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§§ 1–6 form the initial socle. ¿en §§ 7–8 are one block; so are §§ 10–11. Apart from
these dependencies, lectures § 7–11 can be permuted freely.

Introduction
¿e real planeR2 may be studied with di�erent notions and tools; these are called struc-
tural layers and are conveniently imagined as tracing sheets. ¿e following list is not
comprehensive, and items may be combined or not:

• points and lines;

• coordinates and vectors;

• distances;
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• areas;

• the dot product;

• the complex multiplication;

• angles;

• angle measurements.

¿ese lead to distinct mathematical theories, all developed in order to formalise our
intuition of what ‘the physical plane’ is.

In this course we restrict ourselves to the most basic layer where one has only points
and lines. ¿e relevant notion is that of an a�ne plane. It is just a collection of points
and lines; a point can be on a line or not. Geometric intuition, or physical observation
in our small part of the universe (a sheet of paper can do) will suggest axioms describing
the behaviour. ¿ese axioms de�ne abstract a�ne planes, and the usual a�ne plane R2

is only one example of such structures. Quickly one realises that projective geometry
behaves in a nicer way. Essentially it amounts to adding ‘points at in�nity’ to an a�ne
plane. ¿e resulting abstract projective planes are more homogeneous, more worth a
mathematician’s time. ¿e course is dedicated to their study.

When compared to analytic number theory, di�erential geometry or algebraic topo-
logy, our topic is certainly elementary since there is no ‘higher’ structure (no topologies,
no categories, etc.). But the word elementary is no synonym of easy: it refers to a set of
methods, not to a level of di�culty. Incidence geometries were studied, among others,
by Hilbert, E. Artin, Tarski; and are therefore not an unworthy subject. Beyond the �rst
study of abstract projective planes lies combinatorial geometry, full of challenging open
problems. We will not go that far. Further reading is suggested at the end of the lecture
notes.

¿e course covers basic material on projective planes. It describes beautiful phe-
nomena. It returns to elementary aspects and therefore teaches one to separate struc-
tural layers. It exempli�es the power of group-theoretic language. And it is not part of
the standard curriculum. For all these reasons it is very suitable for a summer school.

Prerequisites
¿e class is supposedly accessible to a third year student.

Geometry: High-school level. ¿e use of cartesian coordinates; line equations, the dif-
ference between points and vectors.

Linear algebra: Basic knowledge. Vector spaces and coordinates. We shall need the
(lesser known) basic linear algebra over skew-�elds, whichworks exactly the same
however confusing it might sound at �rst.

Fields and skew-�elds: ¿e de�nitions. One should be aware of the existence of the
latter as they appear everywhere in the course.

Group theory: Groups will play a prominent role in advanced sections like §§ 7, 8, 9,
10, 11. To follow them one should be fully comfortable with subgroups, normal
subgroups, and group actions (stabilisers, transitivity).

Before we start, recall two de�nitions and related phenomena.
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Fields and skew-�elds; Wedderburn’s theorem
De�nition (�eld). A �eld is a structure (F; 0, 1,+, ⋅) where:

• (F; 0,+) is an abelian group (called ‘the additive group’);

• (F ∖ {0}; 1, ⋅) is an abelian group (called ‘the multiplicative group’);

• ⋅ is distributive over +, viz. (a + b) ⋅ c = a ⋅ c + b ⋅ c and likewise on the other side.

Equipped with their natural algebraic operations, Q,R,C are �elds. One should
know that there exist �nite �elds.

¿eorem (Galois). For every prime power q = pk , there exists a (unique up to isomorph-
ism) �eld with q elements. Every �nite �eld has order a prime power.

One should also know that commutativity may be dropped.

De�nition (skew-�eld). A skew-�eld is a structure (F; 0, 1,+, ⋅) where all axioms of a
�eld hold, except that ⋅ is not required to be commutative.

An example of a non-commutative skew-�eld is the quaternion algebra H = R ⊕
Ri ⊕R j⊕Rk, subject to the usual ‘Hamilton identities’. ¿ere one has i j = k ≠− k = ji.
It should be checked or known that H is a skew-�eld, but not a �eld. For reference one
may see my 2021 course on quaternions.1

¿eorem (Wedderburn). Any �nite skew-�eld is commutative.

We shall not prove this classical number-theoretic result but it considerably clari�es
the picture. ¿ough non-commutative skew-�elds are therefore uncommon objects in
general mathematics, they play a central, unavoidable role in the study of a�ne and
projective planes. ¿is involves doing some linar algebra over skew-�elds.

Remark (linear algebra over a skew-�eld). One has to distinguish between le - and
right-vector spaces, not confusing them. (¿e risk is serious when V = Fn .) Basic linear
algebra such as elementary elimination theory and dimension theory still apply.

On the other hand, there is no fully satisfactory/fully accepted theory of determ-
inants over a skew-�eld. ¿erefore claiming invertibility of a matrix with entries in a
non-commutative skew-�eld because of its ‘determinant’ is simple nonsense.

1 A�ne planes
Abstract. § 1.1 formalises the setting: incidence geometries. In common cases, the
abstract incidence relation can be taken to be set-theoreticmembership. § 1.2 intro-
duces a�ne planes, and the notion of parallelism. § 1.3 associates to any skew-�eld
F a concrete a�ne planeA2

(F), which is the usual system of points and lines in F2 .
Not all a�ne planes are of this form.

1https://webusers.imj-prg.fr/~adrien.deloro/teaching-archive/
Sirince-Quaternions.pdf
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1.1 Incidence geometries
¿e purpose of this course is a description of certain point-line con�gurations. ¿ere
are two natural approaches here:

• work with points only and a ternary collinearity relation (with intendedmeaning:
‘the three points are on some common line’);

• work with points and lines as objects of distinct types, and a binary incidence
relation (with intended meaning: ‘the point is on the line’).

¿ough the former option has its virtues, we retain the latter for better readibility.

1.1.1. De�nition (incidence geometry). An incidence geometry is a triple Γ = (P ,L, I)
where:

• P is a set of objects called ‘points’ ;

• L is a set of objects called ‘lines’;

• I is a relation on P × L called ‘incidence’, which intuitively says when a point is
on a line or not.

Manipulating two distinct sets of objects requires using variables in a consistent
manner. From now on, a, b, . . . , a′ , b1 , . . . , p, q, . . . will always denote points, while
ℓ, m, ℓ′, m1 , . . . will always denote lines. ¿is is implicit in our notation. For instance,
(∀a)means: ‘for any point a. . . ’.
1.1.2. De�nition (collinear). Given an incidence geometry, points a1 , . . . , an are collin-
ear if there is a line ℓ such that for each k one has ak Iℓ.

¿e incidence relation I is of an abstract nature; instead of ‘p is incident to ℓ’ onemay
be more used to writing ‘p ∈ ℓ′. Indeed replacing I by ∈ is allowed, up to isomorphism.
¿is requires a de�nition.

1.1.3. De�nition (isomorphism). Two incidence geometries Γ1 = (P1 ,L1 , I1) and Γ2 =
(P2 ,L2 , I2) are isomorphic if there are bijections f ∶ P1 → P2 and g∶ L1 → L2 such that:

(∀a)(∀ℓ)(aI1ℓ↔ f (a)I2g(ℓ)).

1.1.4. Proposition (reducing to membership). Let Γ = (P ,L, I) be an incidence geo-
metry such that any two lines having the same points are actually equal. ¿en there is
an incidence geometry Γ′ = (P ′ ,L′ , ∈) where incidence is set-theoretic membership, and
Γ ≃ Γ′ as geometries.

Proof. ¿e idea is to keep the same points, and write new lines as sets of points. To
each ℓ ∈ L associate Sℓ = {p ∈ P ∶ pIℓ}, a subset of P . Now consider L′ = {Sℓ ∶
ℓ ∈ L}, a family of subsets of P . We claim that Γ = (P ,L, I) and Γ′ = (P ′ ,L′ , ∈) are
isomorphic.

Let f be the identity function on P and g∶ L → L′ map ℓ to Sℓ . Clearly f is a
bijection and g is surjective. Actually g is injective: if Sℓ = Sm then lines ℓ and m have
the same points, so by assumption they are equal. Finally for any (p, ℓ) ∈ P × L, one
has pIℓ i� p ∈ Sℓ . Hence ( f , g) is an isomorphism Γ ≃ Γ′.

So instead of always saying that ‘p is incident to ℓ’ in Γ one may implicitly work in
Γ′ and use the common phrases: ‘p is in ℓ’, ‘p belongs to ℓ’, ‘ℓ contains p’.
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1.2 ¿e de�nition
¿e de�nition of an a�ne plane (De�nition 1.2.2 below) requires an auxiliary notion.

1.2.1. De�nition (parallel). Two lines ℓ,m are parallel if either ℓ = m or there is no point
incident to both, viz.:

ℓ//m i� [ℓ = m] ∨ [(∀a)¬(aIℓ ∧ aIm)].

(Notice that it captures the intuition of R2, not of R3.) ¿is notion plays a role only
when studying a�ne planes, and disappears when studying projective planes (§ 2).

1.2.2. De�nition (a�ne plane). An a�ne plane A is an incidence geometry satisfying
the following axioms AP1, AP2, AP3.

AP1. (∀a)(∀b)[(a ≠ b) → (∃!ℓ)(aIℓ ∧ bIℓ)].
(Meaning: given any two distinct points, there is a unique line incident to both.)

AP2. (∀a)(∀ℓ)(∃!m)[(aIm) ∧ (ℓ//m)].
(Meaning: through any point there is a unique line parallel to a given line.)

AP3. ¿ere exist three non-collinear points.

1.2.3. Remarks.

• ¿e axiomatisation is in the sole terms of points and lines; words such as angle,
distance, or even between are banned from the vocabulary. ¿ey would lead to
other (more powerful and less elementary, but equally interesting) mathematical
theories.

• AP3 removes degenerate con�gurations, the most extreme of which being P =
∅ = L. See exercice 1.4.3.

• By the axioms and proposition 1.1.4, one may suppose that the incidence relation
is ∈. See exercise 1.4.4.

1.3 ¿e a�ne plane over a skew-�eld
We wrote the de�nition of an a�ne plane by ‘painting from nature’, viz. by observing
the real a�ne plane. Our de�nition captures more than the real case; skew-�elds appear
naturally.

• If F is a skew-�eld, then elements of F2 will be written as rows, not as columns,
viz. as pairs (x , y).

• We use the same pair notation for points and vectors; this results in no confusion.
Recall the following basics of high-school a�ne geometry.

• Vectors may be added by putting (x1 , y1) + (x2 , y2) = (x1 + x2 , y1 + y2).

• Scalars act on vectors by letting λ ⋅ (x , y) = (λ ⋅ x , λ ⋅ y); this turns F2 into a
le -F-vector space.

• Last, vectors act on points: if p = (x1 , y1) and Ð→v = (x2 , y2), let p + Ð→v = (x1 +
x2 , y1 + y2). (¿is may look like the sum of two vectors, but here p is a point, and
there is no addition of points. Our notation simply does not re�ect the essential
di�erence in nature between points and vectors.)
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1.3.1.De�nition (a�ne plane over a skew-�eldA2(F)). LetF be a skew-�eld. LetA2(F)
be the following incidence geometry:

• points are pairs (x , y) ∈ F2;

• lines are sets of the form {p + tÐ→v ∶ t ∈ F} for p a point and Ð→v ≠ Ð→0 a non-zero
vector;

• incidence is set-theoretic membership.

¿is generalises the familiar case ofA2(R) as it allows skew-�elds. One should prac-
tice a little with skew-�elds (using quaternions for instance).

1.3.2. Proposition. Let F be a skew-�eld. ¿en A2(F) is an a�ne plane.

1.3.3. Remark (important). Not all a�ne planes are of the form A2(F). ¿e Desargues
property (§ 3) characterises those a�ne planes of the form A2(F).

Proof. Points are pairs p = (x , y) ∈ F2; lines are sets of the form

ℓ
p ,Ð→v = {p + tÐ→v ∶ t ∈ F}

for p ∈ F2 andÐ→v ≠ Ð→0 . Notice that one always has p ∈ ℓ
p ,Ð→v .

We must check axioms AP1 ,AP2 ,AP3. Call two vectors proportional if both are
non-zero and one (equivalently, each) is a multiple of the other. (Since the �eld is non-
commutative, we do mean Ð→v2 = λ ⋅ Ð→v1 with λ on the le . For a le -vector space we
never write ‘vector times scalar’.)
Step 1. Two lines ℓ1 = ℓp1 ,Ð→v1 and ℓ2 = ℓp2 ,Ð→v2 are equal i� [

Ð→v1 andÐ→v2 are proportional
vectors, andÐÐ→p1p2 is a (possibly null) multiple of those].

Veri�cation. First suppose ℓ1 = ℓ2. Since p2 ∈ ℓ1 there is t ∈ F with p2 = p1 + tÐ→v1 . SoÐÐ→p1p2 = tÐ→v1 is a multiple of Ð→v1 . But also p1 ∈ ℓ2 so there is s ∈ F with p1 = p2 + sÐ→v2 .
Now:

p1 = p2 + sÐ→v2 = p1 + tÐ→v1 + sÐ→v2 ,
which simpli�es into tÐ→v1 + sÐ→v2 = Ð→0 . Since neitherÐ→v1 norÐ→v2 isÐ→0 , they are propor-
tional.

Conversely we shall prove one inclusion, and the other will follow by symmetry.
So let q ∈ ℓ1. By de�nition there is t ∈ F with q = p1 + tÐ→v1 . Now by hypothesis there
are λ, µ ∈ F withÐÐ→p1p2 = λÐ→v2 andÐ→v1 = µÐ→v2 (we even know that µ ≠ 0). ¿en:

q = p2 −ÐÐ→p1p2 + tÐ→v1 = p2 + (tµ − λ)Ð→v2 ∈ ℓ2 ,

proving ℓ1 ⊆ ℓ2. ◇

Step 2. Two lines ℓ1 = ℓp1 ,Ð→v1 and ℓ2 = ℓp2 ,Ð→v2 are parallel i�
Ð→v1 andÐ→v2 are proportional

vectors.

Veri�cation. Suppose ℓ1//ℓ2; we wish to show thatÐ→v1 andÐ→v2 are proportional vectors.
If ℓ1 = ℓ2 then this follows from the previous claim. So suppose ℓ1 ≠ ℓ2; since they
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are parallel this means that there is no point on both lines. Hence the equation:

p1 + t1Ð→v1 = p2 + t2Ð→v2

has no solution for (t1 , t2) ∈ F2.
Work in coordinates, say p i = (x i , y i) andÐ→v i = (a i , b i). So the system of equa-

tions:

(S) ∶ { x1 + t1a1 = x2 + t2a2
y1 + t1b1 = y2 + t2b2

has no solution for (t1 , t2) ∈ F2. Notice that multiplicative coe�cients are on the
right and variables t1 , t2 on the le ; this is due to non-commutativity of F.

Remember that we want to prove that Ð→v1 and Ð→v2 are proportional vectors, and
that the assumption is that (S) has no solution. ¿ere are three cases, two of which
are equivalent.

Case 1a. Suppose a1 = 0. ¿en sinceÐ→v1 ≠ Ð→0 one has b1 ≠ 0. If a2 ≠ 0 then there is a
unique solution t2 = (x1 − x2) ⋅ a−12 to the �rst equation; now t2 being known
there is a unique solution in t1 to the second. ¿is is a contradiction to (S)
having no solution, so actually a2 = 0. ¿en sinceÐ→v2 ≠ Ð→0 one has b2 ≠ 0, and
clearlyÐ→v1 andÐ→v2 are proportional vectors.

Case 1b. If b1 = 0, the desired conclusion follows similarly.

Case 2. Suppose a1 ≠ 0 and b1 ≠ 0. ¿en multiply the �rst equation on the right by
λ = a−11 b1, and subtract from the second, getting:

y1 − x1λ = y2 − x2λ + t2(b2 − a2λ).

If b2 − a2λ ≠ 0 then there is a (unique) solution in t2, which then gives rise to
a (unique) solution in t1: so (S) has a solution, a contradiction.
¿erefore b2 = a2λ = a2a−11 b1. Finally:

Ð→v2 = (a2 , a2a−11 b1) = a2a−11 ⋅ (a1 , b1) = a2a−11 Ð→v1 ,

soÐ→v1 andÐ→v2 are proportional vectors. ◇

Step 3. A2(R) satis�es axioms AP1 ,AP2 ,AP3.

Veri�cation. We check them in order.

AP1. Let p1 ≠ p2 be points. ¿enÐ→v = ÐÐ→p1p2 ≠ Ð→0 and ℓ = ℓ
p1 ,
Ð→v clearly contains p1

and p2. Uniqueness is clear as well.

AP2. Let p be a point and ℓ = ℓq ,Ð→v be a line. ¿en clearlym = ℓ
p ,Ð→v contains p and

is parallel to ℓ; but also uniqueness is clear.

AP3. Simply take (0, 0), (0, 1), and (1, 0). ◇

¿is completes the proof.

1.3.4. Remark (the right-version (F)2A).
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• Using the right action, de�ne a geometry (F)2Awith ‘right-lines’ {p+Ð→v t ∶ t ∈ F}.

