Remark. Proposition 7.2.5 requires commutativity of R. The reason is that the
proof uses that Z[ x, y] is an image of Z[x | xZ[ y], which holds only if x and y commute.
See Remark 7.3.2.

7.2.8. Lemma. OnQ ="Z.

Proof. The converse inclusion is obvious. Suppose x = £ ¢ O where p and q are

q
coprime. Since x € ©, there is a polynomial P = X" + a,_, + --- + a, € Z[X] with
leading coefficient 1 such that P(x) = o. Multiplying by 4" one has:
Pl Hanqp" Tt + - +a0q" =0

Since p and g are coprime, one has g = 1, s0 x € Z. O
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Characters and algebraic integers.

7.2.9. Proposition. Let G be a finite group and x be a complex character. Then y takes
values in Q.

Proof. Write p(g) in diagonal form. Diagonal entries are roots of unity, hence algeb-
raic integers. So their sum y(g) is an algebraic integer. O

7.3 A Theorem of Burnside

7.3.1. Theorem. Let V be a complex, irreducible representation of a finite group G. Then
dim V divides |G|.

Proof. Let V be an irreducible representation of G and let y be its character; we wish
to prove that dim V divides |G].

Let y be a conjugacy class and f, = .., p(g): V — V. Then f, is G-covariant, so
by Schur’s Lemma there is A, € C with f, = A, Id. Furthermore, taking the trace one
has:

AydimV = 37 x(g) = #y- x(y)-
ey

Step1. A, € Q.

Verification. While it is now clear that y(y) € O and #y - x(y) € O, we even want
Ay = %(‘y/) € O. Division is not permitted so there is something to prove.
One could argue as follows in the group ring Z[G] (§ 13):
Letey = ¥ 4c) & € Z[G]. Then ey € Z(Z[G]). Thelatter isa commutative
ring, and finitely generated as a group. So e, € Oz (z(6)) < Oz[g). Thus
p(ey) = f, = Ay Idy is an algebraic integer of End(V'), and 1, € O.

But we have not introduced the algebraic object Z[G]. (Also, be careful; see
Remark 7.3.2.) We therefore give an ad hoc argument which will reappear in
Lemma 8.2.1.

Let d be another conjugacy class. For x € Glet X, 5 = {(g,h) e y x § : x = gh}.
Then:

ffo=2 2 p(gh) = X ( > P(x)) =2 #Xy.5p(x).
g€y hed xe€G \(g:h)eX, s xeG

Actually #X,, 5 depends only on the conjugacy class of x. Indeed, if x" = x” € x,
then the map (g, h) — (g”, h”) defines a bijection X, 5 ~ X ;. So the integer #X 5

is constant on x°. Therefore there are integers 71,,5 . such that:

f)/f5 = Z Z ny,(S,Sp(x) = Z ny,&,efs-

ecConj(G) x€¢ eeConj(G)

Returning to the irreducible representation, this implies:

/lyl(s = Z }’ly)g’s/\g.

eeConj(G)
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Let A be the column vector of the A5 for § € Conj(G). Let A be the matrix with
entries (1,5, ) for &, e € Conj(G). Then varying J, the equations above rewrite:

A-A =N,

So A, is an eigenvalue of the integral matrix A, and therefore a solution of its charac-
teristic polynomial. But the latter is in Z[X] and has leading coefficient 1. Hence A,

is an algebraic integer. o
Step 2. A formula for dilfl‘v.
Verification. Since V is irreducible, ( x|x) = 1. Therefore:
Gl =2 x(g)x(8)
geG
= 2 #xTio)
yeConj(G)
= > x(y™MA,dimV,
yeConj(G)
and dilnca;‘V = Zyeconi(a) Xy )Ay- o

For each y, we know that x(y™) is an algebraic integer (Proposition 7.2.9). Like-
wise, A, is an algebraic integer by Step 1. Since O is a ring, we find |G|/ dim V € O. But
obviously |G|/ dim V € Q. By Lemma 7.2.8, |G|/ dim V is an integer. O

7.3.2. Remark (if you already know the group algebra). It is the case that every g € G
is an algebraic integer of Z[G]. But it is not the case that every sum of g’s chosen at
random is one. This fails because Z[ G] is not a commutative ring. See exercise 7.4.5.
7.4 Exercises
7.4.1. Exercise. Let G be a finite group. Prove the following equivalence:
(i) G is simple;
(i) for x € Irrc(G), one has ker y = G or ker y = {1};
(iii) for y € Irrc(G) \ {triv} and g € G \ {1}, one has x(g) # x(1).

7.4.2. Exercise. Let G be a finite group.

1. Prove that G is simple iff:
(Vx e Irre(G)) (Vg € G)[(x(g) = x(1)) = (x = trivv g =1)].

2. Devise a solubility test from the character table.

7.4.3. Exercise. Let G be a finite group and G — GL(V') be a finite-dimensional, linear,
complex representation with character y.
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1. Prove thatker |y| = {g € G : |x(g)| = dim V'} is a normal subgroup.
2. Prove that N yerrrc (6) ker x| = Z(G).
7.4.4. Exercise. Let G be a finite simple group. Prove that no irreducible complex repres-

entation has dimension 2. Hint: use Theorem 7.3.1 to prove that G has an involution.

7.4.5. Exercise. One needs to know or admit existence of the group ring Z[ G| (see § 13).
Let G = Sym(3) and x = (12) + (23) € Z[G]. Prove that x is not an algebraic integer of
Z[G].

8 Burnside’s p?g® theorem

Abstract. An application of character theory: Burnsides p®q” theorem (§ 8.1). The
proof uses a little algebraic number theory (§ 8.2) and is given in § 8.3.

8.1 Statement

8.1.1. Theorem. Let G be a finite group of order p®q® where p, q are prime numbers. Then
G is soluble.

One must recall the definition of a soluble group. Actually the proof also relies on
nilpotent groups, and finite Sylow theory. The following facts will be required:

o every finite group has a p-subgroup of maximal order;
o every finite p-group is nilpotent.

Hence groups of order p® are nilpotent, and groups of order p®g” are soluble. There
is nothing to say about groups of order p®q”r; for instance Alt(s) has order 60 = 22-3-5
but is simple.

8.1.2. Remark. We shall give a character-theoretic proof of the theorem. However, there
exist character-free proofs; a full one which is not completely elementary, and two partial
elementary proofs in the odd and even cases.”

8.2 A number-theoretic lemma

8.2.1. Lemma. Let G be a finite group; work over C. Let (V, p, x) € Irrc(G) and g € G.

(i) The complex number:

~—

. x(g
[G:Cs(g)] 1)

=

is an algebraic integer.

7They are respectively:
H. Bender, A group theoretic proof of Burnside’s p® q"-theorem. Math. Zeitschrift 126, pp. 327-338, 1972.
D. Goldschmidt, A group theoretic proof of the p®q® theorem for odd primes. Math. Zeitschrift 113, pp. 373-
375, 1970.
H. Matsuyama, Solvability of groups of order 2“pb. Osaka Math. . 10, pp. 375-378, 1973.
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(i) If[G: Cg(g)] and x(1) are coprime, then x(g) = o or p(g) € Cldy.

Proof.

@

(ii)

Throughout we work in End¢ (V). For y a G-conjugacy class let:
= Z g.
<y
Clearly f, € Endc(g)(V). By Schur’s Lemma, there is A, € K such that f, =
Ay Idy. Therefore:

) =trf, = x(g) = #y-x(y)-

g€y

For g € y, onehas #y = [G : Cg(g)]. Hence:

G- CG(g)]X()) Ay

and it remains to prove that A, is an algebraic integer.

We argue exactly like in the proof of Theorem 7.3.1, Step 1: there are integers n,, 5,

such that:
fyf6 = Z ”y,6,5f5~
eeConj(G)

This means AyAs = ¥ ,cconj(G) My.6,che- Now let A = (1,5 )¢ a square matrix
with integer entries, and let A = (15)4, @ column vector with complex entries.
Clearly A # o. The above rewrites:

A A = AA.

Hence A, is an eigenvalue of A, and A, is an algebraic number by the Cayley-
Hamilton theorem.

By Bézout’s theorem, there are a, b € Z such that:
alG : Co(g)] + bx(1) = 1

which immediately yields a[G : Cg (g)] (1) +by(g) = (1)) The terms of the

left-hand member are algebraic integers, and therefore so is X((g)) Now y(g) is

a sum of y(1)-many roots of unity. We finish with an algebraic lemma.

8.2.2. Lemma. Let x,,...,x, be complex roots of unity and m = =% If
meQ,thenm=o0o0rx,=--=x,=m

Sketch of proof. The proof uses a little Galois theory. Say all x; are k" roots of
unity; let { = e’* . Now let F = Q[{] and = = Gal(F : Q). By the fundamental
theorem of Galois theory, Cr(Z) = Q.

Let g = [1gex 0(m). Clearly 2 maps O to Q; so g € Q. But g € Cg(Z), so

q € OnQ =Z. Now X maps roots of unity to roots of unity. In particular for
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every o € %, one has |o(m)| < 1. Thus |q| < 1, and two cases remain.
« If|q| = o then g = 0, so one ¢ (m) is zero. So is m.

o If |g| = 1, then |m| = 1 as well. A clear convexity argument gives that all
x; are equal (and equal to m). O]

Let A, ..., A,(,) be the eigenvalues of p(g). By the Lemma, either their sum is
0, meaning y(g) = o, or they are all equal, in which case p(g) = 1 1dy. O

8.3 The main lemma, and proof of Burnside’s theorem

8.3.1. Lemma. Let G be a finite group. Suppose there is a conjugacy class y € Conj(G)
with #y a prime power. Then G is not simple.

Proof. Let g € G be such that y = g© has cardinality p* for some prime p and k > o.
Suppose G is simple. Then every non-trivial representation is injective.
Since g ¢ 19 = {1}, by column orthogonality (Lemma 5.5.1) we have:

S oxWx@) = Y x(™x(g) =o.

xelrre (G) xelrre (G)

Separating triv from the sum and dividing,

xWx(g) 1
xelrre (G)\{triv} p p

Now ; is a proper rational, so it is not an algebraic integer. Since a sum of algebraic

integers is again an algebraic integer, there is y € Irrc (G) \ {triv} such that w is
not an algebraic integer; this certainly implies x(g) # o.

Now y(g) is an algebraic integer, so p does not divide y(1). In particular y(1) and
#¢9 = [G: Cs(g)] = p* are coprime. Moreover, y(g) # o. By Lemma 8.2.1 (ii), there
is A with p(g) = AIdy. This implies p(g) € Z(p(G)). But p is injective, so g € Z(G):
a contradiction. O

Proof of Burnside’s p®q” theorem. Let G be a counterexample of minimal order. If
a =oorb = o, then G has order a prime power, so it is nilpotent: hence not a counter-
example, a contradiction. Hence both a and b are non-zero.

If G is not simple, then there is {1} < N < G. Notice that N and G/N still have
order of the form p®'q”". By minimality, both N and G/N are soluble; hence so is G,
a contradiction. So G is simple. If Z(G) # {1} then by simplicity Z(G) = G and G is
abelian: a contradiction.

Let P < G be a Sylow p-subgroup; since a > o, one has P # {1}. Since P is a non-
trivial, finite p-group, it has a non-trivial centre; let g € Z(P) \ {1}. Then P < C5(g),
50 |g| divides g°. On the other hand g ¢ Z(G) = {1}. So g # {g} is a conjugacy class
of cardinality a prime power. By Lemma 8.3.1, G is not simple, a contradiction. O
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9 Induced representations and Frobenius reciprocity

Abstract. Induced representations ($ 9.1) construct representations of supgroups.
The Frobenius formula (§ 9.2) is an explicit formula for induced characters. Its con-
sequence, Frobenius reciprocity ($ 9.3), plays an important role in applied character
theory.

Suppose H < G are groups. In this section and the next, ¢, d will stand for (left-)cosets
of G modulo H.

9.0.1. Notation. If (V, p) is a representation of G, then the restriction pj;;: H — GL(V')

define a representation of H, denoted by Res$;(p).
(In general, irreducibility is not preserved.)

The whole section discusses one basic, converse, question. Suppose (W, 0) is a rep-
resentation of H. Does it come from some representation of G? We start with a basic
lemma on ‘coset geometry’

9.0.2. Lemma. Let H < G be groups and ¢ = aH be a (left-)coset of H. Let g° = {gb :be
c}. Then (ge = ¢) iff (g° € H) iff (g° € H).

Proof.

o If gc = ¢, then gaH = aH and ga € aH, so there is h € H with ga = ah,
viz.g" =a'ga=heH.

« Ifg® € Hand b € c, then there is h € H with b = ah. Hence g* = g*" ¢ H" = H.

« If g¢ ¢ H, then for b € c there is h € H with b~'gb = g* = h, so gb = bh and
gc=gbH =bhH =bH =c. O

9.1 Induced representations

Let H < G be groups and 0: H — GL(W) be a representation of H. In general there is
no p: G - GL(W) extending o (exercise 9.4.4). But if we allow for a larger vector space,
an extension can be found. The present subsection describes this construction.

9.1.1. Definition. Let H < G be groups and K be a field. Let (W, ) be a K-linear
representation of H. Construct a K-linear representation of G as follows.

o« Let {a. : c € G/H} be a transversal of H in G, viz. a set of representatives of the
left-cosets, so that G = |lccg/n acH. We request ap = 1.

* Let V = @ cg/u a. W be a vector space obtained as a direct sum of [G : H] copies
of W.

o Forge Gandv = a.w e V, first write ga. = a,h, then let:
g-v=ag(h-w).
Extend linearly this action.

The resulting object is called the induced representation of G, denoted by Ind$; W.
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(It is perfectly fine to leave K implicit in notation.)
9.1.2. Proposition.
(i) This is well-defined and does define a representation of G in V.
(ii) aygW <V is H-invariant and W ~ agW  [K[H]-Mod].

(iii) The (K[G]-isomorphism type of the) construction does not depend on the trans-
versal chosen, provided ag = 1.

(iv) If V' is another representation of G and f: W — Res$; V' is H-covariant, then there
is a unique f:Ind$ - V' which is G-covariant and extends f.

Proof.

(i) By definition of a transversal, if ¢ € G and ¢ € G/H, there is a unique pair (a4, h)
such that ga, = azh. So the construction is well-defined. Clearly each g acts
linearly. We now check that we have defined a morphism G — GL(V). Clearly
1 acts as the identity (this does not require ay = 1yet). Now let g, ¢’ € G and
v € V. We must check g(g'v) = (g¢'v). By linearity, we may suppose v = a.w
for some a. and w € W.

By construction, g'a, = azh’ and ga; = a,h for cosets d, e. Altogether, this
gives:
gv=a4(h'w),
and then:
g(g'v) = a.(hh'w).

On the other hand, (gg')a. = g(g'a.) = g(azh’) = (gaqs)h’ = a.hh', so we
also have:
(88')v) = ac(hh'w).

This proves mulitplicativity of the action. We have constructed a representation.

(ii) Let h € Hand v = ayW. Then hay € H, so hay = ayh’ for some h’. Then
h-v =ayg(h'w) € agW, which is therefore H-invariant (this does not require
apg =1yet).

We now construct an isomorphism of H-representations W ~ ay W, using ay =
1. Map w to ¢(w) = agw. Then for h € H one has hay = ayh, so:

h-g(w) = h-(auw) = an(hw) = ¢(hw),
as wanted. (Actually this only requires ay € Z(H).)

(iii) Suppose {b. : ¢ € G/H} is another transversal, also with by = 1. So our con-
struction now comes in two flavours: V, and V,,. We must give an isomorphism
of representations of G. For ¢ € G/H, one has a.H = b.H, so nj. = b-"a, € H.

To v = a.w associate ¢(v) = b.(n.w), and extend linearly. It clearly defines a
linear isomorphism V, ~ V;,. We contend it is a G-isomorphism. So let g € G;
by linearity, it is enough to prove g- ¢(v) = ¢(g - v) for v of the form a.w.
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Write ga. = ag h, and gb. = by, h, in obvious notation. Then:

g 9(v) =g (be(new)) = ba, (hanew),
while:
9(g-v) = p(aaq,(hw)) = ba, (14, hw).
We must check equality. Indeed,
bdzhzrlc = gbci’]c =ga. = adlhl = bdlrldlh17
so by definition of a transversal, d, = d,, and h,%. = 4 h,. So we are done.

(iv) Suppose f:Ind% — V' is G-covariant. Then for ¢ € G/H and w € W, one has:

f(ac-w) = f(ac(anw)) = f(acw) = acf(w) = acf(w),

so f(aw) = a.f(w). This guarantees uniqueness.

Conversely we let f(a.w) = a. f(w) and extend linearly. This does define a lin-
ear map f:Ind$; W — V’. We prove G-covariance on basic terms a.w. Indeed,
with ga. = a,h in obvious notation:

f(g-(acw)) = f(aahw) = agf(hw) = agf (hw)
= aghf(w) = ga.f(w) = gf(acw),

proving G-covariance. O

9.1.3. Remarks.

« As a consequence of Proposition 9.1.2 (iii), we may write Ind$, W = DceancW
with no mention of the transversal.

o (iv) is a universal property, conveniently described in terms of adjoint functors.

. o gs G . . .
o There is a tensor description of Ind;; W, but this course avoids tensoring over
general rings.

« Recall that Res$ does not change the underlying vector space, but Ind; does (‘by
afactor [G : H]).
9.2 Induced class functions and Frobenius formula

If B € Cx(G) is a class function on G and H < G is a subgroup, we denote by Res?
the restriction B|y. Clearly f|;; € Cx (H); the operator Res$y: Cx (G) — Cx (H) is clearly
linear. We now define a ‘converse’ linear operator Ind$: Cx (H) — Cx (G). It is converse
in a loose sense since in general, Res Ind, #a. (‘Adjoint’ would be more adapted.)