• Points in A2(F) and (F)2A are the same, but lines may di�er. Technically, sets
{p+tÐ→v ∶ t ∈ F} and {p+Ð→v t ∶ t ∈ F} need not be equal. (¿ismay seem confusing
at �rst, but the le - and right-linear structures are simply not the same.)

• (F)2A is another a�ne plane: same proof as Proposition 1.3.2, exchanging sides.

• For a commutative �eld F, le - and right-lines are equal, so A2(F) = (F)2A. For
quaternions H, lines di�er but A2(H) ≃ (H)2A (exercise 1.4.7). For arbitrary F,
planes A2(F) and (F)2A need not be isomorphic.

1.4 Exercises
1.4.1. Exercise.

1. Write AP3 in logical form.

2. (Tedious.) Using only points and a ternary relation for collinearity, de�ne parallel-
ism, then axiomatise a�ne planes.

1.4.2. Exercise. In an a�ne plane, prove that//is an equivalence relation.

1.4.3. Exercise. List all incidence geometries satisfying AP1 and AP2 but not AP3.

1.4.4. Exercise. Let A = (P ,L, I) be an a�ne plane. Prove that any line has at least
two points, and that two lines with the same points are equal. Conclude that there A is
isomorphic to an a�ne plane of the form A′ = (P ′ ,L′ , ∈) .

1.4.5. Exercise. Let P be the set of points on the Euclidean sphere S2(R) = {x ∈ R3 ∶
∥x∥ = 1} and L be the set of ‘great circles’, viz. circles of maximum radius on the sphere.
Prove that (P ,L, ∈) is a geometry satisy�ng AP1. What about AP2?

1.4.6. Exercise. Prove that the following is the smallest a�ne plane. Can you identify it?
a b

c d
One point is removed;
diagonals do not meet.

1.4.7. Exercise. Let F be a skew-�eld.

1. Check that (F)2A of Remark 1.3.4 is an a�ne plane.

2. Prove that (F)2A = A2(F) i� F is commutative.

3. Suppose that there is an anti-automorphism of F, viz. an additive bijection φ such
that (∀a, b)(φ(a ⋅ b) = φ(b) ⋅ φ(a)). Show that (F)2A ≃ A2(F). (¿e converse
can be proved in later exercises.)
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2 Projective planes
Abstract. § 2.1 de�nes projective planes and gives one class of examples: the struc-
tures P2

(F) for F a skew-�eld. Not all projective planes are of this form. § 2.2
explores the relationships between the classes of abstract a�ne planes and of ab-
stract projective planes by so-called projectivisation and a�nisation. § 2.3 applies
these operations to the concrete examples A2

(F) and P2
(F).

¿e need to ‘add points at in�nity’ where parallel lines would meet was felt during
the Renaissance, and cannot be separated from the history of Painting. Early school
pencil-and-paper practice shapes our �rst intuition of geometry, and is convincingly
rendered by a�ne planes. However, trying to represent on a planar support the physical
3-dimensional space, begs for other means than linear projections. Indeed, our seeing
device (the eye) is a nearly punctual object. ¿e theory of perspective thus naturally
takes place in projective geometry.

Mathematically, projective geometry is even more natural than its a�ne version.
Statements there are more concise; the algebraic behaviour is more homogeneous. ¿is
course is really about projective planes.

2.1 ¿e de�nition
2.1.1.De�nition (projective plane). A projective plane is an incidence geometry (P ,L, I)
satisfying the following axioms PP1 ,PP2 ,PP3.

PP1. ¿rough any two distinct points there is a unique line.

PP2. Any two distinct lines meet in a unique point.

PP3. ¿ere are four points no three of which are collinear.

(¿e de�nition has a lovely symmetry called self-duality, to which we return in § 12.)

2.1.2. Remark (and notation). BothAP1 and PP1 say that any two distinct points lie on
a unique line. From now on, given two points a ≠ b of an a�ne or projective plane, (ab)
denotes the unique line through them.

We move to one source of examples. In a le -vector space, a (le -)vector line is a
1-dimensional le -vector subspace, which can be viewed as a line through the origin;
de�ne a (le -)vector plane likewise.

2.1.3. De�nition (projective plane over a skew-�eld P2(F)). Let F be a skew-�eld. Let
P2(F) be the following incidence geometry:

• as points, the le -vector lines of F3;

• as points, the le -vector planes of F3;

• as incidence relation, set-theoretic inclusion ⊆.

2.1.4. Remark. ¿ere also exists a right-version (F)2P, which need not be equal nor
even isomorphic to P2(F) (see Remark 1.3.4).

2.1.5. Proposition. Let F be a skew-�eld. ¿en P2(F) is a projective plane.
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2.1.6. Remark (important). Like in the a�ne case, not all projective planes are of the
form A2(F). ¿e Desargues property (§ 3) characterises those projective planes of the
form P2(F).

2.1.7. Remark (continued). For instance, P2(F9) has 92 + 9 + 1 = 91 points. But there
exist threemore projective planes with 91 elements. To show that in total there are exactly
four, requires heavy computer assistance.2

Proof. We must check three things. ¿is is easy as our construction relies on vectors
in dimension 3. Even though F need not be commutative, basic linear algebra remains
sound. We only use le -subspaces, and consequently omit ‘le ’.

PP1. Let α ≠ β be two projective points, i.e. two distinct vector lines Lα , Lβ ⊆ F3.
¿en set H = ⟨Lα , Lβ⟩ ⊆ F3, a vector plane of F3. In projective terms, H is a line
λ. Now by de�nition, Lα ⊆ H translates into αIλ, and βIλ likewise. Uniqueness
is clear as well, since there is no other vector plane containing both Lα and Lβ .

PP2. Start with two distinct projective lines λ ≠ µ. By construction they correspond
to distinct vector planes Hλ ≠ Hµ , and Hλ ∩Hµ is a vector line L, which we see
as a projective point α. Obviously αIλ and αIµ, but uniqueness is clear as well.

PP3. Vector lines spanned by vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) de�ne
suitable projective points.

¿e remarkable simplicity of the proof (cf. proof of Proposition 1.3.2) is already an
indication in favour of projective over a�ne geometry: even for ‘coordinatisable’ objects,
the projective version is easier to deal with.

2.1.8. Remark (projective coordinates). One can represent points of P2(F) by equi-
valence classes of non-zero triples of coordinates, as follows. Consider the relation on
F3 ∖ {(0, 0, 0)}:

(a1 , a2 , a3) ∼ (b2 , b2 , b3) i� (∃λ)[(λa1 = b1) ∧ (λa2 = b2) ∧ (λa3 = c3)].

¿is is the equivalence relation of proportionality of non-zero vectors. ¿e set of equi-
valence classes is naturally the set of vector lines in F3, i.e. points of P2(F).

Write [a1 , a2 , a3] for the class of (a1 , a2 , a3); they are projective coordinates, de�ned
up to (le -)multiplication by a non-zero scalar. If [a1 , a2 , a3] = [b1 , b2 , b3] and a1 =
b1≠ 0, then a2 = b2 and a3 = b3.

Projective coordinates are useful when bringing matrices into the picture. However,
since we treatF3 as a le -vector space,matrices will act from the right, viz. by row-matrix
product.

2.2 From a�ne to projective, and back
Another way to obtain projective planes is by ‘completing’ a�ne planes, a procedure we
now describe. In the a�ne world, some intersections are missing: if ℓ//m are distinct,
parallel a�ne lines, then we should add a ‘point at in�nity’ where they meet at last. Now

2C. Lam, G. Kolesova, L. ¿iel. A computer search for �nite projective planes of order 9, Discr. Math., 92,
pp.187–195, 1991.

10



if ℓ//m//n then the same point should be added for the missing intersection ℓ ∩m and
for the missing intersectionm∩n. So one is not working with pairs of parallel lines, but
with whole sets of pairwise parallel lines.

2.2.1. Lemma. Let A be any a�ne plane. ¿en//is an equivalence relation.

Proof. ¿is holds of A2(F) for F a skew-�eld, as one has a detailed description of
parallelism from the proof of Proposition 1.3.2. But we want a general proof, a proof
using only axioms AP1 ,AP2 ,AP3. Remember that in this abstract setting ℓ and m are
parallel i� ℓ = m or ℓ and m do not meet. We freely replace A by an isomorphic plane
where incidence is given by membership.

¿ere are three things to check:

Re�exivity. Every line ℓ satis�es ℓ = ℓ, so ℓ//ℓ.

Symmetry. If ℓ//m then either ℓ = m or ℓ ∩m = ∅; in either case m//ℓ.

Transitivity. Suppose ℓ//m andm//n; we show that ℓ//n. If ℓ = nwe are done. Otherwise
we must prove ℓ ∩ n = ∅. So suppose not; by AP1 there is a ∈ ℓ ∩ n. Now by
AP2, there is a unique line parallel to m and containing a; however this applies
to both ℓ and n. So actually ℓ = n, a contradiction showing that ℓ∩n = ∅. Hence
ℓ//n, as desired.

2.2.2.Notation. For ℓ an a�ne line, let [ℓ] be its equivalence class and call it its direction.

Intuitively one should add a new point ‘at in�nity’ for each direction; there will also
be a line ‘at in�nity’. But ordinary, a�ne lines ℓ are now too short: we must force a
projective line to contain the direction. ¿is explains why we go through ℓ̂ below.

2.2.3. De�nition (projectivisation Â of an a�ne plane). Let A = (P ,L, ∈) be an a�ne
plane. ¿e projectivisation of A is the incidence geometry Â = (P̂ , L̂, ∈) de�ned as
follows:

• for each ℓ ∈ L, let ℓ̂ = ℓ ∪ {[ℓ]} be the ‘completion of line ℓ’;

• let ℓ∞ = {[ℓ] ∶ ℓ ∈ L} be the ‘line of directions’;

• P̂ = P ∪ ℓ∞ = P ∪ {[ℓ] ∶ ℓ ∈ L},

• L̂ = {ℓ̂ ∶ ℓ ∈ L} ∪ {ℓ∞}.

ℓ∞

ℓ1

ℓ′1

[ℓ1]=[ℓ′1]

ℓ2

ℓ′2

[ℓ2]=[ℓ′2]

Complete each a�ne line ℓ into ℓ̂.
Do not forget line at in�nity ℓ∞.

2.2.4. Proposition. Let A be an a�ne plane. ¿en Â is a projective plane.

11



Proof. ¿ere are three axioms to check.

PP1. Let α ≠ β be two points in P̂ . We see several cases.

• If α = a ∈ P and β = b ∈ P , then by AP1 there is a unique line ℓ ∈ L
containing both. Clearly α, β ∈ ℓ̂. We also have uniqueness. If another line
λ ∈ L̂ contains α and β, then λ cannot be ℓ∞, so λ = m̂ for some a�ne
line m ∈ L. ¿en a, b ∈ m, so by uniqueness in AP1 one has m = ℓ and
therefore λ = m̂ = ℓ̂. So ℓ̂ is the only line of L̂ containing α and β.

• Suppose α = a ∈ P but β ∈ P̂ ∖ P = ℓ∞ (the other case is similar). ¿en
by de�nition, there is ℓ ∈ L with β = [ℓ]. Now by AP2 there is a unique
m ∈ L with a ∈ m and m//ℓ. ¿en on the one hand α ∈ m̂, and on the
other hand [ℓ] = [m] ∈ m̂. Now to uniqueness. If a line λ contains a and
β, then it cannot be ℓ∞. So it is of the form n̂ for some a�ne line n. Now
α ∈ n̂ implies a ∈ n, and β = [ℓ] ∈ n̂ implies [ℓ] = [n], that is, ℓ//n. By
uniqueness in AP2 one has n = m, and therefore λ = n̂ = m̂.

• Now suppose α, β ∈ ℓ∞. Clearly ℓ∞ is the only line in L̂ incident to both
α and β.

PP2. Exercise.

PP3. Obvious from AP3 and the de�nition of the projectivisation.

¿e converse operation of ‘downgrading from projective to a�ne’ involves choosing
the line to be removed.

2.2.5. De�nition (a�nisation P̌λ of a projective plane). LetP = (P ,L, ∈) be a projective
plane. Fix one line λ ∈ L. ¿e a�nisation ofPwith respect to λ is the incidence geometry
P̌λ = (P̌ , Ľ, ∈) de�ned as follows:

• for each µ ∈ L ∖ {λ}, set µ̌ = µ ∖ λ;

• P̌ = P ∖ λ;

• Ľ = {µ̌ ∶ µ ∈ L ∖ {λ}}.

Be careful that not all our notation re�ects dependence on λ.

2.2.6. Remarks.

• ¿e isomorphism type of P̌λ depends on the line λ you chose to remove. A�nisa-
tion is not uniquely de�ned, one may not say ‘the a�nisation’ without specifying
λ. (Cf. ‘’the projectivisation’, which is well-de�ned.)

• In particular, an arbitrary a�nisation of the projectivisation of an a�ne plane A
may depend on the choice of line removed from Â, and need not be isomorphic
to A.

• But starting from projective P and letting A = P̌λ , one has Â ≃ P regardless of λ.

See exercise 2.4.4.
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2.3 Projectivising A2(F), a�nising P2(F)
Applying the projectivisation/a�nisation procedures to A2(F) and P2(F) gives what
one expects.

2.3.1. Proposition. Let F be a skew-�eld. ¿en:

(i) Â2(F) ≃ P2(F);

(ii) for any line, P̌2(F) ≃ A2(F).

Proof.

(i) We describe an isomorphism. Let H0 ≤ F3 be a vector plane and x ∈ F3 be a
vector not in H0. Let H1 = x +H0, an a�ne translate of H0. Clearly A2(F), H0,
andH1 are isomorphic a�ne planes; in particular Â2(F) and Ĥ1 are isomorphic
projective planes. So it su�ces to see that Ĥ1 and P2(F) are isomorphic, as
follows.

H0

H1

x

O

a

L

L′

x + L′

L /≤ H0 is mapped to a, while L′ ≤ H0 is mapped to [x + L′].

Let L ≤ F3 be a vector line. If L /≤ H0, then L will intersect H1 in a point say a;
map L to a. If L ≤ H0, then there is no intersection, so L should be mapped to a
point at in�nity. In the previous construction, such points were the equivalence
classes (directions) of lines of H1; so map L to [x + L], the direction of x + L
which is a line of the a�ne plane H1. ¿is maps vector lines in F3 to points in
Ĥ1.

Now let H ≤ F3 be a vector plane. If H ≠ H0 then H ∩H1 is a line ℓ of the a�ne
plane H1; map H to ℓ̂ as in the projectivisation construction. If on the other
hand H = H0 then map H to ℓ∞. ¿is maps vector planes in F3 to lines in Ĥ1.

It is an exercise to �nish the proof:

• check that we have a bijection between points of P2(F) and points of Ĥ1;

• check that we have a bijection between lines of P2(F) and lines of Ĥ1;

• check that these bijections preserve incidence.

(ii) Exercise.
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2.4 Exercises
2.4.1. Exercise. Show that the following is the smallest projective plane, and identify it.

¿e circle counts as a line.

2.4.2. Exercise. Let P be a projective plane with line λ. Show that A = P̌λ is an a�ne
plane and Â ≃ P.

2.4.3. Exercise. Let F be a skew-�eld and P = P2(F). Prove that for any line one has
P̌λ ≃ A2(F).

2.4.4. Exercise (the isomorphism type of P̌λ depends on the line you remove).

1. LetA be an a�ne plane and α ∈ Aut(A) be an automorphism. Prove that α extends
to a unique automorphism of Â.

2. Let P be a projective plane with two lines λ1 , λ2. Let Ai be the a�nisation with
respect to λ i . Suppose that A1 ≃ A2, and prove that there is α ∈ Aut(P) sending λ
to µ.

3. Deduce that the isomorphism type of P̌λ may depend on the line you remove. Hint:
there is a projective plane with whose automorphism group is not transitive on lines
(see Exercise 3.4.6).

4. Also deduce that there exist two non-isomorphic a�ne planes with isomorphic pro-
jectivisations.

5. Prove however that if P ≃ P2(F), then P̌λ does not depend on the line you remove.

2.4.5. Exercise. Let P be a projective plane. Let ℓ1 ≠ ℓ2 be two lines and p ∉ ℓ1 ∪ ℓ2. Show
that the following picture de�nes a bijection ℓ1 ≃ ℓ2.

ℓ1 ℓ2

pq1 q2

2.4.6. Exercise. Let P be a �nite projective plane.

1. For ℓ a line and p ∉ ℓ, give a bijection between ℓ and Lp = {m ∈ L ∶ p ∈ m}.

2. Deduce that there is an integer n such that: • every line has n + 1 points; • every
points belongs to n + 1 lines; • there are n2 + n + 1 points and as many lines.

3. What is the value of n for P2(Fq), where Fq is the �eld of order q?

14



Remark. ¿e integer n is called the order of n. It has been conjectured that for �nite
P, the order is always a prime power; this is open. It is not even known whether there
is a projective plane of order 12; killing those of order 10 has been remarkably di�cult.
Finitary aspects are fascinating but of astounding complexity.3

2.4.7. Exercise. Let A be a �nite a�ne plane. Show that there is n such that: • every line
has n points; • every point is on n + 1 lines; • there are n2 points in total; • there are n2 + n
lines, falling in n + 1 parallel classes of n lines each. Hint: this exercise belongs to § 2, not
to § 1.