9.2.1. Lemma. Let H < G be a pair of finite groups and K be a field.

(i) For a € Cx(H) a class function on H, the following definition makes sense:

Indy o = > agl).
ceG/H:
ge=c
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(ii) If W is a finite-dimensional, K-linear representation of H with character y, then:

G
Indg xw = Alnd§ w+

“The character of the induced (representation) is the induced (function) of the char-
acter’

Proof.
(i) Suppose a., b, € c; say a. = b1, with 5. € H. Then by Lemma 9.0.2:
gc=c iff g%eH iff gheH.

Soif gc = ¢, then a(g®) and a(g’*) both make sense. Moreover, g/l = g% so
g% and gb¢ are H-conjugate.

Therefore always assuming gc¢ = ¢, and since « is a class function on H, we have:

a(g") = a(g™).
Hence a(g°) is well-defined regardless of the choice of the transversal: the for-
mula makes sense.
(i) Let V = Ind$, W, with character yy. We prove yy = Ind¥ yyy.

Let g € G. Recallthat V = @cq/y a. W. Moreover, g maps the space a. W to the
space ag W for ga. = a;h. But when computing tr g, only g-invariant subspaces
from the direct sum contribute, and:

trg= Yoo tr(gaw)-
ceG/H:
glaW)<a.w

Notice that ga. W < a. W iff thereis h € H with ga. = a hift g% e Hiff gc = c.
So:

« cosets d with gd # d do not contribute;

» cosets ¢ with gc = ¢ contribute tr(g|, w).

In the latter case, g acts on a, W like h = g%. Therefore tr(g,, w) = xw(g*) =

xw(g°)
Hence:
c G
xv(g)=tr(g) = > xw(g®) =Indy xw. O
ceG/H:
ge=c

9.3 Frobenius reciprocity

Since we deal with two groups, it is convenient to denote (+|-) ;- the usual bilinear form
with respect to K € {H, G}.

9.3.1. Theorem (Frobenius reciprocity). Let H < G be finite groups and K be a G-good
field (hence H-good as well).
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(i) Let W be a K-linear, finite-dimensional representation of H and V be one of G.
Then:

(Xmnd W|XV)G = (XW|XRes V)H-
(ii) For a € Cx(G) a class function on H and f8 € Cx(G) one on G, one still has:

(Indg a\ﬁ)c = (af Resgﬁ)H.

Proof.
(i) By Proposition 9.1.2 (iv), there is an isomorphism of underlying vector spaces:
Homy(;1(W, Res V) = Homg () (Ind W, V)  [K-Mod].

In particular, K-linear dimensions match. Now dimensions of spaces of covari-
ant morphisms were computed in Lemma 5.2.2 (ii) using the bilinear form, and
this gives:

(wlxres v) i = (xmawlxv)g -

(i) Notice that Res%:Cx (G) - Cx (H) and Ind$: Cx (H) — Ck (G) are linear maps.
For K-valued characters, (i) holds. Since characters of a finite group generate the
space of class functions, the formula holds of all class functions. O

9.4 Exercises
9.4.1. Exercise.

1. Show that Ind{Gl} triv =~ reg ..

2. For finite G, deduce from Frobenius reciprocity that reg = ¥, cirre(g) dim x - x-
9.4.2. Exercise. Let G be a finite group and K < H < G be two subgroups. Let W be a
representation of K. Prove that Ind; W ~ Ind$ (Indf W) [C[G]-Mod].

9.4.3. Exercise. Let H < G be finite groups and K be a field. Let W be a representation of
Hand V = Ind$ W. Let {y coincide with yy on H and equal 0 on G ~ H. Prove that:

=S (g

(&)=
MR8 TH &

(*)  9.4.4. Exercise. Let perm:Sym(4) — GL,(K) be the permutation representation. Now
view Sym(4) as a subgroup of Sym(s). Show that perm does not extend to Sym(s) —
GL,(K).

10 Frobenius complement theorem

Abstract. Frobenius’ famous complement theorem deals with certain finite group-
theoretic configurations. There is no known full proof avoiding character theory.
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10.1 Frobenius pairs

10.1.1. Definition. A Frobenius pair is a pair of groups (H < G) such that:
o H is self-normalising in G, viz. Ng(H) = H;
o H has trivial intersections with distinct conjugates, viz. G satisfies:

(VQ)[(H® = H) v (Hn H® = {1})].

A subgroup with trivial intersections looks like this:

(It is harder to draw self-normalisation phenomena.) The conjunction is sometimes
called malnormality of H in G but we cannot recommend the terminology.

10.1.2. Examples.

o Let Kbe afield, A = (K;+) be its additive group and M = (K*,-) be its multi-
plicative group. Then:

AxM:{(’g ?):(a,m)eAxM},

with M embedding to diag(1, m). Then (M < A x M) is a Frobenius pair.

« While affine configurations are inspirational, they are not typical of Frobenius
pairs. For example, there is a Frobenius pair with H ~ SL, (F).

Infinite Frobenius pairs are a desperate topic.®
10.1.3. Remarks.
o In the literature, G is sometimes called a Frobenius group and H its Frobenius

complement.

It can be proved (but it requires tools not available in this class) that if (H, < G)
and (H, < G) are finite Frobenius pairs with the same G, then there is g € G with
H'" = H,. So up to isomorphism there is at most one way in which a finite group
can be the large group of a Frobenius pair, and the phrase ‘finite Frobenius group’
makes sense.

This is completely not true with infinite groups.

o The above however supports the following question (Y. Tamer): is there a first-
order formula characterising Frobenius groups among finite groups?

8P. de la Harpe, C. Weber, Malnormal subgroups and Frobenius groups: basics and examples. Confluentes
Math. 6 (1), pp. 65-76, 2014.
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10.2 The geometry of a Frobenius pair

10.2.1. Notation. For (H < G) a Frobenius pair, we let:

N:(G\UHX)U{l}.

xeG

Despite suggestive notation, this is just a subset. It is normal (viz. closed under G-
conjugation) and closed under . In general, no more can be said; for infinite groups,
one could even have N = {1}.

10.2.2. Lemma. Let (H < G) be a Frobenius pair and g € G with g # 1. Then exactly one
of the following two occurs:

o g € Uyeg H”, there is a unique ¢ € G/H such that gc = ¢, and g° n H is a single
H-conjugacy class;

« g€ N, thereisno c € G/H such that gc = c,and g° n H = @.

Proof. If g € H*, then gx'H = x'¢g" H = x'H. If also gaH = aH, then ga € aH
and g € H. So1# g € H* n H* , which forces xa € Ng(H) = H. Hence x 'H = aH
and the coset solution is unique. Suppose k,, h, € g° n H; they are not 1. There are
Xy, X, € G with h; = g% In particular,

=g =h® ™ e HnH ™\ {1}.

So x;'x, € Ng(H) = H, meaning that h, and h, are H-conjugate.
If g € N, then g° N H = @. Ifhowever gc = ¢ for some coset ¢ = aH, then g € H* ,
a contradiction. So the equation gc¢ = ¢ has no solution in G/H. O

10.3 Frobenius’ complement theorem

The following remarkable result is due to Frobenius. We repeat that no fully character-
free proof is known.

10.3.1. Theorem. Let (H < G) be a finite Frobenius pair. Then there is a normal subgroup
N <G such that G = N x H.

Proof. There is no conflict with our notation since the only candidate is:

N:(G\UHg)U{l}.

geG

But there is no clear group-theoretic reason why N should be closed under product,
and the proof requires a serious detour through character theory. We begin with a
simple computation.

161

Step1. #N = |

Verification. Subsets of the form (H ~ {1})* = H* \ {1}
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« have |H| — 1 elements,

« are disjoint or equal,

o form a family parametrised by G/Ng(H) = G/H, with % members.
So:
GNN=U H {1} = UH{1})"
x€G x€G
has exactly %QH |-1) =G| - % elements. Hence N has exactly % elements. ¢

The key step will be to use Frobenius’ reciprocity formula and prove that for a
Frobenius pair, every irreducible character of H extends to an irreducible character of G.
(This is quite false in general; see exercise 9.4.4.)

The naive guess when trying to extend y € Irrc(H) to ¥ € Irre(G) would be
Ind¥ y. However, recall that ‘Ind expands the dimension by a factor [G : HJ, so
Res? Ind$, v # y. Indeed,

(Resf; Indj; y) (1) = (Indj; ) (1) = [G : H]y(1) # y(1).

The obstacle would disappear ‘if y(1) were o’ This suggests to consider the class func-
tion w(h) — w(1), viz. y — y(1)trivy.
Step 2. Let a: H - C be a class function with (1) = o. Then Ind$ « is the unique
class function on G which « extends &, and « vanishes on N.

Verification. Uniqueness is obvious since G = N U U,c H*.

By Lemma 10.2.2, if g € G is conjugate to two elements h,, h, € H, then h,
and h, are already H-conjugate. In particular a(h,) = a(h,) and we may define
&(g) = a(h,). On N we let &(x) = o, which is consistent since N n H = {1} and
a(1) = 0. So there is an extension of « to a G-class function vanishing on N.

We must prove that & so constructed actually equals:

(Indjja)(g) = X a(g).
ceG/H:
ge=c
So let g € G; we may assume g # 1. We use Lemma 10.2.2. If g € N, the sum giving
Ind is empty, so (Inda)(g) = 0 = &(g). If on the other hand g € H*, then the sum

contains only term, namely a(g* ) = &(g* ) = &(g). o

Step 3. Every irreducible complex character v € Irre (H) extends to some ¥ € Irre (G).
Moreover we may suppose N ¢ ker .

Verification. The trivial character trivy certainly extends to trivg. So consider y €
Irrc (H) ~ {trivy }; we seek to extend it to an irreducible character of G. It will be:

¥ = Ind§ [y — w(1)trivy ] + w(1)trive.

(Keep in mind at all times that although Ind;: C(H) — C(G) islinear, it does not take
trivy to trivg. So i does not equal IndY; y.) Many details are required. Throughout,
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we write Ind for Ind¥ and Res for Res$.
Firstletd = w(1) € N. Nowlet a = y—dtrivy, an H-class function with a(1) = o.
By Step 2, Ind & is a G-class function extending «. Thus & = ResInd a. As said, we
let:
¥ = Ind & + dtrivg.

Then:
Res ¥ = ResInd & + dtrivy = a + dtrivy = y.

But it remains to prove that ¥ is a character of G.
First use linearity of Ind, giving:

¥ = Ind(y - dtrivy) + dtrivg = Ind y—d Ind trivy + dtriveg.

Now recall that Ind ¥ and Ind trivy are indeed characters of G by Lemma 9.2.1. So ¢/
is a Z-linear combination of characters of G, hence a Z-linear combination of irre-
ducible characters of G. We prove that there is only term by computing (§/|). This
involves Frobenius reciprocity.

By reciprocity (extended to all class functions), bearing in mind Restrivg =
trivy and Res Ind « = «, one finds:

(§|9) ¢ = (Ind a + dtrivg|Ind & + dtrivg) g
= (Ind a|Ind @) + d (trivg|Ind a) ; + d (Ind a|trivg) ; + d* (trivg|trivg) ¢
= (a|ResInd ) + d (Restrivg|a) ; + d (a| Restrivy ) ; + d*
= (ala)y +d (trivyla) ; + d (altrivy) ; + d*
= (o + dtrivy|a + dtrivy )
=Wy

=1.

Recall that ¢ is a Z-linear combination of irreducible characters of G, say ¢ =
Y. n;; in obvious notation. Then by orthonormality, (¢|/), = X n} = 1. So ¥ is
itself either an irreducible character or the opposite of one. However ¥ extends v, so
¥(1) =y(1) =d e Nand ¢ € Irrc(G).

Last, for g € N, the equation gc = ¢ has no solutions by Lemma 10.2.2. So any

sum of the form
(IndB)(g) = > B(g")

ceG/H:
ge=c

is actually empty. So there remains only §/(g) = y(1)trivg(g) = v(1) = §(1), mean-
ing N ¢ ker ¢. 3

Step 4. N is a normal subgroup of G.

Verification. For y € Irrc(H), let § € Irre(G) as in Step 3. Recall that N ¢ ker ¢.
Now let:
K= () kery,
yelrre (H)
a normal subgroup of G. We shall prove that K = N. The inclusion N ¢ K is by
Step 3.
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We now show K ¢ N. This relies on proving K n H = {1}. Indeed let h €
K n H. Then for y € Irrc(H), one has w(h) = §(h) = ¥(1) = y(1). Hence h €
Miree (1) ker y = {1} by Theorem 7.1.4 (i). Since K is a normal subgroup, it avoids all

conjugates of H, viz. K € N. o
Hence N = K is a normal subgroup disjoint from H. Now |N| = #N = % by
Step 1, which implies G = N x H. O

10.3.2. Remarks.
» Thompson proved that N must be nilpotent.’

o If H has even order, N is even abelian. This is not true in general: see exer-
cise 10.4.2.

« But H can be non-soluble: there is a finite Frobenius group with H ~ SL, ().

10.3.3. Remark. Frobenius groups have a lovely application to Wedderburn’s theorem
(finite skew-fields are commutative) going through Desarguesian planes.*® Good pub-
licity for my other NMK lecture notes!

10.4 Exercises

10.4.1. Exercise. Let G be a finite group acting transitively on a set X. Suppose that every
g # 1fixes at most one element of X. Prove that N = {fixed-point free elements} u {1} is
a normal subgroup.

10.4.2. Exercise. Consider the group:

1 x z
N = 1y :(x,y,z)e[F; ,
1
and the map:
1 x z 12X 42
o 1 yll= 1 2y
1 1

Prove that ¢ is an automorphism of order 3 of N. Now prove that ({6) < N x (0)) isa
Frobenius pair.

10.4.3. Exercise. Let (H < G) be a finite Frobenius pair, say G = N x H. Let ::G —
G/N =~ H be the quotient map. Let y € Irrc (G) be non-trivial. Prove that:

o either y = y o 7 for some y € Irrc (G/N) = Irre (H),
« or x = Ind$ ¢ for some ¢ € Irrc(N).

10.4.4. Exercise (Bender’s ‘even’ proof). This exercise contains no representation theory;
on the contrary, it gives a character-free proof of Theorem 10.3.1 under extra assumptions.
Let (H < G) be a finite Frobenius pair. Suppose that H has even order.

°]. Thompson, Finite groups with fixed-point-free automorphisms of prime order. Proc. Nat. Acad. Sci.

U.S. A. 45, pp. 578-581, 1959.
198. Ebey, K. Sitaram, Frobenius groups and Wedderburn’s theorem. Amer. Math. Monthly 76, pp. 526-528,

1969.
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1. Determine the cardinal of N = (G \ Ugeg H®) U {1}.
2. Prove that if i, j are two involutions (of any group), then (ij)" = (i)™
3. Let i € H be an involution. Prove that for g € G\ H, one has1+ ig 'ig € N.
4. Determine the cardinal of R* = {ig™'ig: ge GNH} C N.
5. Prove that N = R* u {1}
6. Conclude that N is a subgroup of G.
Notes.

o The method even proves abelianity of N under our assumption that H has even
order. This is not true in general; however N is nilpotent (see Remarks 10.3.2).

« To date, there is no known full character-free proof of Theorem 10.3.1."'

11 Real, purely complex, quaternionic representations

Abstract. § 11.1 gives a correspondence between bilinear forms on V and morph-
isms V ~ V. § 11.2 discusses the irreducible case. Then § 11.3 introduces real,
purely complex, and quaternionic representations.

This section discusses only complex representations. The irreducible ones will be
classified into real, complex, and quaternionic representations, in a technical sense. To
avoid clash in terminology, we make an effort to talk about ‘C-linear representations),
and to refer to the second case as ‘purely complex.

11.1  Bilinear forms and duality

For V a K-vector space, we let Bilx (V x V,K) be the space of K-bilinear forms on V.
By definition, one has Bilg (V x V,K) ~ Homg (V @k V,K).

11.1.1. Definition. A bilinear form on a representation V is preserved by G if:

(VgeG)(VxeV)(VyeV)(B(gx.gy) = B(x, 7))

We shall simply say that f is a bilinear G-form.
We let G-Bilg (V x V,K) < Bilg(V x V,K) be the subspace of bilinear G-forms.
When no confusion can arise, we simply write G- Bil < Bil.

11.1.2. Remark. We avoid writing ‘Bilg[](V x V, K)} because bilinear G-forms are not
K[G]-bilinear. Likewise, ‘G-bilinear is slightly confusing.

11.1.3. Proposition. Let V be a finite-dimensional vector space.

(i) There is a natural isomorphism Homg (V, V*) - Bilg(V x V,K) [K-Mod].

"'See however a very interesting entry on Terence Taos webpage, https://terrytao.wordpress.com/
2013/05/24/a-fourier-analytic-proof-of-frobeniuss-theorem/
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(ii) The above induces a natural bijection:

{linear isomorphisms f: V ~ V* [K-Mod]}
< {non-degenerate bilinear forms : V x V. - K}.

(iii) If V is also a representation of a group G, then (i) restricts to Homgg1(V, V™) -
G-Bilg (V x V,K), which like in (ii) induces a natural bijection:
{isomorphisms of representations f: V ~ V* [K[G]-Mod]}
< {non-degenerate bilinear G-forms p: V. x V. - K}.

11.1.4. Remark. In (iii), the isomorphism Homgs)(V, V*) ~ G- Bil can be considered
in K[G]-Mod or in K-Mod without loss of information, since the natural action of G
on each side is trivial.

Proof.

(i) Truly, in abstract terms, this is because in K-Mod one has isomorphisms:

Bilg(Vx V,K) Hom(V® V,K) = (Ve V) =V e V"
~Hom(V**, V") ~Hom(V, V*) [K-Mod].

One may prefer a casual approach. To K-linear f: V — V*, associate the map
Br(x,y) = f(x)(y) € K. Clearly By is bilinear. Moreover f + S is linear.
Conversely, to bilinear f: V x V' — K, associate fg(x) = B(x,-) € V*. Then
fp: V — V*islinear. Moreover f8 + fg islinear. These constructions are inverses
of each other, hence linear isomorphisms.