2.4.8. Exercise. Let G = SO3(R). Let I = {i ∈ G ∶ i2 = 1 ≠ i} be the set of involutions.
On I consider the relation iε j i� (i j = ji ≠ 1). Prove that (I, I, ε) ≃ P2(R).

3 ¿e Desargues property
Abstract. ¿e Desargues property is not ‘yet another theorem’ in geometry. It is a
key combinatorial statement characterising those projective planes which are of the
formP2

(F). § 3.1 describes the con�guration and its a�ne versions. § 3.2 constructs
projective planes which do not have the Desargues property. § 3.3 states the main
result, Hilbert’s Coordinatisation ¿eorem. (§§ 4 and 5 are devoted to proving it.)

3.1 Statement of the property
Recall that given two points a ≠ b of an a�ne or projective plane, (ab) denotes the
unique line through them. It also equals (ba).
3.1.1. De�nition (projective desarguesian plane). A projective plane is desarguesian if it
has the projective Desargues property, which is the following axiom.

If abc, a′b′c′ are two triangles such that (aa′), (bb′), and (cc′)meet, then
a′′ = (bc)∩(b′c′), b′′ = (ac)∩(a′c′), and c′′ = (ab)∩(a′b′) are collinear.

o

a

a′

b
b′

c
c′

a′′ b′′c′′

One should practice drawing similar pictures, obtained as follows. 1. Choose
a point o and draw three lines from it. 2. ‘Hang’ two triangles on them (each
line contains exactly one vertex of each triangle). 3. Match sides of the tri-
angles and draw intersections of matching sides. 4. ¿e resulting intersec-
tions are collinear.

3C. Lam, ¿e search for a �nite projective plane of order 10, Am. Math. Monthly, 98 no. 4, pp. 305–318,
April 1991.
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3.1.2. Remark. No assumptions nor conclusions about o being on (a′′)–(b′′)–(c′′).

¿e following de�nition is not for learning. One should be aware that depending on
the position of the line at in�nity, the projective Desargues property will have several,
di�erent-looking a�ne avatars.

3.1.3. De�nition (a�ne desarguesian plane). An a�ne plane is desarguesian if it has the
following a�ne Desargues property, which is the following axiom.

Let abc and a′b′c′ be triangles (involving six distinct points). Suppose that
lines (aa′), (bb′), (cc′) are pairwise distinct, and either that they are par-
allel or that they meet at the same point. ¿en:

• either (ab)//(a′b′), (ac)//(a′c′), and (bc)//(b′c′);
• or (ab)//(a′b′) but (ac) ∩ (a′c′) = {b′′} and (bc) ∩ (b′c′) = {a′′}
satisfy (a′′b′′)//(ab);

• or two similar cases (involving the intersection c′′ of (ab) and (a′b′));
• or a′′ , b′′ , c′′ are collinear.

¿e following is straightforward.

3.1.4. Lemma.

(i) Let A be an a�ne plane. ¿en A is desarguesian i� Â is.

(ii) Let P be a projective plane with �xed line λ. ¿en P is desarguesian i� P̌λ is.

We therefore focus on the projective version.

3.1.5. Remark. ¿ere is a form of ‘converse’. Let Desargues’ be the following property
(which a plane may have or not).

If two triangles abc and a′b′c′ are such that the intersection points a′′ =
(bc)∩(b′c′), b′′ = (ac)∩(a′c′) and c′′ = (ab)∩(a′b′) are collinear, then
lines (aa′), (bb′) and (cc′) are concurrent.

It turns out that this condition is equivalent to the original Desargues property. ¿is is
proved in § 12.

Some projective planes satisfy the Desargues property (P2(F) does, which will be
proved); some do not (§ 3.2). Hilbert characterised which do.

3.2 Free planes and non-desarguesian planes
We shall construct non-desarguesian planes by use of a free construction. ¿e general
idea behind such constructions is to add everything one needs, and nothing more. Here
it will mean adding lines to connect any two points, but also adding points to intersect
any two lines. Of course this creates new lines and points, so it must be done inductively.

3.2.1. De�nition (free plane4). Let Γ0 = (P0 ,L0 , ∈) be an incidence geometry.

• Construct a sequence of geometries Γn = (Pn ,Ln) by the following induction.
Let n be given.

4Free projective planes where introduced in: M. Hall. Projective Planes. Trans. Amer. Math. Soc. 54
(1943), 229-277.
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• Let Xn be the set of unordered pairs {a, b} of distinct points of Pn which are not
connected by a line of Ln . Also let Yn be the set of unordered pairs {ℓ,m} of
distinct lines of Ln which do not meet in a point of Pn .

• For each {a, b} ∈ Xn , add a new line ℓ{a ,b} incident to a and b, but to no other
point. Also for each {ℓ,m} ∈ Yn , add a new point p{ℓ ,m} on both ℓ andm, but on
no other line.

• Let Pn+1 = Pn ∪ {ℓ{a ,b} ∶ {a, b} ∈ Xn} and Ln+1 = Ln ∪ {p{ℓ ,m} ∶ {ℓ,m} ∈ Yn}.

• Finally let P = ⋃NPn and L = ⋃NLn .

¿en Γ = (P ,L) is called the plane freely generated by Γ0.

3.2.2. Remarks.

• In some sources one adds lines at odd stages and points at even stages, but this is
less symmetric (§ 12).

• Starting with no points and no lines, or just collinear points, or concurrent lines,
nothing will happen.

• Starting with Γ0 having bad incidence properties, the free geometry will retain
them.

3.2.3.De�nition (admissible incidence geometry). An incidence geometry Γ = (P ,L, I)
is admissible if there are no two distinct lines sharing two distinct points.

a b

¿e forbidden con�guration.

3.2.4. Proposition. Let Γ0 = (P0 ,L0 , ∈) be an admissible incidence geometry satisfying
PP3. ¿en the plane freely generated by Γ0 is a projective plane.

Proof. As usual, three things must be checked.

PP1. Let a ≠ b ∈ P be two distinct points. Say that a ∈ Pn and b ∈ Pm ; wemay assume
n ≥ m.
First suppose that n = 0 and a, b are already connected by a line ℓ ∈ L0. ¿en
ℓ is unique as such; moreover, we never introduce another line through a and b
since {a, b} ∉ Xn . So ℓ remains unique even in L.
Now suppose that there is no ℓ ∈ L0 containing a and b. Regardless of the value
of n, at stage n + 1 we have introduced a line ℓ joining a and b. ¿e argument
for uniqueness of ℓ is similar.

PP2. Entirely similar.

PP3. ¿is is almost by assumption but not entirely. ¿ere are four points a, b, c, d ∈
P0 ⊆ P which are not collinear in L0. We must see that they remain non-
collinear in the sense of L. But at stage 1, when we add line ℓ = (ab), it does
not contain c. And we never add another line through a and b. So there never
is a line containing a, b, c: they remain non-collinear also inL. Likewise for the
other triples.
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3.2.5. Example. Start with the admissible incidence geometry consisting of four points
and no lines.

00

0

0

1

1

1

1

1

1

2

2

2

3

3

3

Numbers indicate the stages of appearance of points/lines. Imagine the fol-
lowing next steps.

¿is example is vacuously desarguesian: there are no Desargues con�gurations.
3.2.6. Remark. More generally, let Γκ be the free plane generated by κ points and no
lines (κ may be in�nite). ¿eir class behaves roughly like the class of free groups. Here
are a few (non-trivial) properties.

• A subplane of a Γκ is another Γλ (λ need not be smaller than κ).

• As κ varies the Γκ are pairwise non-isomorphic.

• However, they all have the same elementary theory.

¿e model theory of the free projective plane has been studied only recently.5

3.2.7. ¿eorem. ¿ere exist non-desarguesian projective and a�ne planes.

Proof. Start with the admissible incidence geometry Γ0 consisting of:

• ten points P0 = {o, a, b, c, a′ , b′ , c′ , a′′ , b′′ , c′′},

• L0 = all lines involved in the Desargues con�guration except line (a′′b′′c′′).

Let P be the plane freely generated by Γ0. By Proposition 3.2.4, P is a projective
plane. In Γ0 there is no line joining a′′ , b′′ , c′′, and in the construction we never add
a line simultaneously joining three existing points. So in P there is no line joining
a′′ , b′′ , c′′. ¿erefore P does not satisfy the Desargues property.

3.2.8. Remarks.
• Although the example of a non-desarguesian plane we gave is obviously in�nite,
there exist �nite, non-desarguesian projective planes.

• Hilbert’s Grundlagen der Geometrie, ¿eorem 33, contains a completely di�erent
example of a non-desarguesian plane. His construction is rather involved.

5T. Hyttinen and G. Paolini. First-order model theory of free projective planes. Ann. Pure Appl. Logic 172
(2) (2021), paper no. 102888.
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3.3 Hilbert’s Coordinatisation¿eorem
3.3.1.¿eorem (Hilbert coordinatisation). LetP be a projective plane. ¿en the following
are equivalent:

(i) P is desarguesian;

(ii) there is a skew-�eld (unique up to isomorphism) F with P ≃ P2(F);

(iii) P is isomorphic to a plane in some projective, 3-dimensional space (De�nition 4.1.1
below).

3.3.2. Remark. ¿eDesargues property is therefore a strong dividing line in the theory
of projective planes; the latter come in two sorts:

• desarguesian projective planes (of the formP2(F) for some skew-�eld): our know-
ledge is satisfactory, viz. as satisfactory as our understanding of skew-�elds;

• non-desarguesian projective planes (not of the form P2(F) for any skew-�eld):
we know extremely little, and presumably there is little to say in general.

In particular, contemporary computers are not powerful enough to help us classify (?)
�nite projective planes. One would need new ideas.

Notice that the free, non-desarguesian construction of § 3.2 shows that there exist
non-coordinatisable projective planes.

3.4 Exercises
3.4.1. Exercise. Return to § 3.1; we say that (o; a, b, c, ; a′ , b′ , c′; a′′ , b′′ , c′′) is a Desar-
gues con�guration seen from o.

1. Check that (a′′; b, c′′ , b′; c, b′′ , b′; a′ , o, a) is a Desargues con�guration seen from
a′′.

2. From how many points is it a Desargues con�guration?

3. Suppose P has the Desargues property. Prove that it has the ‘converse Desargues
property’ (hint: a′′). (Such tricks are explained in § 12.)

3.4.2. Exercise (harder). ¿e ‘generic’ Desargues con�guration is the onewhere o ∉ (a′′b′′):
there are 10 points, 10 lines, and every point is on exactly 3 lines.

Determine the automorphism group of the generic Desargues con�guration, viz. the
group of bijections of the 10 points and 10 lines which preserve all incidence relations.

3.4.3. Exercise. Prove the Desargues property in P2(F) using projective coordinates. (If
any simpler, prove all a�ne versions using a�ne coordinates, then conclude.)

3.4.4. Exercise (a�ne versions).

1. Removing various lines, draw all a�ne versions of the Desargues property. Below is
one.

o

a

a′

b b′

c
c′
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2. Prove that a projective plane P is desarguesian i� for any line λ, its a�nisation P̌λ
is.

3. Prove that an a�ne plane A is desarguesian i� its projectivisation is.

3.4.5. Exercise. Let Γ0 be an admissible incidence geometry satisfying PP3. Show that if
the plane freely generated by Γ0 is some Γn from the construction, then Γ0 was a projective
plane already. Hint: exercise 2.4.5.

3.4.6. Exercise.

1. Let Γ0 be four points with no lines, and Γ be the free projective plane generated by
Γ0. Prove that no substructure of Γ is isomorphic to the Fano plane of Exercise 2.4.1.
Hint: consider the least n such that Γn contains a copy of the Fano plane.

2. Let ∆0 be the Fano plane with an extra (not connected) point. Let ∆ be the free
projectiev plane generated by ∆0. Show that ∆ contains a unique copy of the Fano
plane.

3. Deduce that there exist projective planes whose group of automorphisms does not
permute lines transitively.

3.4.7. Exercise (¿e Moulton plane6). Equip R2 with the following lines:

• all ordinary lines with non-positive slope (including horizontal and vertical lines);

• for each a > 0 and x0 ∈ R2, the set ℓa ,x0 = {(x , 2a(x−x0)) ∶ x ∈ R≤0}∪{(x , a(x−
x0)) ∶ x ∈ R≥0}.

1. Draw a picture.

2. Check that this is an a�ne plane.

3. Prove that at least one instance of the a�ne Desargues properties fails. Hint: take
an ordinary Desargues con�guration, translate and rotate so that nine points out of
ten are above zero, and two lines out of three passing through this point are ‘unbent’.

4. Conclude that there is a non-desarguesian projective plane.

4 A detour through space
Abstract. § 4.1 introduces projective 3-spaces. § 4.2 (optional) proves a non-planar
version of the Desargues property in such spaces. § 4.3 proves part of Hilbert’s
Coordinatisation¿eorem. (¿e argument continues in § 5.)

We want to prove the following.

¿eorem (Hilbert coordinatisation). Let P be a projective plane. ¿en the following are
equivalent:

(i) P is desarguesian;

(ii) there is a skew-�eld (unique up to isomorphism) F with P ≃ P2(F);

(iii) P is isomorphic to a plane in some projective, 3-dimensional space.

We �rst explain the missing terminology.
6F. Moulton, Simple non-desarguesian geometry, Trans. Amer. Math. Soc., April 1902
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4.1 Projective 3-spaces
4.1.1. De�nition (projective 3-space). A projective 3-dimensional space is an incidence
structure (P ,L, Π) consisting of points, lines, and planes (and incidence relations), sat-
isfying the following axioms PS1–PS6.

PS1. Any two points are uniquely collinear.

PS2. Any three non-collinear points are uniquely coplanar.

PS3. Any line and plane meet.

PS4. Any two planes share (at least) a line.

PS5. ¿ere are four non-coplanar points no three of which are collinear.

PS6. Every line has at least three points.

4.1.2. Example. Let F be a skew-�eld. ¿en P3(F), where points are (le -)vector lines
in F4, lines are 2-dimensional (le -)vector subspaces of F4, and planes are (le -)vector
hyperplanes of F4, is a projective space (for set-theoretic incidence).

It will be a consequence of Hilbert Coordinatisation that every projective 3-space is
of this form. (Cf. dimension 2: there exist projective planes not of the form P2(F).)

Like in Proposition 1.1.4, every projective 3-space is isomorphic to one where incid-
ence relations are of the form p ∈ ℓ ⊆ π. ¿is simpli�es notation and terminology.

4.1.3. Lemma. Let S = (P ,L, Π) be a projective 3-space, and let π ∈ Π. Let Pπ = {p ∈
P ∶ p ∈ π} and Lπ = {ℓ ∈ L ∶ ℓ ∈ π}. ¿en (Pπ ,Lπ , ∈) is a projective plane.

Proof. See exercise 4.4.2.

¿erefore ‘isomorphic to a plane in some projective, 3-dimensional space’ means
‘isomorphic to Pπ for some π in some projective, 3-dimensional space’.

Proof of (ii)⇒(iii): P2(F) embeds into a projective 3-space. We prove that for any
skew-�eld, P2(F) embeds into P3(F).

¿is is trivial in projective/homogeneous coordinates; one not at ease with them
would argue as follows. Using linear coordinates, embed F3 into F4, say on the ‘ho-
rizontal’ hyperplane: map (x , y, z) to (x , y, z, 0). ¿is is a linear embedding, so it
certainly preserves collinearity. Moreover, it preserves inclusion of vector subspaces.
So it induces well-de�ned, injective maps :

f ∶ {vector lines of F3} → {vector lines of F4},
g∶ {vector planes of F3} → {vector planes of F4},

which preserve ≤. ¿ese de�ne an embedding of P2(K) into P3(K).

4.1.4. Remark (higher-dimensional projective geometries). One may wish to capture
n-dimensional projective spaces.

• When n is given, one can always introduce n distinct types of objects (points,
lines, and so on) and give a long list of axioms. ¿is is clumsy.
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• One can consider only points P and ‘subspaces’ S equipped with a dimension
function S → N. But this is unsatisfactory, logically speaking, as the description
of the geometry now relies on the purely non-geometric notion of the integers.

• An elegant solution, ‘à la Veblen’, is the following. Call projective space any incid-
ence geometry satisfying PP1 ,PP3, and the Pasch axiom:

if a, b, c, d are points such that (ab)∩(cd) ≠ ∅, then (ac)∩(bd) ≠ ∅.

a b

c

d

¿e Pasch axiom describes coplanarity without mentioning planes.

4.2 Non-planar Desargues con�gurations
¿is subsection is not necessary but helps gain some intuition of the next.

4.2.1. Lemma. Work inside a projective 3-space S. Suppose (o; a, b, c; a′ , b′; a′′ , b′′ , c′′)
is a non-planar Desargues con�guration in S. ¿en a′′ , b′′ , c′′ are collinear.

Proof. By assumption, abc and a′b′c′ do not de�ne the same plane: otherwise all
points and lines would be in that plane. Say (abc) is in some plane π1 and (a′b′c′) in
some other plane π2 ≠ π1.

o

a

a′

b
b′

c

c′

a′′ b′′c′′

¿en observe how a′′ ∈ (bc) ⊆ π1; likewise, b′′ , c′′ ∈ π1. But similarly, a′′ ∈
(b′c′) ⊆ π2; likewise, b′′ , c′′ ∈ π2. So a′′ , b′′ , c′′ ∈ π1 ∩ π2. One may prove that the
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intersection of two distinct planes is exactly a line (exercise 4.4.2): whence collinearity
of the three points.

4.3 ‘Embeddable implies desarguesian’
We prove that if a projective plane is isomorphic to a plane in a projective 3-space, then
it is desarguesian.

Proof of (iii)⇒(i). Let P be a projective plane isomorphic to some plane of a project-
ive 3-space S.

Consider a Desargues con�guration (o; a, b, c; a′ , b′ , c; a′′ , b′′ , c′′) taking place in
P. We want to show collinearity of a′′ , b′′ , c′′. ¿e idea is to slightly ‘li ’ the picture,
work in S, and then project back.

o

a

a′

b
b′

c

c′

a′′ b′′c′′

e

a1

a′1

b′′1
c′′1

Imagine ‘slightly rotating’ the planar triangles by ‘slightly li ing’ the vertices a
and a′ into a1 and a′1 , still preserving collinearity of o, a1 , a′1 . Mathematically
this is achieved through choosing e ∉ π then a1 ∈ (ae).

• Let e ∈ S ∖ P.

• Let a1 ∈ (ae) be neither a nor e; there is such a point by PS6.

• Also let a′1 = (oa1) ∩ (ea′). Having changed triangles, we must consider new
intersections.

• Finally let b′′1 = (a1c) ∩ (a′1c′) and c′′1 = (a1b) ∩ (a′1b′); notice that a′′ however
remains unchanged.

Step 1. Points b′′1 and c′′1 are well-de�ned ; triangles a1bc and a′1b′c′ satisfy the assump-
tion of the Desargues property and are not coplanar.

Veri�cation. First, the ‘Desargues intersections’ a′′ , b′′1 , c′′1 do exist; this is no longer
trivial as lines in S need not intersect. Point a′′ = (bc) ∩ (b′c′) has not changed. By
PS2, let π′ be the plane containing o, a1 , c. It then contains a′1 ∈ (oa1) and c′ ∈ (oc),
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so π′ also contains lines (a1c) and (a′1c′), which therefore meet: intersection b′′1 is
well-de�ned. Similar argument for c′′1 .

By construction, o, a1 , a′1 are collinear. Since other vertices have not changed,
triangles a1bc and a′1b′c′meet the Desargues assumption. Moreover, these triangles
are not in the same plane. Otherwise that plane would be P; since a, a1 ∈ P, one then
has e ∈ (aa1) ⊆ P, a contradiction. ◇

Step 2. Points a′′ , b′′1 , c′′1 are collinear.

Veri�cation. ¿is is the argument given in Lemma 4.2.1. Using axiom PS2, let π1 be
the plane containing a1 , b, c and π2 be the plane containing a′1 , b′ , c′. Clearly these
planes are distinct, so π1 ∩ π2 contains a line ℓ.

By Lemma 4.1.3, π1∩π2 = ℓ is a line. Observe how: a′′ ∈ (bc)∩(b′c′) ⊆ π1∩π2 =
ℓ, and likewise for b′′ and c′′. Finally a′′ , b′′ , c′′ are on ℓ, hence collinear. ◇

We now project back. Let p be the projection function from e onto π, de�ned as
follows. For any point x ≠ e, let p(x) be the meeting point of line (ex) and plane π,
which does not contain it. (¿e value of p at e remains unde�ned.) Notice that:

• p is the identity on π;

• p preserves incidence, i.e. if x ∈ ℓ, then p(x) ∈ p(ℓ).

Step 3. p(b′′1 ) = b′′ and p(c′′1 ) = c′′.

Veri�cation. Since (ea1) = (ea) and a ∈ π, one has p(a1) = a. But also (ea′1) = (ea′)
so p(a′1) = a′. In particular,

{p(b′′1 )} = p ((a1c) ∩ (a′1c′))
= p((a1c)) ∩ p((a′1c′))
= (p(a1)p(c)) ∩ (p(a′1)p(c′))
= (ac) ∩ (a′c′)
= {b′′}.

One obtains p(c′′1 ) = c′′ likewise. ◇

Since p preserves incidence (and therefore collinearity), the images of a′′ , b′′1 , c′′1
remain collinear. ¿erefore p(a′′) = a′′ , p(b′′1 ) = b′′, and p(c′′1 ) = c′′ are collinear.

4.3.1. Remarks.

• Essentially the ideas here come from Desargues (who treated only F = R).

• Baldwin and Howard gave a direct proof (i)⇒(iii) without introducing coordin-
ates.7 It is quite involved.

It remains to prove that a desarguesian projective plane can be coordinatised. ¿is
was �rst done by Hilbert and we sketch his method in § 5.

7J. Baldwin. Formalization, primitive concepts, and purity. Rev. Symb. Log. 6 (1), 87–128. 2013.
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4.4 Exercises
4.4.1. Exercise. Return to Remark 4.1.4. Prove that Pasch’s axiom is equivalent to:

if a line meets two sides of a triangle, it also meets the third side.

4.4.2. Exercise. Let S = (P ,L, Π) be a projective 3-space. Prove the following.

1. If π1 ≠ π2 are distinct planes sharing line ℓ, then π1 ∩ π2 = ℓ.

2. If p, q are points then there are at least two planes containing them.

3. If p ≠ q are distinct points on plane π, then (pq) ⊆ π.

4. Lemma 4.1.3.

5 ¿e coordinatisation theorem: Hilbert’s version
Abstract. A sketch ofHilbert’s proof that a desarguesian projective plane can be co-
ordinatised. ¿e argument is long and pictures are increasingly involved, although
the conceptual level remains basic. We just give the �rst steps; some further steps
are le as exercises; some should just be read from Hilbert’s book, or imagined. In
more advanced sections (§§ 10–11), we shall give abstract arguments using group
theory.

Let P be a desarguesian projective plane. Here is the global strategy.

1. Fix some line λ ∈ L(P). Let A = P̌λ ; then A is a desarguesian a�ne plane. Co-
ordinatisation actually takes place in A.

2. Fix one line ℓ of A and cleverly de�ne two operations +, ⋅ on it. ¿en F = (ℓ;+, ⋅)
is a skew-�eld. (Checking it takes time. But arguments are repetitive and one
quickly gets the general ideal.)

3. CoordinatiseA usingF, soA ≃ A2(F). (¿is is actually not as obvious as it seems,
and Desargues is used again.)

4. Finally conclude P ≃ Â ≃ Â2(F) ≃ P2(F).

We do not cover (2) entirely, and we entirely omit (3). Details are to be found in
Hilbert’s Grundlagen der Geometrie, chapter V. ¿e proof starts here.

5.1 ¿e frame

0
π→ℓ , //n(x)

π→m , //n(x)

x

ℓ

m

n

ℓx

mx

nx
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Notation for directions. Let ℓ,m, n be three pairwise non-parallel lines (later we shall
require them to be non-concurrent).

For x ∈ A we let:

• ℓx be the line parallel to ℓ through x;

• mx be the line parallel to m through x;

• nx be the line parallel to n through x.

Notation for projections. Also construct:

π→ℓ , //n ∶ A → ℓ
x ↦ ℓ ∩ nx .

Since nx //n is not parallel to ℓ, this makes sense. De�ne π→m , //n ∶ A → m similarly.
Notice that π→ℓ , //n is the identity on ℓ (and similarly for π→m , //n).

¿e prime function. Now consider:

ℓ → m
a ↦ a′ ∶= na ∩m

clearly a bijection between ℓ and m. For any x ∈ A one has (π→ℓ , //n(x))′ = π→m , //n(x).
Finally let 0 = ℓ ∩m and notice 0′ = 0.

5.2 Addition

0 a b a + b

a′ pa ,b

ℓ

m

n

ℓa′

mb

5.2.1. Notation. For a, b in ℓ, de�ne:

• pa ,b = ℓa′ ∩mb (p is for ‘plus’);

• a + b = π→ℓ , //n(pa ,b).

5.2.2. Proposition. (ℓ;+) is an abelian group with identity 0.

Proof. ¿e proof is a series of lemmas.

5.2.3. Lemma. + is well-de�ned; for any a ∈ ℓ one has 0 + a = a + 0 = a.

Proof. Since ℓ and m are not parallel and // is an equivalence relation, pa ,b is
uniquely de�ned. So is a + b ∈ ℓ. Neutrality is obvious as the construction then
degenerates: ℓ0′ = ℓ so p0,a = ℓ∩ma = a, andm0 = m so pa ,0 = ℓa′ ∩m = a′, whence
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a + 0 = π→ℓ , //n(a′) = a.

5.2.4. Lemma. Addition is commutative.

Proof. We may suppose that neither a nor b is 0. We may also suppose a ≠ b.
Consider the following picture.

0 a b

a′

b′

pa ,b

pb ,a

qa

qb

ℓ

m

n

ℓa′

ℓb′
ma mb

Introduce:

• qa = ma ∩ ℓa′ ;

• qb = mb ∩ ℓb′ .

Step 1. Points 0, qa , qb are collinear.

Veri�cation. Let r = (0qa) ∩ ℓb′ . Consider the con�guration (0; a′ , qa , a; b′ , r, b).

0

a′
b′

qa r

a
b

¿en (a′a) = na and (b′b) = nb are parallel; also, (a′qa) = ℓa′ and (b′r) =
ℓb′ are parallel. So by the Desargues property, (aqa) = ma and (br) are parallel.
¿erefore also (br)//ma //mb ; now the only parallel to mb through b being mb ,
one has r ∈ (br) = mb . Since also r ∈ ℓb′ by construction, it must be r = qb . By
construction, 0, qa , qb = r are now collinear. ◇

Step 2. Lines (pb ,a pa ,b) and n are parallel.
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Veri�cation. Consider the Desargues con�guration (qb ; pb ,a , qa , pa ,b ; b′ , o, b).

qb

pb ,a
b′

qa0

pa ,b
b

¿en (b′o) = m and (pb ,aqa) = ma are parallel, and also (ob) = ℓ and (qa pa ,b) =
ℓa′ are parallel. By the Desargues property, (b′b) = nb and (pb ,a pa ,b) are parallel.
◇

Since (pb ,a pa ,b) // n, one has npb ,a = npa ,b . Hence b + a = π→ℓ , //n(pb ,a) =
π→ℓ , //n(pa ,b) = a + b.

5.2.5. Lemma. + has opposites.

Proof. Let a ∈ ℓ; we may assume that a ≠ 0. We must �nd b ∈ ℓ such that a + b = 0;
by commutativity this will su�ce. Let q = no ∩ ℓa′ (which makes sense as n and ℓ are
not parallel), then b = ℓo ∩mq .

We claim that a + b = 0. Indeed, pa ,b = ℓa′ ∩ mb = ℓa′ ∩ mq = q ∈ no , so
a + b = π→ℓ , //n(pa ,b) = π→ℓ , //n(q) = 0.

5.2.6. Lemma. + is associative.

Proof. Let a, b, c ∈ ℓ; we may suppose that all three are distinct, and distinct from 0.
Consider the following picture.

a a + b c b + c

(a + b)′

b′

(b + c)′

pb ,a
pb ,c

pb+c ,a

pa+b ,c

• We know that (pb ,a pb ,c) = ℓb′ is parallel to ((a + b)′ p(a+b),c)) = ℓ(a+b)′ ,
which is parallel to ((b + c)′ pb+c ,a) = ℓb+c .
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• We also know that ((a + b)′ (b + c)′) = m is parallel to (pb ,a pb+c ,a) = ma ,
which is parallel to (pb ,c pa+b ,c) = mc .

• Finally we know that a + b = b + a, so pb ,a ∈ n(b+a) = na+b . ¿is means that
((a + b)′ pb ,a) = na+b is parallel to nb+c = ((b + c) (b + c)′) = (pb ,c (b + c)′).

By exercise 5.5.1, (pb+c ,a pa+b ,c) is parallel to n. ¿is means:

(b + c) + a = π→ℓ , //n(pb+c ,a) = π→ℓ , //n(pa+b ,c) = (a + b) + c.

Consequently a + (b + c) = (a + b) + c, and addition is associative.

¿is completes the study of addition.

5.3 Multiplication
Let 1 = ℓ ∩ n; since ℓ,m, n not to concur, one has 1 ≠ 0.

0 1 b a ⋅ b

1′
a′

ta ,b

α

αb

5.3.1. Notation. For a, b ∈ ℓ, de�ne:

• α = (1a′);

• ta ,b = αb ∩m (t is for ‘times’);

• a ⋅ b = π→ℓ , //n(ta ,b).

5.3.2. Proposition. (ℓ ∖ {0}; ⋅) is a group with identity 1.

Proof. Exercise 5.5.2.

5.4 Skew-�eld and coordinatisation
5.4.1. Proposition. (ℓ;+, ⋅) is a skew-�eld.

Both + and ⋅ are well-understood separately, so only distributive laws remain to be
checked; since ⋅ need not be commutative, there are two equations to check, namely
a ⋅ (b + c) = a ⋅ c + b ⋅ c and (a + b) ⋅ c = a ⋅ c + b ⋅ c. ¿is is extraordinarily painful,
though always by repeated use of the Desargues property. One should have a (brief)
look at Hilbert’s Grundlagen der Geometrie.
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5.4.2. Proposition. A ≃ A2(F).

Proof. Not as trivial as it seems. One key step is to show that the isomorphism type of
F = (ℓ;+, ⋅) depends on none of the choices we made (we �xed ℓ,m, n, 0, 1, . . . ). ¿is
uses the Desargues property. ¿en ‘the same coordinates can be used everywhere’, and
one retrieves A ≃ A2(F).

5.4.3. Corollary. F is unique up to isomorphism.

Proof. Suppose P is desarguesian and gives rise to two �elds F and F′. ¿en P ≃
P2(F). But when applied to P2(F), one can check step by step that Hilbert’s method
yieldsF. It follows thatF′ ≃ F: the coordinatising skew-�eld is unique up to isomorph-
ism.

5.4.4. Remark (coordinatising the uncoordinatisable). One can still attempt to coordin-
atise non-desarguesian a�ne planes using weaker algebraic structures than skew-�elds.
So-called ternary rings serve this purpose. A ternary ring is a pair (R, T)where R is a set
and T ∶R3 → R a ternary operation of some form, which aims at capturing the behaviour
of (a, x , b) ↦ ax + b. ¿ese algebraic structures are arguably not ‘core mathematics’. 8

5.5 Exercises
5.5.1. Exercise. In a desarguesian a�ne plane, let x1 , x2 , y1 , y2 , r, s be such that (x1x2)//
(y1r)//(y2s) and (y1 y2)//(x1s)//(x2r). Prove that if (x1 y1)//(x2 y2), then (rs)//(x1 y1).

x1 x2

y1

y2

r

s

5.5.2. Exercise (multiplication).

1. Show that multiplication is well-de�ned.

2. Prove that each a ∈ ℓ ∖ {0} has a le -inverse.

3. Let p = a ⋅ b; also let q1 = (1p′) ∩ nb and q2 = (1p′)c ∩ nb⋅c . Draw and understand
the following picture.

8One possible �rst reference for near-structures is C.Weibel, Survey of non-desarguesian planes,Not. ams,
54 no. 10, pp. 1294–1303, November 2007.
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0 1 b c b ⋅ c

a′
b′

p′

(b ⋅ c)′

(p ⋅ c)′

q1

q2

α αb

β

βc

4. Prove that o, q1 , q2 are collinear. (Hint: introduce r = (oq1) ∩ (1p′)c .)

5. Prove that (bp′) and ((b ⋅ c) (p ⋅ c)′) are parallel.

6. Deduce that multiplication is associative.

7. Conclude that each a ∈ ∖{0} has a two-sided inverse.

5.5.3. Exercise. Read Chapter V of Hilbert’s Grundlagen der Geometrie (in any lan-
guage).

5.5.4. Exercise. Let J9 = {0,±1,±i ,± j,±k} with:

• addition: associative, with 3x = 0 and such that 1 + i = j and 1 − i = k;

• multiplication: like in quaternions.

1. Write the addition table. Prove that J9 is not a skew-�eld.

2. (Harder.) Prove that P2(J9) (thought of as non-zero triples [x , y, z] modulo le -
action) is a projective plane.

6 ¿e Pappus property
Abstract. § 6.1 de�nes thePappus property. § 6.2 proves that ‘Pappus impliesDesar-
gues’. § 6.3 returns to coordinatisation: a projective plane has the Pappus property
i� it is isomorphic to P2

(F) for some commutative �eld F.
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6.1 Statement of the property
6.1.1. De�nition (pappian projective plane). A projective plane is pappian if it has the
projective Pappus property, which is the following axiom.