(ii) Work in the notation above. Suppose f:V =~ V* is a linear isomorphism. If
x € Vis such that B¢(x,-) = o, then f(x) = o and therefore x = o. So f; is
left-non-degenerate; by finite-dimensionality, this is enough.

Conversely suppose that f: V x V' — K is a non-degenerate bilinear form. If
fp(x) = o, then x = o by non-degeneracy. So fg: V = V* [K-Mod].

(iii) Return to the construction, in the same notation.

Suppose that f is G-covariant. Thus f(g-x) = g- f(x). Let ¢ = f(x) € V*, so
that f(gx) = g- ¢. By definition of the dual representation, for y € V one has
(&-9)(y) = 9(g7y). Therefore f(gx)(y) = f(x)(g"y) and finally:

Br(gx.gy) = f(gx)(gy) = f(x)(g'gy) = f(x)(¥) = Bs(x. ),

so f37 is preserved by G.
Conversely, if f8 is preserved by G, then:

fo(g-x)(y) = B(gx.y) = B(x,87y) = f(x) (g7 () = (- f(x))(¥),

so fp(g-) = g f(x) inside V*. O
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11.2  Real, purely complex, quaternionic representations

With Proposition 11.1.3, one could expect the theory to divide in two: either V ~ V* or
not, based on existence or not of non-degenerate bilinear G-forms. But the theory of
bilinear forms divides itself into two main subtopics, so there are three cases in total.

11.2.1. Definition. A bilinear form f is:
o symmetricif (Vx)(Vy)(B(y,x) = B(x,7));
o alternating if (Vx)(Vy)(B(y,x) = =B(x, y)).

We write Bil’, resp. Bil* for symmetric, resp. alternating bilinear forms. G- Bil® and
G- Bil” are defined likewise.

One also says skew-symmetric for alternating.

11.2.2. Proposition. Let G be a finite group; work over C. Let V be an irreducible, C-
linear representation. Then:

(i) every non-zero, bilinear G-form on V is non-degenerate;

(ii) exactly one of the following three case occurs:

o [real]: G-Bil = G- Bil’ has dimension 1 and G-Bil” = {o}.
« [purely complex]: G-Bil = G-Bil' = G-Bil” = {o0}.
« [quaternionic]: G-Bil = G-Bil” has dimension 1 and G-Bil’ = {o}.

Proof. The claims follow from two lemmas.

11.2.3. Lemma. Let V be an irreducible C-linear representation of a finite group G. Then
every non-zero, bilinear G-form is non-degenerate. Moreover dim G- Bil = o or 1.

Proof. Recall from Proposition 11.1.3 that we have a ‘dictionary’: G- Bilc(VxV,C) ~
Homc[G](V, V*). Now V is irreducible, and therefore so is V*. Thus by Schur’s
Lemma, Homc[g)(V, V™) is either trivial or 1-dimensional.

Let B:V x V - C be a bilinear G-form. Let fz: V — V* [C-Mod] be given
by Proposition 11.1.3; then fg # o. By Schur’s Lemma again, fg is an isomorphism.
Translating back through Proposition 11.1.3, ¢ is non-degenerate. O

11.2.4. Lemma. Let V be any representation over a field of characteristic # 2. Then
Bil = Bil° @ Bil?, and G- Bil = G- Bil’ ®G-Bil".

Proof. Let B: V x V — C be bilinear. Notice how:

B (x,y) = w and B%(x,y) = w

are two bilinear forms; the first is symmetric and the second is alternating. Moreover
B =B°+ p° Last, if f is a G-form, so are ° and 3. O

We prove the Proposition. The first lemma implies (i) so we move to (ii). The
three cases are mutually exclusive. If there is no non-trivial bilinear G-form, we are in
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the purely complex case. So suppose there is one, 8 # 0; decompose it as § = f* + 8.
By the first lemma again, dim G- Bil = 1, so G- Bil = (). In particular thereis A € C
with 8° = AB. If A # o then f8° # o; thus (°) = G-Bil’ = G-Bil and there remains
G-Bil” = {o}: this is the real case. Otherwise A = 0, meaning 8 = 8% # o: we reach
the quaternionic case. O

11.2.5. Remarks.
« Itis enough to have K a good field of characteristic # 2.

 Beware of terminology (1). The character yy is real-valued iff V is (real or qua-
ternionic). The proof is immediate: yy is real-valued iff yv+ = xj, = yv = yv iff
V* ~ V [C[G]-Mod], and we apply Proposition 11.1.3.

+ Beware of terminology (2). In all three cases, Endc[g)(V) = Cldy by irredu-
cibility, so quaternions will never emerge as Schur’s field. A better name for the
third case could have been Weyl’s neologism symplectic, since a symplectic form is
a non-degenerate, alternating bilinear form.

« Reason for the terminology is in exercise 11.4.3.

11.3 More on real and quaternionic geometries

We elaborate on the cases delinated by Proposition 11.2.2. Recall thatamap f:V; = V,
between complex vector spaces is semi-linear if it is additive but f(Av) = Af(v). (Itis
then R-linear but ‘twists’ the action of i.)

11.3.1. Proposition. Let G be a finite group; work over C. Let V be a C-linear, irreducible
representation. Then the following are equivalent:

(i) there exists a non-degenerate, symmetric, bilinear G-form on V;
(ii) there exists a G-covariant, semi-linear isomorphism o: V — V with ¢* = Idy;
(iii) there exists a real, G-invariant vector space W € V with V=W & iW.
11.3.2. Remarks. Let us rephrase (iii).

o In matrix form: there is a basis B in which all matrices Matg p(g) have real coef-
ficients.

« Indimension-theoretic form: there is a real, G-invariant vector space W ¢ V with
dimg W =dim¢ Vand V = (W).

o In abstract form: there is an R-linear representation W' such that V ~ W’ @y C,
where C is equipped with the trivial G-action and the usual R-action.

This accounts for the name: a C-linear representation is real if it comes from an R-linear
representation.

Proof.
(i)=(ii). By Proposition 11.1.3, such a bilinear form induces an isomorphism fg: V' =

V* [K[G]-Mod]. (We have not used symmetry of 8 so far.)
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Let [-|-] a complex scalar product on V. It is the same as a semi-linear isomorph-
ism s: V ~ V*. If we average [|-] using G, we may even take a complex scalar
product [|-]] preserved by G. (This method was already in exercise 3.4.5.) Hence
we may suppose that there is a semilinear, G-covariant isomorphism s: V ~ V*.
It satisfies s(x)(y) = [x|y]. In particular, for ¢ € V*, one has:

[s7'oly] = ¢(»).

Finallylet o = s7" o fg: V — V. It is a semi-linear, G-covariant isomorphism. So
0*:V — V is a linear, G-covariant isomorphism. By irreducibility and Schur’s
Lemma, there is A € C with 0 = A1dy. Now:

[oxly] = [sfs()ly] = f(x)(¥) = B(x. y),

so finally using symmetry of f:
[oxly] = B(x.y) = B(y,x) = [oylx] .
We apply this to y = ox, getting:
[ox|ox] = [oox|x] = [Ax|x] = A [x|x] .

But for x # o, both [ox|ox] and [x|x] are positive real numbers; thus so are A
and A. Up to rescaling by ﬁ, we may thus suppose A = 1.

(ii)=(iii). Treat V as a real vector space. There the linear map o satisfies 0> = Idy,
so it is diagonalisable with eigenvalues +1. Let W, = E,(¢) and W_ = E_,(0).
Then V = W, & W_. Moreover, each is clearly G-invariant.

We claim that W_ = iW,. Indeed, if w, € W,, then o(iw,) = —io(wy) = —iw,,
so i W, < W_. The converse inclusion is proved similarly. It follows that W, and
W_ have the same real dimension.

Thus V = W, @ iW,, and in particular, (W) = V as a C-vector space. Moreover,
dil’n(c V= idimR V= i(dimR W, + dimR(iW+)) = dimR W..

(iii)=(i). Let W c V be a real, G-invariant, subspace such that V = W & i W; hence
every v € V writes uniquely as v = x + iy with x, y € W. Take a real scalar
product on W. Averaging it, we may take a real scalar product [-|-] on W which
is preserved by G. Now simply put:

(x+iylx" +iy") = ([xlx"] = Iyly'D) + ([xly'T + [ylx'])i e C.

Then (-]-) is C-bilinear and G-covariant. Since it is non-zero, it is non-
degenerate by Proposition 11.2.2. O

In a very similar way, one proves the following.

11.3.3. Proposition. Let G be a finite group and V be a C-linear, irreducible representa-
tion. Then the following are equivalent:

(i) there exists a non-degenerate, alternating, bilinear G-form on V;

(ii) there exists a G-covariant, semi-linear isomorphism 0: V — V with ¢* = —1dy.
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11.4

Exercises

11.4.1. Exercise. Let V be a K-linear representation of G. Define an action of G on
Bilg (V' x V,K) such that the map 8 ~ fg of Proposition 11.1.3 is a morphism of rep-
resentations. Why could you expect inversions?