If a, b, c are collinear points and a′ , b′ , c′ are collinear points (being six non-
collinear points in total), then the intersection points a′′ = (cb′) ∩ (bc′),
b′′ = (ac′) ∩ (ca′), and c′′ = (ab′) ∩ (ba′) are collinear.

o a b c

a′
b′

c′

a′′ b′′ c′′

a1 a2

a3

a4a5

a6

o a1 a5 a3

a4
a2

a6

a′′ b′′ c′′

How to remember Pappus: draw two pictures, erase one. 1. Draw an ordinary
hexagon. You should see ‘opposite sides’. Imagine that points a1 , a3 , a5 are
on one line ℓ1 , and points a2 , a4 , a6 are on another line ℓ2 . 2. Draw two
lines ℓ1 and ℓ2 . Hang your hexagon on ℓ1 and ℓ2 (do not care for convexity,
not an incidence-theoretic notion) [dashed]. 3. Rematch opposite sides of
the hexagon: (a1a2) with (a4a5), and so on (it is worth looking at the le 
picture here). Get resulting intersections [dotted]. 4. Draw the ‘Pappus line’
(a′′ − b′′ − c′′) and erase the le picture.

6.1.2. De�nition (pappian a�ne plane). An a�ne planeA is pappian if it has the a�ne
Pappus property, which is the following axiom.

Let a, b, c be collinear points and c′ , b′ , a′ be collinear points (being six
non-collinear points in total). If (ab′)//(ba′) and (c′b)//(b′c), then (ac′)//
(ca′).

o

a

b

c

c′ b′ a′

¿is is just one a�ne Pappus con�guration. Draw the other one.
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As one expects, pappianism is preserved under projectivisation/a�nisation.

6.2 Pappus implies Desargues
6.2.1. ¿eorem (Hessenberg). Let P be a projective plane. If P is pappian, then it is also
desarguesian. ¿e same holds of a�ne planes.

Proof. Let (o, a, b, c, a′ , b′ , c′ , a′′ , b′′ , c′′) be a Desargues con�guration; we aim at
showing that a′′ , b′′ , c′′ are collinear. We shall introduce four new points and apply
Pappus’ ¿eorem three times. Let:

• i = (ab) ∩ (a′c′);

• j = (oi) ∩ (bc);

• j′ = (oi) ∩ (b′c′);

• k = (oa) ∩ (bc′).

o

a

b

c

a′

b′

c′

a′′ b′′ c′′

ij
j′

k

Hard to read, for reference only. ¿e initial con�guration,
with known collinearities; points o, i , j, j′ are collinear.

Step 1. b′′ , j, k are collinear.

Veri�cation. Consider the triples a, i , b and o, c, c′, in this order. Notice that they are
collinear by construction and the Desargues assumption.

a
i

b

o c c′

No notion of betweenness, but order matters.
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Moreover:

• (ac) = (ab′′) and (ic′) = (a′c′) = (a′b′′) so (ac) ∩ (ic′) = b′′;

• by de�nition, (oi) ∩ (cb) = j;

• by de�nition again, so (ao) ∩ (bc′) = k.

By Pappus’ ¿eorem, we �nd the desired collinearity. ◇

Step 2. c′′ , j′ , k are collinear.

Veri�cation. Now consider the triples i , a′ , c′ and o, b, b′. ¿ey are also collinear by
construction and the Desargues assumption.

i
a′

c′

o b b′

Now:

• (ib) = (ab) = (ac′′) and (a′b′) = (a′c′′), so (ib) ∩ (a′b′) = c′′;

• by de�nition, (io) ∩ (c′b′) = j′;

• (oa′) = (oa) = (ok) and (bc′) = (bk), so (oa′) ∩ (bc′) = k.

Again by Pappus’ ¿eorem, the desired points are collinear. ◇

Step 3. a′′ , b′′ , c′′ are collinear.

Veri�cation. Finally consider the triples i , j, j′ and b, c′ , k. By construction, they are
collinear.

i
j

j′

b c′ k

But:

• (ic′) = (a′c′) = (a′b′′) and ( jk) = ( jb′′) by Step 1, so (ic′) ∩ ( jb′′) = b′′;

• (b j) = (bc) = (ba′′) and (c′ j′) = (b′c′) = (b′a′′), so (b j) ∩ (c′ j′) = a′′;

• (ib) = (ab) = (ac′′) and ( j′k) = ( j′c′′) by Step 2, so (ib) ∩ ( j′k) = c′′.

Pappus’ ¿eorem gives the conclusion. ◇
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¿is is exactly the desired collinearity for the Desargues property. Of course we
treated only the case where all points where distinct. Rigorously speaking one ought
to handle the degenerate cases as well, but this is tedious.

As for the a�ne case, if A is pappian, then so is its projectivisation Â. By the
projective case, Â is therefore desarguesian. Now removing the line at in�nity we just
added, A is desarguesian as well.

6.2.2. Remarks.

• Not treating annoying cases is always dangerous: Hessenberg’s proof was nomore
fully rigorous than ours.9

• ¿e converse fails: there exist desarguesian, non-pappian a�ne/projective planes.

• However, for �nite planes, Desargues implies Pappus: Proposition 6.3.4 of the next
subsection.

6.3 Pappus’ a�ne and projective theorems
6.3.1. ¿eorem (Pappus’ theorem). Let F be a skew-�eld. ¿en A2(F) is pappian i�
P2(F) is pappian i� F is commutative.

Proof.
Step 1. A2(F) is pappian i� P2(F) is.

Veri�cation. Add or remove lines, bearing in mind Proposition 2.3.1. ◇

¿e rest of the proof is easier in a�ne planes.
Step 2. If A2(F) is pappian, then F is commutative.

Veri�cation. Let λ, µ ∈ F×. Return to the description of a�ne planesA2(F), notably
Step 2 of Proposition 1.3.2: we have a description of parallelism. Let a = (1, 0), b =
(λ, 0), c = (µ ⋅ λ, 0) and c′ = (0, 1), b′ = (0, µ), a′ = (0, λ ⋅ µ).

Notice that
Ð→
ba′ = λ ⋅ Ð→ab′ andÐ→b′c = µ ⋅ Ð→c′b, so (ba′)//(ab′) and (b′c)//(c′b). By

the Pappus property, (ac′)//(ca′). ¿erefore there is ν ∈ F× such that Ð→ca′ = ν ⋅ Ð→ac′.
In coordinates, λ ⋅ µ = ν and −µ ⋅ λ = −ν. ¿is implies λµ = µλ, viz. commutativity
of F. ◇

Step 3. If F is commutative, then A2(F) is pappian.

Veri�cation. ¿ere are two cases.

Case 1. Suppose lines (ac) and (c′a′) are parallel.

9See A. Seidenberg. Pappus implies Desargues. Amer. Math. Monthly 83(3), 1976.
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a b c

c′ b′ a′

τ1 τ2

Let τ1 be the translation mapping a to b. ¿en since (b′c′) = (c′a′)//(ac) =
(ab) which is the axis of the translation, τ1((b′c′)) = (c′a′).
Also, τ1((ab′))//(ab′)//(ba′), but τ1((ab′)) contains τ1(a) = b. So by AP2,
one has τ1((ab′)) = (ba′)
In particular, τ1(b′) ∈ (c′a′) ∩ (ba′) and τ1(b′) = a′.
One can prove likewise that the translation τ2 taking b to c also takes c′ to b′.
So the translation τ = τ2τ1 = τ1τ2 takes a to c and c′ to a′. As a conclusion
(ac′)//τ((ac′)) = (ca′).
We merely used commutativity of composition of translations; i.e. that
(F2;Ð→0 ,+) is an abelian group. So far commutativity of F itself (i.e. of mul-
tiplication ⋅) was not required.

Case 2. ¿is is more interesting. Suppose that (ac) and (c′a′)meet at say o.
¿is is the picture we gave earlier, and we shall adapt the translation argument
using another tool.

Let h1 be the homothetywith centre omapping a to b, and h2 be the homothety
with centre o mapping b to c.
Notice that:

b = h1(a) ∈ h1((ab′))//(ab′)//(ba′),
so h1((ab′)) = (ba′). Moreover, since h1 is a homothety, h1((ob′)) = (ob′) =
(oa′). ¿erefore h1(b′) = a′. Likewise, one proves h2(c′) = b′.
As a conclusion,

(ac′)//h2 ○ h1((ac′)) = (h2h1(a) h2h1(c′)) = (c h2h1(c′)).

By commutativity of F, two homotheties with same centre commute. So actu-
ally h2h1(c′) = h1h2(c′) = a′, and now (ac′)//(ca′), as desired. ◇

¿is completes the proof.

6.3.2. Corollary (Pappus = coordinatisable in a commutative �eld). LetP be a projective
plane. ¿en P is pappian i� P ≃ P2(F) for some commutative �eld F.

Proof. ¿e converse implication is one direction of Pappus’ ¿eorem 6.3.1. For the
direct implication, let P be pappian. ¿en by Hessenberg’s ¿eorem 6.2.1, P is desar-
guesian. ¿erefore by Hilbert’s ¿eorem 3.3.1, there is a skew-�eld F with P ≃ P2(F).
Now P2(F) is pappian, and by Pappus’ ¿eorem 6.3.1, F is commutative.

6.3.3. Remarks.
• Our argument goes through Hessenberg’s and Hilbert’s theorems. I am not aware
of a quicker proof directly producing coordinates from the Pappus property.
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• As a consequence of Corollary 6.3.2, the theory of a�ne/projective planes is un-
decidable.10

Return to the implication ‘Pappus implies Desargues’. ¿e general converse fails: let
F be any non-commutative skew-�eld, for instance the quaternions H. ¿en P2(H) is
desarguesian but not pappian. However, in the �nite case, the converse does hold.

6.3.4. Proposition. Let P be a �nite, desarguesian projective plane. ¿en P is pappian.

Proof. We use Hilbert’s Coordinatisation¿eorem 3.3.1. Let P be desarguesian. ¿en
there is a skew-�eld F with P ≃ P2(F). Now F is �nite, so by Wedderburn’s ¿eorem
from the Introduction, F is commutative. By Pappus’¿eorem 6.3.1, P is pappian.

6.3.5. Remark. ¿is argument given here is quite algebraic as it relies on the introduc-
tion of a coordinate system, and its study usingWedderburn’s¿eorem. ¿e �rst essen-
tially geometric proof of Proposition 6.3.4 was found by Tecklenburg.11 But �nitess is
important, so number-theoretic estimates must play a role. Tecklenburg’s proof relies,
in the very end, on cyclotomic polynomials—as a matter of fact, the very same kind of
argument that Witt so aptly introduced in order to prove. . .Wedderburn’s ¿eorem.

6.4 Exercises
6.4.1. Exercise. Draw the missing case of the a�ne Pappus con�guration.

6.4.2. Exercise. LetP be a pappian projective plane. Show that P̌λ is pappian (with respect
to any line). Conversely, show that the projectivisation of a pappian a�ne plane remains
pappian.

7 Semi-linear automorphisms of vector spaces
Abstract. § 7.1 returns to the general linear group over a skew-�eld. § 7.2 (op-
tional) shows how both linear automorphisms and �eld automorphisms induce
proportionality-perserving additive automorphisms of a vector space. § 7.3 intro-
duces semi-linear maps and studies the group ΓΛ(V) of semi-linear automorph-
isms of a vector space.

LetF be a �xed skew-�eld. Eventually wewant to describe automorphisms ofP2(F);
in the process we must understand certain transformations of F3, and the general case
is worth exploring.

Let V be a le -vector over F. We reserve variables λ, µ for scalars, even implicitly,
and x , y for vectors, dropping arrows. Since we reserve the word ‘collinearity’ for points
in incidence geometries, we prefer to say that two non-zero vectors x , y are proportional
if there is λ ∈ Fwith y = λx. ¿is is an equivalence relation. ¿e quotient set is naturally
the set of vector lines in V .

10J. Makowsky. Can one design a geometry engine? On the (un)decidability of certain a�ne Euclidean
geometries. Ann. Math. Artif. Intell. 85 (2), pp. 259—291, 2019.

11H. Tecklenburg. A proof of the theorem of Pappus in �nite Desarguesian a�ne planes, J. Geom., 30(2),
pp. 172–181, 1987.
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7.1 ¿e general linear group
¿e de�nition should be known, but skew-commutativity has unexpected e�ects.

7.1.1. De�nition (general linear group). Let GL(V) be the group of linear automorph-
isms, viz. of additive automorphisms such that for all λ, v one has g(λv) = λg(v).

¿ese objects are also called automorphisms of the vector space V .

7.1.2. Remarks.

• Scalar maps need not be linear. More precisely let λ ∈ F. If the space is non-trivial,
then (v ↦ λv) is linear i� λ ∈ Z(F), the centre of F.

• We do not claim that F× Id is a normal subgroup of GL(V). As a matter of fact,
F× Id need not be contained in GL(V). (¿is is exactly the �rst remark.)

• In �nite dimension, the map (v ↦ λv) is not represented by the diagonal matrix:

D =
⎛
⎜
⎝

λ
⋱

λ

⎞
⎟
⎠
.

Indeed linear maps (in �nite dimension) can be represented by matrices acting
from the right on row vectors, and the linear map R ↦ R ⋅ D is not the scalar
action λ (the latter being ‘multiplication from the le ’). One may check this with
quaternions.

7.2 Two constructions
¿is subsection serves as an introduction to the next; it may be skipped at the expense
of increased conceptual di�culty. We describe two constructions of proportionality-
preserving, additive automorphisms of F3. (¿is would work in any dimension but the
subsection is pedagogical in nature.) Even if F is commutative, non-linear phenomena
occur.

7.2.1. Lemma (linear automorphisms induce projective automorphisms). Any automorph-
ism of the vector space F3 induces an automorphism of the projective plane P2(F).

Proof. Bear inmind thatP2(F) = P(F3) is the set of (le -)vector lines inF3, with lines
the set of (le -)vector planes in F3. Any g ∈ GL(F3) preserves (le -)proportionality,
so induces a map P(g)∶P2(V) → P2(V) (in functorial notation), or [g]∶P2(V) →
P2(V) (in equivalence class notation). Explicitly, de�ne γ = P(g) = [g] by letting:

γ([v]) = [g(v)],

which is well-de�ned and bijective. When acting on vector subspaces, f preserves
maps vector planes to vector planes. ¿erefore γ maps projective lines to projective
lines, and preserves incidence (inclusion). So γ is an automorphism of P2(F).

7.2.2. Lemma (skew-�eld automorphisms induce projective automorphisms). Any auto-
morphism σ ∈ Aut(F) of the skew-�eld F induces an automorphism σ of the projective
plane P2(F).

38



Proof. Let σ ∶F → F be a skew-�eld automorphism. ¿is induces a map V(σ)∶F3 →
F3 (in functorial notation). Explicitly, extend σ to a map f = σ̂ on F3 by letting, in
coordinates:

f ((x , y, z)) = (σ(x), σ(y), σ(z)).
¿e map f is an additive bijection, but not a linear one: f (λ ⋅ v) = σ(λ) ⋅ f (v) need
not equal λ ⋅ f (v). (Technically, f is called ‘σ-semi-linear’.)

Still, f preserves proportionality. ¿erefore (still in functorial notation), it induces
a map P2(σ)∶P2(F) → P2(F). Explicitly, de�ne σ = P2(σ) = P( f ) = [ f ] by letting:

σ([v]) = [ f (v)].

Now σ is clearly an automorphism of P2(F).

7.2.3. Remarks.

• In projective coordinates, σ([λ, µ, ν]) = [σ(λ), σ(µ), σ(ν)].

• ¿e proof decomposes into two steps: �rst show that σ induces f = σ̂ on F3, then
quotient down to an automorphism σ = P( f ) = P2(σ) of P2(F) = {non-zero
vectors}/proportionality. ¿is motivates the study of maps like f .

7.3 ¿e group of semi-linear automorphisms
We study (additive) automorphisms of V which preserve proportionality. Even in the
commutative case, this is more general than GL(V). Recall that GL(V) is the group
of additive automorphisms which commute with the scalar action, viz. which preserve
proportions. We weaken this condition.

7.3.1. De�nition (semi-linear map). Let σ ∈ Aut(F) be a �eld automorphism. An ad-
ditive morphism f ∶V → V is σ-semi-linear if for all λ ∈ F and x ∈ V one has:

(∀λ)(∀v)[ f (λv) = σ(λ) f (v)].

(¿is is de�ned only for additive maps.) ¿e sum of semi-linear maps attached to
distinct automorphisms is not semi-linear. ¿is is a strong indication that we should
focus on the group structure and not look for ring structures. Indeed, the composition
of two semi-linear maps is a semi-linear map, for the composition of automorphisms;
and the inverse of a semi-linear additive automorphism is one, for the inverse �eld auto-
morphism.

7.3.2. De�nition (group of semi-linear automorphisms). Let ΓΛ(V) be the group of
semi-linear additive automorphisms of V .

7.3.3. Examples.

1. Every g ∈ GL(V) is linear, viz. IdF-semi-linear, so GL(V) ≤ ΓΛ(V). (Actually
GL(V) ⊴ ΓΛ(V) as one sees in Step 3 below.)

2. F× Id ≤ GL(V). For λ ∈ F×, let σλ(µ) = λµλ−1 be conjugation by λ, a �eld
automorphism. ¿en (v ↦ λv) is σλ-semi-linear.

3. More generally, if σ ∈ Aut(F), then σ̂ of Lemma 7.2.2 is σ-semi-linear.

39



¿e following reduces semi-linear, additive automorphisms of a vector space into
two parts: linear and �eld-automorphic.

7.3.4. Proposition. Suppose V has dimension ≥ 2. ¿en:

(i) ΓΛ(V), the group of semi-linear additive automorphisms, is exactly the group of ad-
ditive automorphisms preserving proportionality. (In symbols, ΓΛ(V) = Aut(V ;+, ∼
) where ∼ is proportionality.)

(ii) ΓΛ(V) ≃ GL(V) ⋊Aut(F).

(iii) Every f ∈ ΓΛ(V) decomposes in a unique way as f = g ○ σ̂ where g ∈ GL(V) and
σ̂ is induced by some σ Aut(F).

7.3.5. Remarks.

• In dimension 1, every additive automorphism preserves proportionality so the
proposition fails.

• One may not drop additivity: otherwise, stabilise each line and permute inside
each line, independently. ¿is preserves proportionality.

• Even in the commutative case, GL(V)may be proper in ΓΛ(V): it only depends
on Aut(F). (¿e phenomenon went unnoticed because Aut(R) = {Id}.)

Proof.
Step 1. ΓΛ(V) preserves proportionality.

Veri�cation. If f ∈ ΓΛ(V) is σ-semi-linear, then for given λ and v, one has f (λv) =
σ(λ) f (v). So proportionality is preserved. ◇

Step 2. An additive automorphism preserving proportionality is semi-linear.

Veri�cation. Let f ∶V → V be an additive automorphism preserving proportionality.
For λ ∈ F× and x ∈ V ∖{0} there is σx(λ) ∈ F with f (λx) = σx(λ) f (x). Also de�ne
σx(0) = 0.

If x and y are (le -)independent vectors, then so are f (x) and f (y). Now:

σx(λ) f (x) + σy(λ) f (y) = f (λx) + f (λy)
= f (λ(x + y))
= σx+y(λ) f (x) + σx+y(λ) f (y).

Using independence, we see that σx(λ) = σx+y(λ) = σy(λ) does not depend on x;
we write it σ . (¿e argument fails if dimV ≤ 1.) By construction, σ(1) = 1.

Now:

σ(λ + µ) f (x) = f ((λ + µ)x)
= f (λx) + f (µx)
= (σ(λ) + σ(µ)) f (x),
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and:

σ(λ ⋅ µ) f (x) = f ((λ ⋅ µ)x)
= f (λ ⋅ (µx))
= σ(λ) f (µ(x))
= σ(λ) ⋅ (σ(µ)x).

¿ese imply additivity and multiplicativity, respectively. So σ ∶F → F is a �eld em-
bedding. Finally consider f −1, which preserves proportionality: the same applies,
so there is a �eld embedding τ∶F → F with f −1(λx) = τ(λ) f −1(x). ¿erefore for
arbitrary λ:

λx = f ( f −1(λx)) = f (τ(λ) f −1x) = σ(τ(λ))x ,
which proves that σ is onto, hence a �eld automorphism. ◇

¿is proves (i). We now embed Aut(F) into ΓΛ(V). For σ ∈ Aut(F) let σ̂ be
the automorphism de�ned as follows. Fix a (le -)basis B = {e i ∶ i ∈ I} of V . For
x = ∑ λ i e i let:

σ̂(x) = ∑ σ(λ i)e i .

¿is is a σ-semi-linear automorphism. Let Σ̂ be the set of operators σ̂ ; clearly Aut(F) ≃
Σ̂ ≤ ΓΛ(V). (¿e construction depens on the choice of B.)
Step 3. ΓΛ(V) = GL(V) ⋊ Σ̂.

Veri�cation. We prove GL(V) ⊴ ΓΛ(V). If g ∈ GL(V) and f ∈ ΓΛ(V) is σ-semi-
linear, then for arbitrary λ, x one has:

( f −1g f )(λx) = f −1 ○ g(σ(λ) f (x)) by σ-semi-linearity of f
= f −1(σ(λ)g( f (x))) by linearity of g
= σ−1(σ(λ))( f −1g f )(x) by σ−1-semi-linearity of f −1 ,

so f −1g f is linear.
We prove GL(V) ∩ Σ̂ = {Id}. If f ∈ GL(V) ∩ Σ̂, then f = σ̂ is linear, so σ = Id

and f = Îd = Id.
It remains to show that GL(V) and Σ̂ generate ΓΛ(V). Let f ∈ ΓΛ(V); say f is

σ-semi-linear. We give two arguments.

• First option. Let g = f ○ σ̂−1, an additive automorphism which is σ ○ σ−1-semi-
linear. ¿is means that g is linear and we are done.

• Second option. ¿e image f (B) is a basis andGL(V) acts transitively on bases,
so up to composing on the le with some g ∈ GL(V) we may assume that
f ∈ ΓΛ(V) �xes B pointwise. But f is σ-semi-linear, so it coincides with σ̂
everywhere; hence f ∈ Σ̂ and we are done.

◇

So ΓΛ(V) ≃ GL(V) ⋊Aut(F), proving (ii). And (iii) is a mere rephrasing.

We now have full understanding of semi-linear automorphisms of V .
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7.4 Exercises
7.4.1. Exercise. Let F be a skew-�eld and V be a non-trivial le -vector space. Prove that
Z(GL(V)) = Z(F×) Id.

8 Automorphisms of projective planes
Abstract. Let P be a projective plane and G = Aut(P). ¿ere are two cases:

• P is coordinatisable (= desarguesian): we know a lot about G;

• P is non-coordinatisable (= non-desarguesian): nothing general can be said
about G as an abstract group.

It must be borne in mind that the present section deals mostly with coordinatisable
(= desarguesian) projective planes.

8.1 A lemma on coordinates
¿e following technical lemma con�rms that the coordinate system is ‘built in’ the in-
cidence geometry P2(F). ¿ough it naturally belongs to the �ow of the argument of
¿eorem 8.2.1 we present it here as its proof is long.12

8.1.1. Lemma. If α ∈ Aut(P2(F)) �xes [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1], then it is
of the form P2(σ) = [σ̂] for some skew-�eld automorphism σ.

Proof not covered in class.

Proof.

Consider the following variable points for λ, µ ∈ F:

qλ = [λ, 0, 1],
rµ = [0, µ, 1],

sλ ,µ = [λ, µ, 1].

Note that (λ, 0, 1) = λe1+e3 ∈ ⟨e1 , e3⟩, so qλ ∈ (p1p3); moreover qλ ≠ p1. Likewise
rµ ∈ (p2p3) ∖ {p1}. Finally (p1rµ) ∩ (p2qλ) = {sλ ,µ}.

12I follow A. Keedwell, Self-collineations of desarguesian projective planes, Am. Math. Monthly, 82 no. 1,
pp. 59–63, January 1975.
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Step 1. ¿ere is a function σ ∶F→ F such that for all λ ∈ F:

φ([λ, 0, 1]) = [σ(λ), 0, 1].

Veri�cation. Since φ �xes each p i , it stabilises each line through two of them. ¿ere-
fore there is a map σ ∶F → F with φ(qλ) = qσ(λ). (We cannot prove yet that it is a
�eld automorphism.) In coordinates:

φ([λ, 0, 1]) = [σ(λ), 0, 1],

as claimed. ◇

Step 2. One also has φ([λ, µ, 1]) = [σ(λ), σ(µ), 1]. Moreover, σ(1) = 1.

Veri�cation. In a similar way there is τ∶F → F with φ([0, µ, 1]) = [0, τ(µ), 1]. But
then:

φ(sλ ,µ) = φ((p1rµ) ∩ (p2qλ))
= (p1rτ(µ)) ∩ (p2qσ(λ))
= sσ(λ),τ(µ) ,

in coordinates: φ([λ, µ, 1]) = [σ(λ), τ(µ), 1].
But when λ = µ the point rλ ,λ is on (p1p4), which is stabilised by φ. So φ(rλ ,λ)

is some rν ,ν . In coordinates:

[σ(λ), τ(λ), 1] = [ν, ν, 1].

¿is proves σ(λ) = τ(λ): functions are equal.
It follows φ([λ, µ, 1]) = [σ(λ), σ(µ), 1]. And clearly, σ(1) = 1. ◇

Step 3. One even has φ([1, λ, µ]) = [1, σ(λ), σ(µ)].

Veri�cation. Likewise, there is σ ′∶F→ F such that:

φ([1, λ, µ]) = [1, σ ′(λ), σ ′(µ)],

and σ ′(1) = 1. But then:

[1, σ(λ), 1] = φ([1, λ, 1]) = [1, σ ′(λ), 1],

so σ ′ = σ . ◇

Step 4. σ is a �eld automorphism and φ([λ, µ, ν]) = [σ(λ), σ(µ), σ(ν)].
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Veri�cation. By the above,

[1, σ(λ−1), σ(λ−1)] = φ([1, λ−1 , λ−1])
= φ([λ, 1, 1])
= [σ(λ), 1, 1]
= [1, σ(λ)−1 , σ(λ)−1],

proving σ(λ−1) = σ(λ)−1. ¿erefore:

[σ(λ), σ(λµ), 1] = φ([λ, λµ, 1])
= φ([1, µ, λ−1])
= [1, σ(µ), σ(λ−1)]
= [σ(λ), σ(λ)σ(µ), 1],

proving multiplicativity.
Hence:

φ([λ, µ, ν]) = φ([1, λ−1µ, λ−1ν])
= [1, σ(λ−1)σ(µ), σ(λ−1)σ(ν)]
= [σ(λ), σ(µ), σ(ν)].

¿is and σ(1) = 1 implies that φ �xes [1, 0, 1] and [0, 1, 1]. It therefore stabil-
ises the line through them, which is exactly {[λ, µ, λ + µ] ∶ λ, µ ∈ F}. ¿erefore
φ([λ, µ, λ + µ]) has the same form, which proves additivity of σ . Surjectivity is no
issue; it is a �eld automorphism. ◇

It is now clear that φ is induced by σ ∈ Aut(F), in our notation φ = σ = P2(σ).

8.2 ¿e projective version
Wenow letV = F3 and let ΓΛ(F3) act onF3; since it preserves proportionality, it induces
an action on P2(F). For f ∈ ΓΛ(F3) we let [ f ] be the induced map. If p ∈ P2(F) has
projective coordinates p = [x , y, z], viz. if p = [v] with v = (x , y, z), then:

[ f ](p) = [ f (v)].

8.2.1. ¿eorem.

(i) ¿eaction of ΓΛ(F3) onP2(F) induces a group homomorphism ΓΛ(F3) → Aut(P2(F)).

(ii) ¿e kernel of the action is F× Id, the group of scalar maps.

(iii) ¿e action induces Aut(P2(F)).

(iv) Every α ∈ Aut(P2(F)) factors uniquely as α = γ ○ β with γ = [g] and β = [σ̂] for
some g ∈ GL(V) and σ ∈ Aut(F).

8.2.2. Remarks.

• Have another look at Remark 7.1.2; F× Id is a normal subgroup of ΓΛ(F3) be need
not be contained in GL(F3).
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• In (iv), γ and β are well-de�ned but g is not; g is unique only up to Z(F×) Id =
Z(GL(F3)).

Proof. Let f ∈ ΓΛ(V). ¿en f ∶F3 → F3 maps vector planes to vector planes. ¿ere-
fore, the induced map P f ∶P2(F) → P2(F)maps projective lines to projective lines. It
is obviously incidence preserving. ¿erefore P f ∈ Aut(P2(F)).
Step 1. ¿e kernel of the action is F× Id.

Veri�cation. Suppose f ∈ ΓΛ(V) acts trivially on P2(F). ¿en for any x ∈ F3 there
is λx ∈ F with f (x) = λxx. Using the ordinary tricks, λx does not depend on x. So
f = λ Id ∈ F× Id. (Recall that we do not assert linearity of these maps: neither did we
suppose linearity of f .) ¿e converse is obvious. ◇

To prove surjectivity is not as easy. Let X be the set of 4-tuples of points in P2(F)
no three of which are collinear.

8.2.3. Lemma. ¿e group PGL3(F) acts transitively on X, viz. if (p1 , p2 , p3 , p4) and
(q1 , q2 , q3 , q4) are in X, then there is φ ∈ GL3(F) such that ψ = P(φ) maps each p i to
q i .

Proof. As always in group theory, we may choose p1 , p2 , p3 , p4. Let e1 = (1, 0, 0) ∈
F3 and p1 = [e1]; de�ne e2, e3, p2, p3 likewise. Also let e4 = (1, 1, 1); notice that any
three of the e i ’s generate F3, so any three of the p i ’s are non-collinear in P(F3) =
P2(F). It is therefore enough to prove the lemma with p i = [e i].

Write each q i in projective coordinates, say q i = [ f i] with f i = (a i ,1 , a i ,2 , a i ,3) ∈
F3. Let:

A =
⎛
⎜
⎝

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎟
⎠
.

Introduce unknown scalars λ1 , λ2 , λ3 and consider the matrix:

Mλ =
⎛
⎜
⎝

λ1a1,1 λ1a1,2 λ1a1,3
λ2a2,1 λ2a2,2 λ2a2,3
λ3a3,1 λ3a3,2 λ3a3,3

⎞
⎟
⎠
.

Regarldess of the λ i ’s, one has (1, 0, 0) ⋅ Mλ = λ1 ⋅ (a1,1 , a1,2 , a1,3) = λ1 ⋅ f1, so p1 ⋅
[Mλ] = q1 and likewise for indices 2 and 3. So it su�ces to �nd λ1 , λ2 , λ3 such that
p4 ⋅ [Mλ] = q4.

Now observe that:

(1, 1, 1) ⋅Mλ = (λ1 , λ2 , λ3) ⋅ A.

¿erefore, p4 ⋅ [Mλ] = [λ1 , λ2 , λ3] ⋅ [A]. But Amaps the independent triple e1 , e2 , e3
to the independent triple f1 , f2 , f3. So it is le -invertible: for any row R there is a
row S such that S ⋅ A = R. We apply this with R = f4; take suitable S and write it as
S = (λ1 , λ2 , λ3). ¿en p4 ⋅ [Mλ] = [S ⋅ A] = [R] = [ f4] = q4, we are done.

Step 1. ΓΛ(F3) covers Aut(P2(F)).
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Veri�cation. Let α ∈ Aut(P2(F)). Consider the four points p1 = [1, 0, 0], p2 =
[0, 1, 0], p3 = [0, 0, 1], and p4 = [1, 1, 1]. No three of them are collinear, meaning
(p1 , p2 , p3 , p4) ∈ X. Let q i = α(p i); no three of these are collinear so (q1 , q2 , q3 , q4) ∈
X. By Lemma 8.2.3 there is γ = P(g) doing γ(p i) = q i . Up to considering γ−1 ○ α, we
may therefore suppose that α �xes each p i . ¿en by Lemma 8.1.1, there is a skew-�eld
automorphism σ such that α = [σ̂]. So α is induced by ΓΛ(V). ◇

Step 2. Proof of (iv).

Veri�cation. Weuse Proposition 7.3.4. Let α ∈ Aut(P2(F)). ¿en there is f ∈ ΓΛ(F3)
with α = [ f ]. Now f = g ○ σ̂ with g ∈ GL(F3) and σ ∈ Aut(F). ¿en α = [ f ] =
[g] ○ [σ̂] has the desired form.

It remains to check uniqueness. If also α = γ2 ○ β2 with γ2 = [g2] and β2 = [σ̂2],
then [g−12 g] = [σ̂2 σ̂−1], so letting h = g−12 g ∈ GL(F3) and τ = σ2σ−1 ∈ Aut(F), we
have [h] = [τ̂]. For e i in the chosen basis, there is λ i such that h(e i) = λ i e i ; by the
usual tricks λ does not depend on i. Now h = λ Id is linear, so λ ∈ Z(F×). So g = λg2
and therefore γ2 = γ; we are done. ◇

¿is gives a full description of Aut(P2(F)).

8.2.4. Remarks (the ‘fundamental theorem’).

• Some sources tend to forget automorphisms of typeP2(σ) because their reference
�eld, the real �eld R, has no non-trivial automorphisms.

• More in general: ifV is a vector space of dimension at least 3, letP(V) be the set of
its vector lines. Any automorphism of P(V) preserving collinearity of projective
points is of the form P( f ) for some semi-linear automorphism f of V . ¿ere are
elementary proofs avoiding coordinates.13

• By calling this (or similar) result ‘the fundamental theorem of projective geo-
metry’, one focuses only on coordinatisable structures. ¿is terminology hides
the theory of non-desarguesian projective planes and should be avoided.

8.3 ¿e general case
Nothing general can be said about abstract projective planes. As amatter of fact,Mendel-
sohn proved the following di�cult result.14

8.3.1.¿eorem (Mendelsohn). Let G be a group, and let κ be any in�nite cardinal. ¿en
there exists a projective planeP = (P ,L, I) such thatAut(P) ≃ G and cardP = max(κ, cardG).

(Notice that nothing is said about �nite projective with given �nite automorphism
group. Determining for which �nite groups G there is �nite P with Aut(P) ≃ G is likely
to be extremely di�cult if not impossible.)

13C.-A. Faure, An elementary proof of the fundamental theorem of projective geometry, Geometriae Ded-
icata 90, pp. 145–150, 2002.