11.4.2. Exercise. Prove Proposition 11.3.3.

11.4.3. Exercise. Let H = {+1, +i, +j, £k} be the group of basic quaternions.

1.

2.

Compute the only irreducible, 2-dimensional character over C, say yx,.

Prove that y, is not real. [Hint: extend the candidate group morphism Hg —
GL,(R) to the associative algebra of quaternions H.]

Consider the following realisation of quaternions:*?

H - {(Z ‘ZZ) (enz) e cz} <M,(C) [R-Alg].

22

Realise y, by giving explicit Hg — H* < GL,(C).

11.4.4. Exercise (real-valued characters, and groups of odd order). Let G be a finite
group. We work over C. A (complex) character y is real-valued if y = ¥. A conjugacy
class y € Conj(G) isreal if ™" = y.

1.

2.

12

Prove that y is real iff (V x € Irrc(G) ) (x(y) € R). [Hint: column orthogonality.]
Letd = #1Irrc(G) = #Conj(G). Let 0y, 0, € Sym(d) be given by xi = Xo,(i) and
Vi = Vel

Also let p = perm Sym(d): Sym(d) — GL;(C) be the permutation representation.
Finally let M € M4(C) be the character table.

What are p(a,)M and Mp(a,)?

Deduce that the number of real conjugacy classes equals the number of real-valued
characters. [Hint: what is tr p(0,)?]

Deduce that |G| is odd iff the only real-valued irreducible character of G is triv. [This
question contains no representation theory.]

Deduce that if |G| is odd, then # Conj(G) = |G| [16].

The Frobenius-Schur formula

Abstract. The Frobenius-Schur formula determines whether an irreducible, C-
linear representation is real, purely complex, or quaternionic in the sense of § 11.

>Good publicity for my other NMK lecture notes!
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12.1 Statement
Recall that an irreducible, C-linear representation (V, p) is:
o real if there exists a non-zero, symmetric, bilinear G-form on V;
o purely complex if there exists no non-zero, bilinear G-form on V;
« quaternionic if there exists a non-zero, alternating, bilinear G-form on V.

12.1.1. Theorem. Let G be a finite group and V be a C-linear, irreducible representation
with character x. Then:

1 ifVisreal

Yox(g?) =3 o ifVispurely complex
geG -1 if V is quaternionic.

1
|G|
There are no other values.

The proof requires a short geometric digression.

12.2  Sym and Alt

Here Sym and Alt do not stand for symmetric and alternating groups, but for certain
factors of tensor powers. These construction are natural in geometry.

12.2.1. Definition. Let V be a vector space and k be an integer. Let £; be the symmetric
groupon {1,...,k}.

« The k™ symmetric power of V is:
k .
k B Vi®: @ Vk =Vg(1) ® - O Vy(k) *
Sym (V)_(®V)/<{ (Vs ve) € VE o e
« The k™ exterior power of V is:
k .
k _ V1®'~'®VkIS(O')VU(I)®'“®VU(1<)-
Alt (V)_(®V)/<{ (Vis...,vi) e VK g e 3
12.2.2. Notation. In the notation above, we let:
e v,--v; be the image of v, ® - ® v in Sym*(V);

e v, A+ Avg be the image of v, ® -+~ ® vy inAltk(V).

12.2.3. Lemma. Let G be a group and K be a field of characteristic + 2. Let V be a K-linear,
finite-dimensional representation of G. Then:

(i) Sym*(V') and Alt* (V) are naturally representations, under g - (xy) = (gx)(gy)
and g- (x A y) = (gx) A (gy), extended linearly.

(ii) Sym?(V) and Alt* (V') are isomorphic to subrepresentations of V ® V; moreover

Ve VeSym*(V)e Al (V) [K[G]-Mod];
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(iii) xsym:(vy (&) = 5 (xv(8)* + xv(g*)) and yaie(vy(g) = ; (xv(g)* — xv(g*))

Proof.
(i) Clear.

(ii) Let B = {e,,...,e,} be abasis of V. Then {e; ® ej : 1 < i, j < n} is a basis of
VeV.

o LetX, = ((12)) acton V ® V by letting (12)(e; ® ¢;) = ¢; ® e;, extended
linearly. Let o be the image of (12) in Endg(V ® V). Thus,

U(Z /\i,jei ® €j) = Z/\i,jej ®e; = zlj,,‘ei ® e;j.
In particular, (v, ® v,) = v, ® v, for all v,, v, € V.
» Notice G-covariance of ¢.

o Clearly 6> = 1d in Endg(V ® V), so (¢ - 1d)(o + Id) = o. Basic linear
algebra implies ker(o — Id) = im(o + Id) while ker(o + Id) = im (o - Id),
and also V® V =ker(o — Id) @ ker(o + Id).

« Consider the following elements of V ® V:
1 L. 1 ..
sij=—(ei®ej+ej®e;) fori<j and a;;j=—(e;®ej—e;®e¢;) fori<j.
2 2

Let B, = {s;,j: i < j}and B, = {a;; : i < j}. Since #(B; uB,) = n* and
e; ®ej € (B; uB,), we get that B, L B, is a basis.

o Now (B;) =ker(o —1) and (B,) = ker(o + 1) follow easily.

o Last, Sym*(V) ~ (V® V)/im(o —1) ~ ker(o —1). Moreover, s; ; maps to
eiej. Similarly, Alt*(V) ~ (V® V)/im(o +1) = ker(¢ +1), and a; ; maps
toe; Nej.

+ By G-covariance, all the above holds as representations of G.

A byproduct of the proof is that {e;e; : i < j} is a basis of Sym*( V) and {e; Ae; :
i < j} is a basis of Alt*(V).

(iii) Let g € G be fixed. One could have started with an eigenbasis B = {e,,...,e,}
under the action of g, viz. ge; = A;e;. Then notice that each e;®e; € V®V, each
eiej € Sym*(V), each e; A e; € Alt*(V) is an eigenvector for g with eigenvalue
Aid;. Since vectors of this type form eigenbases of the corresponding spaces, we
conclude that:

XSymz(V) = ZA’/\J and XSymz(V) = Z/\,)L]

i<j i<j

On the other hand,

xv(g) = (Z /\i) = 22/\1‘)‘1 + Z)Lzz' = ZXAltZ(V)(g) +xv(g?).

i<j

This gives the desired formulas. O
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In practice one may want to remember that {e;e; : i < j} is a basis of Sym*(V') and
{einej:i< j}oneof Alt*(V).

12.3 Proof of the Frobenius-Schur formula

Proof. Let V be a C-linear, irreducible representation of G. We study G-covariant
bilinear forms on V and the representation W = Bilg (V x V,K). (See exercise 11.4.1.)
Also let:

W; = Bilg (V x V,K) = {8 € W : B is symmetric},

and define W, likewise. Finally let d; = dim W; and d, = dim W,. By Proposi-
tion 11.2.2, notice that:

e Visrealiffd, =1and d, = o;
o Vis purely complex ift d; = d, = o;
o Vis quaternioniciffd; =oand d, =1.

So the integer d; —d, € {1, 0, -1} indicates the geometric type of V. We must therefore
prove that the formula computes d; — d,,.
By definition of the tensor product and the dual space,

W ~Homg (Ve V,K) = (Ve V)" ~(V*eV*) [K[G]-Mod].
It is not hard to see that this induces isomorphisms:
W, ~ Sym*(V*) [K[G]-Mod] and W, ~ Alt*(V*) [K[G]-Mod].

By Lemma 12.2.3, their characters are:

xn(8) =~ v (90 + xv+ () = - (1 () + X (8)),

and
o (8) =~ (v () = v+ (87)) = - (i ()" - X (8°)):

Now the space of symmetric, bilinear G-forms is:
G-Bil (V x V,K) = Cw,(G) = Csymz(v+)(G).

Lemma 5.2.2 gave a formula for its dimension:

d, = dim G-Bil}, (V x V,K) = dim Cy, (G) = ﬁ ; i(){{,(g)z + x5 (e),
and likewise:

d, = dim G-Bil&(V x V,K) = dim Cy, (G) = |—(1;| EGZ i(x*v(g)z - xv(g))-

Therefore: )
ds—da = — > xv(8)-
G| G
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This looks like the desired formula, but there is a residual *. Fortunately d; and d,, are
integers, so finally:

1 B 1 * oY _
|G|§:XV(g):|G|§:Xv(g)_ds_du—ds_da- O
G G

12.4 Exercises

12.4.1. Exercise. Return to the decomposition 3 = 3° + 3% of Lemma 11.2.4. Prove that it
is compatible with expressing V. ® V ~ Sym*(V) @ Alt*(V) (viz. draw a suitable com-
mutative diagram).

12.4.2. Exercise.
1. Show that Sym* V enjoys the following universal property:

any k-linear, symmetric map from V¥ to another vector space factor
uniquely through Sym* V.

2. Find a similar universal property describing Al V.

12.4.3. Exercise.
1. Suppose B is a finite basis of V. Give bases of Sym* (V') and Alt* (V).
2. Compute characters.

™ 3. Suppose that K has characteristic coprime to k!. Find subrepresentations of ®* V
isomorphic to Sym* (V), resp. Alt* (V).