14E. Mendelsohn. Every group is the collineation group of some projective plane. J. Geom., 2, pp. 97–106,
1972.
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However, there is another di�cult result, known only for �nite projective planes.15

8.3.2.¿eorem (Ostrom-Wagner). Let P be a �nite projective plane. If Aut(P) is doubly
transitive, then P is coordinatisable.

8.3.3. Remark. ¿e suitable model-theoretic analogue is a research question.

Experts in projective planes tend to use the word ‘collineation’ for an incidence-
preserving (viz. collinearity-preserving) morphism. We do not see the point of introdu-
cing speci�c terminology where general algebraic language is su�ciently illuminating.

8.4 Exercises
8.4.1. Exercise. Let F be a skew-�eld.

1. Show that:
[x ∶ y] ⋅ [a b

c d] = [xa + yc ∶ xb + yd]

de�nes an action of PGL2(F) on F ∪ {∞}.

2. Prove that the action is always 3-transitive.

3. Prove that it is sharply 3-transitive i� F a commutative �eld.

4. Let F be a skew-�eld such that any two non-zero elements are conjugate in F× (these
do exist, but it is hard16). Prove that in this case, the action is even 4-transitive.

9 Group-theoretic analysis of Desargues and Pappus
Abstract. Interpretations of the Desargues and Pappus properties in group-
theoretic terms. § 9.1 interprets the Desargues propery as transitivity of a certain
family of group actions. § 9.2 introduces partialmaps called projectivities; the group
of self-projectivities of a line is 3-transitive. § 9.3 characterises the Pappus property
as sharp 3-transitivity of the latter.

9.1 Group-theoretic interpretation of the Desargues property
9.1.1. De�nition. Let P be a projective plane; let p be a point and ℓ be a line. Let Gp ,ℓ
be the group of automorphisms of P which:

• stabilise (setwise) each line through p,

• and �x (pointwise) ℓ.

¿e de�nition supposes neither p ∈ ℓ nor p ∈ ℓ.

9.1.2. Proposition. Let P be a projective plane. ¿en P is desarguesian i� for all choices
of p and ℓ one has:

15T. Ostrom, A. Wagner, On projective and a�ne planes with transitive collineation groups,Math. Z., 71,
pp. 186–199, 1959.

16Exercise 3 p. 238 in: P. Cohn, P., Skew �elds, theory of general division rings, Encyclopedia of Mathematics
and its Applications, vol. 57, Cambridge University Press, 1977.
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for each line m through p, the group Gp ,ℓ is transitive on m ∖ ({p} ∪ ℓ).

Proof.
Step 1. Direct implication.

Veri�cation. Suppose transitivity. Let (o; a, b, c; a′ , b′ , c; a′′ , b′′ , c′′) be a (non-
degenerate) Desargues con�guration. We want to prove that a′′ , b′′ , c′′ are collinear.
Let p = o and ℓ = (a′′b′′); we have to show that c′′ ∈ ℓ.

By assumption there is g ∈ Gp ,ℓ taking a to a′. ¿is g �xes (a′′b′′) pointwise,
so it �xes b′′. ¿erefore it takes (ab′′) to (a′b′′). It also �xes (cc′) setwise, as a line
through o. Now (cc′) ∩ (ab′′) = c, while (cc′) ∩ (a′b′′) = c′, so g(c) = c′. ¿e
same method proves g(b) = b′. Let x = (ab) ∩ ℓ. By de�nition, g(x) = x. ¿erefore
x = g(x) ∈ g((ab)) = (a′b′). So (ab) and (a′b′) meet on ℓ. But the intersection
point is c′′, by de�nition. ◇

Step 2. Converse implication.

Veri�cation. We only sketch the idea as it plays a key role in Artin’s proof of Hilbert’s
Coordinatisation¿eorem.

Suppose desarguesianity. Take p, ℓ, thenm through p and a, a′ ∈ m∖({p}∪ ℓ).
If a′ = a then g = Id does; so suppose not, so that m = (aa′). We de�ne a partial
map ǧa ,a′ ∶P ∖ (ℓ ∪m ∪ {p}) → P as follows.

Let x ∈ P∖(ℓ∪m∪{p}), compute tx = (ax)∩ℓ then yx = (a′tx)∩(px),
and let ĝa ,a′(x) = yx .

We extend this ‘generically given function’ to all of P by trading the base pair
(a, a′) for another one. Let b be any point in P ∖ (ℓ ∪ m ∪ {p}) and b′ = ǧa ,a′(b).
Since a ≠ a′, one has b ≠ b′; so let m′ = (bb′). Now for x ∈ P ∖ (ℓ ∪m′ ∪ {p}), let
g(x) = ĝb ,b′(x).

¿is is well-de�ned. Indeed, if x ∉ (ℓ ∪m ∪m′ ∪ {p}), then ĝa ,a′(x) = ĝb ,b′(x)
reduces to a Desargues property, which holds.
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p

a

a′

x
g(x) = ǧa ,a′(x) = ǧb ,b′(x)

b
b′ = ǧa ,a′(b)

tx
(using b)

tbtx
(using a)

m

ℓ

¿ere are two ways to construct g(x); they agree.
(Whether p ∈ ℓ or p ∉ ℓ remains irrelevant.)

Notice that g is now also de�ned onm, and maps a to a′. Complete it by letting
g �x p and ℓ pointwise. By construction, g ∈ Gp ,ℓ sends a to a′. It is a collinearity-
preserving bijection. ◇

¿e equivalence is proved.

9.1.3. Remarks.

• ¿e action is then sharply transitive as there is a unique g ∈ Gp ,ℓ taking a to a′.
¿is can be seen during the proof (at each step, there is no choice), or a er the
proof. Indeed, once P is known to be desarguesian, it follows P ≃ P2(F) for some
skew-�eld F. Removing ℓ has the e�ect of taking us to the a�ne plane A2(bF).
¿en the action of (the restriction of)Gp ,ℓ is either that of translations parallel to ℓ
(p ∈ ℓ) or of homotheties with centre p. In either case, there is only one possibility
for g: this is sharp transitivity.

• ¿ere is more group theory to do here, notably in the �nite case. For example,
Gleason17 proved the following.

Let P be a �nite projective plane. Suppose that for all p, ℓ with p ∈ ℓ, one has
Gp ,ℓ ≠ {1}. ¿en P is desarguesian.
André18 proved a similar result, quantifying over pairs (p, ℓ) with p ∉ ℓ.

9.2 Projectivities
¿is subsection and the next deal with local functions, viz. maps not de�ned on the
whole of a projective plane. We introduce a relevant group for the local analysis of
projective planes. Its elements are called self-projectivities. De�ning it requires some
terminology.

17A. Gleason, Finite Fano Planes, Amer. Jour. Math, 78 no. 4, pp. 797–807, October 1956
18J. André, Über Perspektivitäten in endlichen projektiven Ebenen, Arch. Math. 6, pp. 29–32, 1954.
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9.2.1. De�nition (perspectivity). Let ℓ ≠ m be two lines and p ∉ ℓ∪m. ¿e perspectivity
ℓ Ð→

p
m is the map taking a ∈ ℓ to a′ = (ap) ∩m.

ℓ m

a
a′

p

9.2.2. De�nition (projectivity). A projectivity from ℓ to m is any composition of per-
spectivities ℓ Ð→

a1
ℓ1 . . . Ð→an ℓn = m.

If m = ℓ the map is called a self-projectivity of ℓ.

9.2.3. Notation (group of self-projectivities of a line). Let Proj(ℓ) be the group of self-
projectivities of ℓ.

Let ℓ,m be two lines. Since there is a perspectivity between, Proj(ℓ) ≃ Proj(m). So
the object does not depend on the line; it captures the local behaviour ‘anywhere’.

9.2.4. Remark. I do not know whether self-projectivities always extend to automorph-
isms of P.

9.2.5. Remarks (the projective line). In this remark we assume the presence of a co-
ordinate system, viz. P ≃ P2(F) for a skew-�eld F.

• Since Proj(ℓ) does not depend on ℓ, wemay focus on the line with equation z = 0,
viz. ℓ = {[x , y, 0] ∶ x , y ∈ F}. Hence ℓ ∈ P2(F) can be represented as P1(F) =
{[x ∶ y]; (x , y) ∈ F2 ∖ {(0, 0)}} = F ∪ {∞}.

• Be careful that as an incidence structure, P1(F) = F ∪ {∞} consists of only one
line. So as an incidence structure, Aut(P1(F)) = Sym(P1(F)) = Sym(F ∪ {∞}).
(Geometers usually consider more structure on P1(F) such as the cross-ratio,
which makes sense over commutative �elds.)

We return to P1(F), equipped with the notion of self-projectivites coming from
its embedding as a line in the plane.

• Every element of PGL2(F) can be written as a self-projectivity. Now, every self-
projectivity of ℓ ∈ P2(F) can (in theory) be computed in coordinates, but it is
unclear to me whether one remains in PGL2(F). (¿ere could be ‘inner �eld
automorphisms’, viz. automorphisms of F of the form x ↦ λ−1xλ.)

• However, if F is commutative, then every self-projectivity comes from an element
of PGL2(F). ¿erefore Proj(ℓ) ≃ PGL2(F). ¿e action of PGL2(F) on P1(F) is
known: see exercise 8.4.1.

One tends to avoid speaking of ‘the projective line’ when there is no coordinate system
behind.

9.2.6. Proposition. LetP be any projective planewith line ℓ. ¿enProj(ℓ) acts 3-transitively
on ℓ.
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Proof. Let f1 , f2 be two distinct points on ℓ: we show that the stabiliser of f1 and f2 in
Proj(ℓ) acts transitively on ℓ ∖ { f1 , f2}. Let x and y be points there.

Let m1 ≠ ℓ be a line through f1, and m2 ≠ ℓ be a line through f2. Choose any
p ∈ m1 ∖ ℓ. Now let qx = (px) ∩m2 and qy = (py) ∩m2. Finally, let r = m1 ∩m2.

p

f1 f2 x y

r

qx

qy

m1m2

ℓ

Consider the two perspectivities ℓ Ð→
qx

m1 and m1 Ð→q y ℓ. One may follow on the

picture that they have the following e�ect:

ℓ Ð→
qx

m1 Ð→
q y

ℓ

f1 ↦ f1 ↦ f1
f2 ↦ r ↦ f2
x ↦ p ↦ y.

So the resulting self-projectivity of ℓ �xes f1 and f2, and takes x to y.

9.3 Group-theoretic interpretation of the Pappus property
By Proposition 9.2.6, Proj(ℓ) is always 3-transitive on ℓ. Sharpness of the action is equi-
valent to the Pappus property.

9.3.1. Proposition. Let P be a projective plane. ¿en Proj(ℓ) is sharply 3-transitive on ℓ
i� P is pappian.

Proof. Suppose P is pappian. By Corollary 6.3.2, there is a commutative �eld F with
P ≃ P2(F). Now the action of Proj(ℓ) on ℓ is equivalent to that of PGL2(F) onF∪{∞},
which is known to be sharply 3-transitive (exercise 8.4.1).

For the converse we cannot use exercise 8.4.1, because we do not have a coordinate
system yet; one must give a purely geometric argument. Let (o, a, b, c, a′ , b′ , c′) be a
Pappus con�guration. Let a′′ = (bc′) ∩ (cb′), b′′ = (ac′) ∩ (ca′), and c′′ = (ab′) ∩
(ba′). We want to show that a′′ , b′′ , c′′ are collinear. Set ℓ′′ = (b′′c′′); we shall prove
a′′ ∈ ℓ′′.

We introduce two auxiliary points:

• q = (aa′) ∩ ℓ′′;
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• z = ℓ′ ∩ ℓ′′.

o a b c

a′
b′

c′

ℓ

ℓ′

a′′ b′′ c′′ q zℓ′′

Wemust prove a′′ ∈ (b′′c′′).

First consider the following projectivity and its e�ect:

ℓ Ð→
a′

ℓ′′ Ð→
a

ℓ′

a ↦ q ↦ a′
b ↦ c′′ ↦ b′
c ↦ b′′ ↦ c′
o ↦ z ↦ z

We need two more auxiliary points, which we do not show on picture:

• α′′ = (b′c) ∩ ℓ′′;

• γ′ = (bα′′) ∩ ℓ′.

Next consider this other projectivity (unde�ned point x plays no real role, since (xb) =
(bb′)):

ℓ Ð→
b′

ℓ′′ Ð→
b

ℓ′

a ↦ c′′ ↦ a′
b ↦ x ↦ b′
c ↦ α′′ ↦ γ′
o ↦ z ↦ z

Now the assumption that Proj(ℓ) is sharply 3-transitive on ℓ immediately implies
that for given linesm,m′, there is a unique projectivitym → m′ taking a distinct triple
of m to one of m′. ¿is means that γ′ = c′.

Hence α′′ ∈ (bγ′) = (bc′) and α′′ ∈ (b′c) so α′′ = a′′ lies on ℓ′′ = (b′′c′′), as
desired.

9.4 Exercises
9.4.1. Exercise. Return to the proof of Step 2 in Proposition 9.1.2. Which Desargues prop-
erty is used?

9.4.2. Exercise (cross-ratio). In this exercise, F is a commutative �eld. We consider the
usual action of PGL2(F) on ℓ = P1(F). We extend �eld arithmetic to include ∞ with
1/0 = ∞, and so on. ¿e cross-ratio of x1 , x2 , x3 , x4 is:

γ(x1 , x2 , x3 , x4) =
(x1 − x3)(x2 − x4)
(x1 − x4)(x2 − x3)

.
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Prove that the group of bijections of ℓ preserving γ is exactly PGL2(F).

9.4.3. Exercise. Give a geometric proof that if P is pappian, then Proj(ℓ) is sharply 3-
transitive. (First prove that any product of self-projectivities is a product of at most two
perspectivities.)

10 Artin’s coordinatisation (1): dilations and translations
Abstract. ¿is section and the next give a more conceptual proof of Hilbert co-
ordinatisation using group theory. § 10.1 introduces certain automorphisms called
dilations. § 10.2 studies those without a �xed point, called translations. § 10.3 in-
vestigates them further, assuming a weak form of the Desargues property.

¿roughout A is an a�ne plane.

• We do not always assume desarguesianity. Instead, the results will describe the
progressive e�ects of increasingly stronger forms of the Desargues property.

• It will be convenient, when working with automorphisms f ∶A → A, to use clas-
sical ‘high-school’ notation x′ = f (x).

10.1 Dilations
¿e group of automorphisms of A2(F) is F2+ ⋊ ΓΛ(F2). To ‘reconstruct F from A2(F)’,
one may prefer a soluble subgroup. On the other hand, behaviour of Aut(A) in an ab-
stract a�ne plane A is quite unpredictable. Artin’s method is to focus on a special sub-
group of Aut(A).

10.1.1. De�nition (the group of dilations). A dilation of A is an automorphism which
takes any line to a parallel line, viz. satisfying:

(∀a, b)[a ≠ b → (a′b′)//(ab)].

Let Dil(A) be the group they form under composition.

10.1.2. Remarks.

• In projective terms, a dilation is an automorphism of Â �xing the line at in�nity
pointwise (more precisely: the restriction to A of such an automorphism):

Dil(A) = StabAut(Â)(ℓ∞).

• In A2(F), one has Dil(A) ≃ F2+ ⋊ F×.

10.1.3. Proposition.

(i) If a dilation f has two distinct �xed points, then f = IdA.

(ii) Any dilation is determined by the image of two distinct points.
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Proof.

(i) Suppose f �xes a and b. Using our convention to write x′ for f (x), this means
a′ = a and b′ = b. ¿e proof will introduce two cases, points not on (ab) being
easier to understand. ¿is kind of case division will be common.

a′ = a b′ = b

c

d

• Let c ∉ (ab). ¿en a = a′ ∈ (a′c′) // (ac) since f is a dilation; so by
uniqueness inAP2 one has (ac′) = (ac) and c′ ∈ (ac). Likewise c′ ∈ (bc);
these lines meet at c, so c′ = c is �xed. ¿is proves that any point not on
(ab) is �xed.

• Now let d ∈ (ab). Using any c ∉ (ab) (there exists such a point by AP3),
one has c′ = c and d ∉ (ac). By the previous argument, d is �xed too.

¿us all points are �xed and f = IdA.

(ii) If f1 , f2 ∈ Dil(A) agree on two di�erent points a ≠ b, then f −11 f2 ∈ Dil(A) �xes
a and b, so by (i), one has f1 = f2.

In A2(F), dilations are either translations or homotheties. ¿e di�erence is in the
number of �xed points. ¿e next subsections build on this observation, in an abstract
a�ne plane.

10.2 Translations
10.2.1. De�nition (translation). A translation of A is either the identity map IdA, or a
�xed point-free dilation. Let Trans(A) be their set (one must prove that it is a group).
10.2.2. Remark. ¿e terminology is consistent with ordinary practice: if A = A2(F),
then a translation in this sense is one in the usual sense.

Remember that given a point a and line ℓ, we use ℓa to denote the unique line parallel
to ℓ through a. Moreover, for t a translation ≠ IdA and a a point, one has t(a) ≠ a so
line (at(a)) is well-de�ned.
10.2.3. Proposition.

(i) If t is a translation ≠ IdA then for any a, b ∈ A, one has (at(a))//(bt(b)).