12.4.4. Exercise. The purpose of this exercise is to construct the character table over C of
G = Sym(s). Let x, = perm — triv, which is irreducible.

1. Prove that Alt* y, is irreducible and has dimension 6.

2. Prove that Sym® y, is the sum of three irreducible characters.
3. Find an irreducible character of dimension s.

4. Complete the character table of Sym(s).

12.4.5. Exercise. Return to the character tables of Alt(4),Sym(4), Alt(s), Sym(s). Find
out which representations are real, purely complex, quaternionic.

13 The group algebra

Abstract. This section recasts representation theory in module theory (§ 13.1). The
group algebra of G over K (§ 13.2) is precisely the associative K-algebra encoding
the representation theory of G. We then translate orthogonality relations in terms
of central idempotents ($ 13.3).
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13.1  Modules, submodules, morphisms

13.1.1. Definition. Let R be a ring. An R-module is a abelian group M equipped with an
action of R on M such that, for all r,s € R and m, n € M:

o (r+s)-m=r-m+s-m

o« 1-m=m;

o (r-s)-m=r-(s-m);

er-(m+n)=r-m+r-n.
(These do imply o - m = 0.) With the notion of a module comes that of a submodule.
13.1.2. Examples.

o The Z-modules are the abelian groups. Then Z-submodules are subgroups.

o If K is a field, the K-modules are the K-vector spaces. Then K-submodules are
K-linear subspaces.

o IfKis a field, the K[ X]-modules are the K-vector spaces equipped with one dis-
tinguished linear endomorphism f. Then K[ X]-submodules are f-invariant sub-
spaces.

13.1.3. Definition. Let R be a ring. An R-module M is simple, or irreducible if the only
two R-submodules of M are {0} and M.

We now introduce the suitable notion of morphism.
13.1.4. Definition. Let R be a ring and M,, M, two R—-modules.
« An R-morphism is a map ¢: M, — M, such that for all r € R and m, m’ € M,:

p(r-m+m')=r-g(m)+e(m).
One sometimes says that ¢ is R-covariant.

o Let R be a ring and M,, M, be two R-modules. We let Homg (M,, M,) stand
for the collection of R-morphisms from M, to M,. (A better notation would be
(M, > M,:R-Mod).)

If R is clear from context, one simply writes Hom(M,, M,).

« An R-isomorphism is a bijective R-morphism. We write M, ~ M, [R-Mod]
(isomorphism in the category of R-modules).

Notice that Homg(M,, M, ) itself is an abelian group. However, in general it does
not bear a natural R-module structure.

13.1.5. Examples.
o+ A Z-morphism between Z-modules is a group morphism between abelian groups.
o A K-morphism between K-vector spaces is a K-linear map.

« A K[X]-morphism between K[X]-modules (V,, f;) and (V,, f;) is a K-linear
map ¢: f; > f, suchthatgo f, = f, 0 .

We do not introduce tensor products over arbitrary rings. This would only create
confusion since in this course, we only tensor over K, never over the group algebra.
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13.2 'The group algebra and representations

13.2.1. Definition. Let K be a field and G be a group. The group algebra of G over K is
the following associative K-algebra:

o let K[G] be the vector space with basis {g: g € G};
o define multiplication on K[G] by extending K-linearly multiplication on G.

Thus dimg K[G] = |G|. The identity element is 1. The group algebra is associative be-
cause G is, but it is commutative iff G is.

13.2.2. Remark. Analysts like to think of K[G] as the algebra of all functions G - K.
It is then equiped with the convolution product:

(fix £ = X L)L)

x,y€G:
xXy=£

One should check at once that (K[G]; +,) and (IK®; +, *) are naturally isomorphic
as associative K-algebras: just take Y A, g to the map (x — A ).

13.2.3. Definition. Let K be a field and G be a group.
o A K-linear representation of G is a K[ G]-module.
o A representation is irreducible if it is a simple K[ G]-module.
o A morphism of representations is a K[ G]-morphism.
« Hence two representations are isomorphic if they are, as K[ G]-modules.

One should pause and check that definitions do match with their naive forms of § 1.
The above relies on a form of universal property: every group morphism p: G - GL(V)
extends to a unique K-algebra morphism K[G] — Endk (V). We still denote it by p.

13.2.4. Remark. Itis possible to tensor K[ G]-modules over K[ G], but this does not give
the tensor representation.

Let V = reg, which is K[G] as a K[G]-module. Then V ®k ;1 V = K[G] = V, while
V ®k V has dimension (dim V')* > dim V.

13.2.5. Theorem (Schur’s Lemma, revisited). Let R be any ring and V;, V, be simple R-
modules.

(i) If f:V; - V, is an R-morphism, then either f = o or f is an isomorphism.
(ii) In particular, if V is a simple R-module, then Endgr (V') is a skew-field.

(iii) Suppose that R is a finite-dimensional associative K-algebra for some algebraically
closed field K. If V is a finitely generated, simple R-module, then Endgr (V) = KIdy.

13.2.6. Definition. Let R be a ring.
o An R-module M is semisimple if it a direct sum of simple R-modules.
o Ritself is said to be semisimple if it is, as a (left) R-module. See exercise 13.5.2.

13.2.7. Theorem. Let R be a semisimple ring and M be an R-module. Then:
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(i) Every submodule admits a direct complement.
(ii) M is a direct sum of simple submodules.
(iii) If M is finitely generated, then it is a direct sum of finitely many simple submodules.

13.2.8. Theorem (Maschke’s Theorem, revisited). Let G be a finite group and K be a field
of coprime characteristic. Then K[G] is semisimple.

Theorem 3.3.2 on isotypical components translates so immediately that we do not
reproduce it. We move to the isomorphism type of the group algebra.

13.2.9. Theorem. Let G be a finite group and K be a good field. Let d, = dim p be the
dimensions of the irreducible representations of G over K. Then as associative K-algebras:

K[G]~ [] My(K) [K-Alg].
pelrrk (G)

This is a special instance of the Artin-Wedderburn theorem."
Proof. Since dimV, = d,, one has V, ~ K% [K-Mod]. Hence Homg(V,,V,) =
Endg (K%) ~ Mg, (K) [K-Mod]. For each p we fix a basis B, of V. So we have now

fixed an isomorphism:

[ Endx(V,)= [] M4 (K) [K-Alg].
pelrrg (G) pelrrg (G)

For ¢ € G and p € Irrg(G), let M,(g) = Matp,(g). Each M,(-) is a group
morphism from G to GLg, (K). Now to g € G associate the family of matrices:

(Mp (g))p € HpelrrK(G)Mdp (K)

This defines a multiplicative map G — [1erer, (6) Ma, (K), which extends by lin-
earity to a morphism of associative K-algebras 7: K[G] - [l eirr, () Ma, (K). We
claim that F is an isomorphism in K-Alg.

F is injective: if g acts trivially on every V,, then g acts trivially on any repres-
entation, so it acts trivially on the regular representation. But reg is injective, so g = 1.
Now F is surjective as well, because |G| = ¥ ,c1rr, (6) d,. It is an isomorphism. O

An explicit isomorphism is discussed in § 13.4. We first return to orthogonality and
class functions.

13.3 Central idempotents
Let us reformulate orthonormality of the irreducible characters in abstract terms.
13.3.1. Definition. Let R be a ring.

o An element x is central if (Vy)(xy = yx).

o An idempotent is a nonzero element o # e € R with e* = e.

« Two idempotents e,, e, are orthogonal if e,e, = e, e, = 0.

3] have to teach this in the Village someday.
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« An idempotent e is primitive if it cannot be written as e = f, + f, where f; are
idempotents # o, 1.

o A complete set of central primitive idempotents is a family of central, primitive
idempotents summing to 1.

13.3.2. Theorem. Let G be a finite group and K be a good field. For y € Irrx(G), let
ey = % Ygec X(871)g- Then {ey : x € Irrg(G)} is both:

(i) a K-linear basis of the centre of K[G];

(ii) a complete set of central primitive idempotents of K[G].

Proof. This is essentially repeating the orthogonality relations; here are the main lines.

(i) The space Cx(G) of class functions is exactly the centre of K[G]. Indeed, f =
Yo Aeg € K[G] is central iff (Vh € G)(fh = hf)iff (Vg, h € G)(Agn = Aig)-
Since characters are class functions, we do have e, € Z(K[G]).

They form a family of cardinal #Irrx(G) = #Conj(G) = dimCk(G) =
dim Z(K[G]). So it only remains to prove linear independence, which will fol-
low from (ii).

(ii) We analyse reg term by term.

Let (W,0) be an irreducible representation with character y. Since e, €
Z(K[G]), one has a(e,) € Z(a(K[G])), so o(e,) is G-covariant. By Schur’s
Lemma, there is A,,, € K such that o(e,) = A,,,, Id. Now:

Dewt(1) = Ay dim W = tra(ey) = X2 5 y(gule) = x(1) ().
|G| geG

By orthogonality, A, = &,. Thus o(ey) = A,y Idw is o on irreducible rep-
resentations non-isomorphic to y, and Id on irreducible representations iso-
morphic to y.

Since reg, is a direct sum of irreducible representations, e, = reg(e,) is the
identity on Isorg () and the zero map on other isotypical components: thus e,
is the projector onto Iso,y(x) parallel to the other terms.

It follows that e, is an idempotent, and eye, = o whenever y # y. Finally,
> ey = Idyeg = 1. This certainly implies linear independence, and also completes
the proof of (i). O

13.3.3. Remark. One sometimes uses the following Z-basis of Z[G]. For y € Conj(G)
a conjugacy class, let e, = 3, g. Then {e, : y € Conj(G)} is a Z-basis of Z[G]. It can
be proved that every e, is an algebraic integer of the ring K[G]. (This is what we did in
Theorem 7.3.1, Step 1.)

*) 13.4 Fourier transform

Let G be a finite group and K be a good field. By the Artin-Wedderburn theorem (The-
orem 13.2.9), there are finite-dimensional vector spaces V;, ..., V, and an isomorphism
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of associative K-algebras:
T
K[G] ~ [ Endx (Vi) [K-Alg].

(We do mean End and certainly not Endg().) The present, completely optional, sub-
section elaborates on this fact and gives an explicit isomorphism: the Fourier transform
on the group.

Notation. Even though we work over an arbitrary good field, we adopt the analytic
point of view on the group algebra. So K[G] is the K-algebra of functions f:G — K,
equiped with the convolution product

(fi x £2)(8) = ;y: fi(x)f(y).
xy=g

(In algebraic terms, if f = 3 A,g, one simply lets f(g) = A,.)

Thus f(g) makes sense, and is a scalar. Below we shall also consider functions
¢:Irrg (G) — S for some set S. Then ¢(p) will make sense. (Here, ¢ will not stand
for a linear form.)

The Fourier transform takes functions f (viz. functions from G to K) to functions
¢ (viz. certain functions from Irrg (G) to S). The inverse Fourier transform does the
converse.

The general case. In physics the Fourier coefficients are not pure numbers. At each
frequency one has an energy; these quantities have very different natures; energies are
parametrised by frequencies. In non-abelian group theory, the Fourier ‘coefficients’ are:

o linear operators,
o parametrised by irreducible representations.

Hence Irrg (G) plays the role of the spectrum, viz. the set indexing the Fourier compon-
ents, and each component is in Endg (p).

13.4.1. Notation.

o For p: G - GL(V) a representation of G we still denote by p its natural extension
K[G] — Endg(V), which is a morphism of K[G]-algebras.

Hence, always seeing f as a function G — K:

p(f) =2 f(g) r(g) -

266G —~— ——
K eEndK(V)

Notice that p(f) € Endg (V); in general p(f) need not be G-covariant.

« For f e K[G] welet: f(p) = p(f) = Zpec F(8)P(g)-

13.4.2. Remark. Technically, f is thus a map from Irrg(G) to Uperrre (G) Endg (V,).
However, at each p, one has f(p) € Endg ( V,), and therefore:

fe J] Endx(V,).

pelrrg (G)

(If G is abelian, this will simplify dramatically.)
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13.4.3. Theorem. Let G be a finite group and K be a good field.

(i) For f e K[G] let f(p) = Yeec f(8)p(g)- Then F(f) = f defines an isomorphism
of K[ G]-algebras:

K[G]~ T[] Endk(p) [K-Alg].
pelrri (G)

(ii) For ¢ € [Ty, () Endi(p), let ¢ = F7'(¢) be the inverse. Then:

p= Y ERPulpee(p)].
pelrrk (G) |G|

13.4.4. Remarks.

+ We always consider Endx (p), since Endg[¢)(p) is only 1-dimensional by Schur’s
Lemma. (Cf. abelian case below.)

o Fisamorphism of associative K-algebras, but not a morphism of K[ G]-modules.

Proof. For brevity we let IT = [] 1, () Endr (G).

(i) Clearly F:K[G] — II is well-defined, and linear. Recall that K[G] is equiped
with the convolution product (which extends the group law on G), and II is
equiped with its Cartesian product structure, viz. we compose componentwise:
(¢1-92)(p) = ¢:(p) © 92(p). So F is multiplicative and takes 1 to (Id, : p €
Irrg (G)). Hence it is a morphism of K-algebras.

Now dimensions match, so it suffices to prove injectivity. Suppose F(f) = o.
Then in each irreducible representation, (the image of) f acts trivially. But the
regular representation is a direct sum of such, so f acts trivially on reg ~ K[G].
Since K[G] has a unit (viz. since reg is injective), this means f = o.

(ii) This may look difficult but the formula is given, so it is a simple matter of check-
ing it. The linear map F ' is well-defined. Let:

dim -
Glo)=[g~ X Gptr(p(g De(p)) |
pelrrg (G) | |
which is clearly linear from IT to K[G]. We want to prove G = F .

Let h € G. When seen in K[G], viz. when seen as a function G — K, h is the
‘Dirac mass’ 8j,(x) = 0y , which equals 1 at & and o everywhere else.
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Then F(8;,) = [p+~ p(h)], so atany g € G one has:

di -
GFEGN@= Y Tlu(p(g)p(h)
pelrrg (G) |G|
1
- L dimp- y,(g'h)
pelrrk (G) |G‘ prats
= ﬁregc(g‘lh)
G
::G:Sg_‘h(l)
=0,(g).

This also equals F7*(F(81,))(g), and equality holds at every g. Thus, as func-
tions, G(F(8y,)) = F(F(8y)). Therefore G and F~* agree on {F () : h €
G}, which is a basis of I1. By linearity, they agree everywhere. OJ

The abelian case. Let A be a finite abelian group.

If p € Irrg(A) then dimp = 1. Although a 1-dimensional vector space V is non-
canonically isomorphic to K, the ring End(V) is canonically isomorphic to K. Here
p:A — GL(V), so we may assume p: A — K*. Thus irreducible representations are
elements of the dual group A, viz. the group of all morphisms A - K*. Hence, here,
Irri (A) = A bears an additional group structure.

Return to p € A and to the canonical isomorphism Endx (p) ~ K. Therefore:

[T Ende(p)~]][K=KA [K-Alg].
pelrrg (A) A

The right-hand is no longer formed of operators but of Fourier coefficients.

13.4.5. Remark. Be careful that K#, as a K-algebra, is still equiped with the compon-
entwise product, which is not the same as the convolution product. (This simply means
K4 ¢ K[A] [K-Alg].) There is no escaping from the fact that Fourier changes convolu-
tion to componentwise, and vice-versa.

The inverse transform rewrites as follows. Since every linear endomorphism u of a 1-
dimensional vector space is the scalar action of A, = tr 4, the inverse transform formula
simplifies to:

. 1
#(a) = 2. e (a9 (p).

ped
13.4.6. Remark. First notice that the direct transform can rewrite as:

Fp) =3 f(a)p(a) = 1Al (f*1p) 4

acA

where (-|-) , is the usual bilinear form on Cx (A).

With perversity one may move to the bidual group A and rewrite the inverse trans-
form using it. Let ev,: A — K* take p to ev,(p) = p(a) (‘evaluation map’). It is not

hard to see that ev: a — ev, is a natural isomorphism A ~ A. The ev, are the irreducible
characters of A.
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Then the inverse formula de-simplifies to:

1

¢(a)=3" mp(—a)fp(/)) =

) L (eva(-p)p(e) = (evalo)s

peA

where (+|-) ; is the usual bilinear form on Cx (A).

13.5 Exercises

13.5.1. Exercise. Let K be a field, G,, G, be two groups, and ¢: G, - G, be a group morph-
ism.

(i) Show that ¢ naturally induces a morphism of K-algebras ®:K[G, ] - K[G,].

(ii) Show that @ is an isomorphism iff @ is an isomorphism.
Note. It is an open problem in group theory whether one can have K[G,| ~ K[G,] as
abstract K-algebras without having G, = G, as groups.
13.5.2. Exercise. Let R be a ring. Prove that R is semisimple as a left R-module iff it is as
a right R-module.
13.5.3. Exercise. Let A be a finite abelian group.

1. Let B < A be a subgroup. Prove that every morphism B — C* extends to A.

2. Prove that A is isomorphic to A, and that A is canonically isomorphic to A.

Further reading

« C. Curtis, Pioneers of representation theory: Frobenius, Burnside, Schut, and Brauer.
History of Mathematics, 15. American Mathematical Society, Providence, RI, 1999.

o C. Curtis and L. Reiner, Representation theory of finite group and associative algeb-
ras. Reprint of the 1962 original. American Mathematical Society, Providence, R,
2006.

o M. Isaacs, Character theory of finite groups. Pure and applied mathematics, 69.
Academic Press, New York-San Francisco-London, 1976.

o J.-P. Serre, Linear representations of finite groups. Translated from the French by
L. Scott. Graduate Texts in Mathematics, 42. Springer-Verlag, New York, 1977.

« ].-P. Serre, Finite groups: an introduction. International Press, Somerville, 2016.
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