(ii) If t ≠ IdA is a translation and b ∉ (aa′) then b′ = (ab)a′ ∩ (aa′)b .

a

b

a′

b′
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(iii) Trans(A) ⊴ Dil(A) is a normal subgroup.

(iv) If two translations coincide at one point, they are equal.

No claims on abelianity so far.

Proof. Whenever working with only one dilation (eg. a translation), we implicitly use
notation x′ = f (x).

(i) Suppose there is a counterexample. ¿en lines (aa′) and (bb′); let c = (aa′) ∩
(bb′).

a

b

a′

b′

c

Now c′ ∈ (a′c′)//(ac) since t is a dilation. But a, a′ , c are collinear so c′ ∈ (aa′).
Likewise, c′ ∈ (bb′) and c′ = c. ¿us t has a �xed point: a contradiction.

(ii) Since t is a dilation, (a′b′)//(ab). But also, since t is a translation, (i) implies that
(bb′)//(aa′). Now b ∉ (aa′), so lines (aa′) and (ab) are not parallel. ¿erefore
lines (a′b′) and (bb′) are not parallel, and their intersection is the point b′.

(iii) By de�nition, IdA is a translation; clearly the inverse of a translation is a transla-
tion; moreover if (t, d) ∈ Trans(A) ×Dil(A) then dtd−1 has no �xed point. So
Trans(A) is a normal subset of Dil(A). It only remains to prove that Trans(A)
is stable under composition.

Let t1 , t2 be translations; we show t2 t1 ∈ Trans(A). We may supppose that
neither of t1 , t2 is IdA. To prove that the dilation t2 t1 is a translation, we show
that it is either �xed point-free or IdA. So suppose t2 t1 has a �xed point a.

a

t1(a)t2

b

t1(b)

Pick any b ∉ (a t1(a)). We localise t2 t1(b) on two non-parallel lines.

• On the one hand:

((t2(b) t2 t1(b))//(b t1(b)) since t2 ∈ Dil(A)
//(a t1(a)) since t1 ∈ Trans(A), by (i)
//(t2(a) t2 t1(a)) since t2 ∈ Dil(A)
= (a t2(a)) since t2 t1 �xes a
//(b t2(b)) since t2 ∈ Trans(A), by (i).

It follows that t2 t1(b) ∈ (b t2(b)).
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• On the other hand, because t2 t1 is a dilation �xing a:

(a t2 t1(b)) = (t2 t1(a) t2 t1(b))//(ab),

so t2 t1(b) ∈ (ab).

If lines (b t2(b)) and (ab) are parallel, then reading the above computations we
see that (ab) = (a t1(a)), against the choice of b. So lines (b t2(b)) and (ab)
are not parallel, and their intersection is exactly b. ¿erefore t2 t1(b) = b. But a
dilation �xing two points is the identity by Proposition 10.1.3. We are done.

(iv) If t1(a) = t2(a), then t′ = t−12 t1 is a translation by (iii). It has a �xed point, so
t−12 t1 = IdA.

10.3 ¿e (p,p)-Desargues property
¿e continued study of the group of translations needs a (weak) form of desarguesianity
of A.

10.3.1. De�nition ((p,p)-Desargues). ¿e (parallel, parallel)-form of the Desargues prop-
erty (for short: (p, p)-Desargues) is the following axiom.

Let (aa′), (bb′), (cc′) be three distinct parallel lines. Suppose (ab)//(a′b′)
and (ac)//(a′c′). ¿en (bc)//(b′c′).

a a′

b b′

c c′

Two triangles on three parallel lines. If two pairs of sides are parallel, so is
the third.

¿e property is also called the small Desargues axiom.

10.3.2. Proposition.

(i) A has (p,p)-Desargues i� Trans(A) is transitive on A.

(ii) If this holds, then Trans(A) is abelian.

10.3.3. Remarks.

• Since distinct translations never coincide anywhere, there can be at most one
translation t mapping given a to given b. So in (i), transitivity is equivalent to
sharp transitivity.

• ¿e converse of (ii) neednot hold: one can construct a�neplaneswithTrans(A) =
{Id} (which is abelian, but not transitive).

Proof.

(i) First suppose that Trans(A) is transitive on A; we prove (p,p)-Desargues. Take
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a (p,p)-Desargues con�guration (a, b, c; a′ , b′ , c′); suppose (ab) // (a′b′) and
(ac)//(a′c′). Wewant to show (bc)//(b′c′). By transitivity, let t be the translation
mapping a to a′. ¿en by Proposition (ii), one has t(b) = (ab)a′ ∩ (aa′)b = b′
and t(c) = c′ likewise. Now since t is a dilation, (b′c′)//(bc), as desired.
¿e converse is more interesting, and requires partial maps. Suppose (p,p)-
Desargues holds. For any pair of distinct points (a, a′), we de�ne a partial map
ťa ,a′ ∶ A ∖ (aa′) → A by:

ťa ,a′(b) = (ab)a′ ∩ (aa′)b .

¿is is well-de�ned, but a partial map.

Step 1. If b ∉ (aa′) and b′ = ťa ,a′(b), then ťa ,a′ and ťb ,b′ agree wherever both
are de�ned.

Veri�cation. ¿is is exactly the (p,p)-Desargues assumption. ◇

¿is de�nes a global map ta ,a′ ∶ A → A, and ta ,a′(a) = a′. We must prove that
ta ,a′ is a translation. Notice that if ta ,a′(b) = b′, then ta ,a′ = tb ,b′ .
Step 2. ta ,a′ is a dilation.

Veri�cation. Bijectivity is obvious from the following picture.

a a′

x′

We claim that ta ,a′ is an automorphism. Suppose x , y, z are collinear (and
we may suppose they are distinct); we show that so are the images x′ , y′ , z′.

x x′

y y′

z z′

But we know that ta ,a′ = tx ,x′ , so actually y′ = (xx′)y ∩ (xy)x′ ∈ (xy)x′
and z′ ∈ (xz)x′ = (xy)x′ by collinearity of x , y, z. ¿is proves collinearity of
x′ , y′ , z′.

We claim that t is a dilation. But we already know that (x′y′)//(xy), so
this is clear. ◇
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Finally t is a translation. Otherwise it has a �xed point b.

a a′

b′ = b

Up to changing base point wemay suppose b ∉ (aa′). Now (ab)//(a′b′) = (a′b)
so b ∈ (aa′), a contradiction.

(ii) Let t1 , t2 be translations. We want to show t2 t1 = t1 t2; we may assume that
neither is IdA, so neither has a �xed point. Let a ∈ A.

Case 1. Suppose a, t1(a), t2(a) are not collinear.

a

t1(a)

t2(a)

¿en by Proposition (ii):

t2(t1(a)) = (a t1(a))t2(a) ∩ (a t2(a))t1(a) = t1 t2(a),

as desired.

Case 2. Suppose a, t1(a), t2(a) are collinear, say on ℓ. ¿e above no longer
applies. ByAP3 take b ∉ ℓ. By transitivity, there is a translation t0 taking a
to b. If t1 t0(a) = t1(b) ∈ ℓ, then ℓ = (t1(a) t1(b))//(ab) and b ∈ (ab) = ℓ, a
contradiction. So t1 t0(a) ∉ ℓ. ¿erefore, by case 1 applied to pairs (t1 t0 , t2)
and (t0 , t2):

t2 t1 = (t2 t1)(t0 t−10 ) = t2(t1 t0)t−10
= (t1 t0)(t2 t−10 ) = t1(t0 t2)t−10
= t1 t2 t0 t−10 = t1 t2 ,

and we are done again.

10.3.4. Remark. Abelianity can be proved assuming only the existence of translations
having di�erent ‘directions’ (see De�nition 11.2.2 below). ¿e latter is proved to be a
consequence of (p, p)-Desargues, but is weaker.

10.4 Exercises
10.4.1. Exercise. Let f ≠ IdA be a dilation. Suppose that for any a, b ∈ A one has (aa′)//
(bb′). Prove that f is a translation.
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11 Artin’s coordinatisation (2): the skew-�eld
Abstract. A sequel to § 10. We recover a vector geometry from an a�ne plane,
paying attention to assumptions. § 11.1 introduces homotheties and another form
of the Desargues property. § 11.2 constructs the ring of direction-preserving endo-
morphisms of Trans(A), provided the latter is abelian. § 11.3 shows it is a skew-�eld,
provided A has (p,p)-Desargues. § 11.4 �nishes coordinatisation, provided A has
(c, p)-Desargues.

11.1 Homotheties and the (c,p)-Desargues property
We construct and interpret homotheties by arguments similar to translations.

11.1.1. De�nition (homothety). A homothety of A is a dilation having at least one �xed
point (this includes IdA).

For a ∈ A, let Homa(A) be the group of dilations �xing a.

¿ere is no equivalent of Proposition 10.2.3. Two homotheties with the same �xed
pointwhich coincide at one other point, are equal; but this follows fromProposition 10.1.3.

11.1.2. Corollary. IfA has (p, p)-Desargues thenDil(A) = Trans(A)⋊Homa(A) for any
a ∈ A.

Proof. By Proposition (iii), Trans(A) ⊴ Dil(A); by de�nition, Trans(A) ∩
Homa(A) = {IdA}. Now let d ∈ Dil(A) be any dilation. By (p, p)-Desargues there
is a translation t with t(a) = d(a). Hence t−1d(a) = a so that t−1d ∈ Homa(A).
¿erefore d ∈ Trans(A) ⋊Homa(A).

We give the relevant form of the Desargues property.

11.1.3. De�nition ((c,p)-Desargues). ¿e (concurrent, parallel)-form of the Desargues
property (for short: (c, p)-Desargues) is the following axiom.

Let (aa′), (bb′), (cc′) be three distinct concurrent lines. Suppose (ab)//
(a′b′) and (ac)//(a′c′). ¿en (bc)//(b′c′).

o

a

a′

b b′

c
c′

Two triangles on three concurrent lines. If two pairs of sides are parallel, so
is the third.

¿e property is also called the big Desargues axiom.

11.1.4. Proposition. A has (c,p)-Desargues i� for any line ℓ and point o ∈ ℓ, Homo(A)
acts transitively on ℓ ∖ {o}.

11.1.5. Remark. Here again, since an element of Homo(A) already �xes o and a non-
identity dilation has at most one �xed point, sharpness is for free.
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Proof. Exercise 11.5.1.

11.1.6. Corollary. If A has (c, p)-Desargues, then it has (p, p)-Desargues.

11.1.7. Remark. ¿is corollary explains the classical (rather obscure) terminology ‘big
Desargues axiom’ versus ‘small Desargues axiom’: one is stronger than the other.

Proof. ¿e statement is not obvious geometrically. We give an algebraic proof, using
the equivalences of Propositions 10.3.2 and 11.1.4. It su�ces to show that Trans(A) acts
transitively. Let a, a′ be distinct points of A.

Let o ∈ (aa′) ∖ {a, a′} (here we must assume that lines have more than three
points). By assumption, there is g1 ∈ Homo(A) such that g1(a) = a′. Also let b ∉ (ao),
and let b′ = (ab)a′ ∩(aa′)b , then b′′ = g1(b). By assumption, there is g2 ∈ Homa′(A)
such that g2(b′′) = b′.

o a a′

b b′

b′′

We claim that t = g2g1 is a translation taking a to a’. Of course t(a) = g2(a′) = a′,
but also t(b) = g2(b′′) = b′. So if t has a �xed point c, then one must have (ac)//
(a′c′) = (a′c), and therefore c ∈ (aa′). But c ∈ (bb′) likewise, and these lines do not
meet. Hence t has no �xed point; it is a translation.

11.2 ¿e ring of direction-preserving translations
Here is another idea. In coordinatised a�ne planes, one has Trans(A2(F)) ≃ F2, which
is a vector space over F. But a priori, Trans(A2(F)) is merely a group. One may re-
trieve F as a special ring of endomorphisms of Trans(A2(F)); the abstract formulation
requires two de�nitions.

11.2.1.De�nition (ring of endomorphisms of an abelian group). Let (M;+)be an abelian
group. ¿en the set End(M) = { f ∶ (M;+) → (M;+)} of endomorphisms of the group
(M;+) forms a ring under:

• pointwise sum, viz. ( f + g)(x) = f (x) + g(x);

• composition, viz. (g ⋅ f )(x) = g( f (x)).

¿e respective identity elements are the zero (constant) map 0M and the identity map
IdM .

In general, the ring is non-commutative.

11.2.2. De�nition (direction of a translation).

• ¿e direction of a translation t ≠ IdA is the equivalence class of (a t(a)) for any
a ∈ A. (¿is is well-de�ned by Proposition (i).) We denote it by dt .
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• An endomorphism λ∶Trans(A) → Trans(A) is direction-preserving if: for any
t ∈ Trans(A) ∖ {IdA}, one has λ(t) ≠ IdA and dλ(t) = dt .

Let F = {λ ∈ End(Trans(A)) ∶ λ is direction-preserving} ∪ {0}.

In particular a direction-preserving endomorphism of Trans(A) is injective by con-
struction.

11.2.3. Proposition. Let A be an a�ne plane such that Trans(A) is abelian. ¿en F is a
subring of End(Trans(A)).

Proof. Clearly F contains 0 and 1; so it su�ces to check stability under +,−, ⋅. Oppos-
ition will be an exercise.
Step 1. F is stable under +.

Veri�cation. Let λ, µ ∈ F; we show λ + µ ∈ F. We may assume that neither λ, µ, nor
λ + µ is 0. Let t ∈ Trans(A) ∖ {IdA}. By de�nition, λ is injective, so λ(t) ≠ IdA and
µ(t) ≠ IdA likewise. Also λ(t) + µ(t) ≠ IdA as otherwise λ + µ = 0.

Since λ et µ are direction-preserving, dλ(t) = dt = dµ(t). Now this is also the dir-
ection of λ(t)+ µ(t), so dt = dλ(t)+µ(t) = d(λ+µ)(t), so λ+ µ is direction-preserving.
◇

Step 2. F is stable under ⋅.

Veri�cation. Let λ, µ ∈ F; we may assume that neither λ nor µ is 0. ¿en both are
injective, and therefore λ ⋅ µ ≠ 0. Now for any t ∈ Trans(A) ∖ {IdA}, d(λ⋅µ(t) =
dλ(µ(t)) = dµ(t) = dt , so by de�nition, λ ⋅ µ ∈ F. ◇

Notice that since End(Trans(A)) is a ring, F inherits associativity and distributiv-
ity without a need to check them.

11.3 A skew-�eld assuming (p,p)-Desargues
Proposition 11.2.3 does not use any formofDesargues property, only abelianity of Trans(A).

11.3.1. De�nition. For h ∈ Dil(A) any dilation, consider the transformation:

λh ∶ T → T
t ↦ hth−1 .

Notice that λh is always a group automorphismofTrans(A), and direction-preserving
(by de�nition of a dilation): hence λh ∈ F.

Recall from Proposition 10.3.2 that (p, p)-Desargues implies abelianity of Trans(A).

11.3.2. Proposition. If A has (p, p)-Desargues, then F is a skew-�eld. Moreover, for any
point a one hasHoma(A) ≃ F×.

Proof. ¿e proof entirely relies on a geometric lemma, proved a er its consequences.

11.3.3. Lemma. Suppose that A has (p,p)-Desargues. Let a ∈ A be �xed. ¿en for all
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λ ∈ F ∖ {0} there is a unique h ∈ Homa(A) with λh = λ.
We �rst show how it implies the Proposition.

• Let λ ∈ F ∖ {0}. By the Lemma, λ = λh for some h. Let µ = λh−1 . ¿en µ ∈ F
and λµ = µλ = 1 in F, so F is a skew-�eld.

• ¿ere is a group homomorphismHoma(A) ↠ F×; this is actually an isomorph-
ism. For if h ∈ Homa(A) lies in the kernel, then it means that λh = 1, or equi-
valently, that for any t ∈ Trans(A), one has ht = th. However as soon as t ≠ IdA,
one gets ht(a) = th(a) = t(a) so h �xes not only a but also t(a) ≠ a; being a
dilation it implies h = IdA, as desired.

Proof of the Lemma.

a
t λ(t)

ta ,x

λ(ta ,x)

x

h(x)

By (p,p)-Desargues, for any x ∈ A there is a translation ta ,x taking a to x. De�ne:

h(x) = (λ(ta ,x)) (a)

We claim that h ∈ Homa(A) and λh = λ.
Step 1. h ∈ Homa(A).

Veri�cation. First notice that h is well-de�ned since ta ,x exists and is unique. Also
h(a) = λ(IdA)(a) = IdA(a) = a since λ is a group endomorphism. But we have a
number of things to check that it is a dilation.

Let y ∈ A be another point. ¿en ta ,y = tx ,y ta ,x since these two translations
coincide at a. ¿erefore, using that λ is a group endomorphism:

h(y) = (λ(tx ,y)λ(ta ,x)) (a) = λ(tx ,y)(h(x))

In particular, if x ≠ y, then tx ,y ≠ IdA and since λ ∈ F∖{0} is direction-preserving,
λ(tx ,y) ≠ IdA, proving h(y) ≠ h(x). So h is injective. But also, always since λ is
direction-preserving,

(h(x) h(y))//dtx ,y //(xy)
An injectivemapwith this property is always a dilation (preservation of collinearity
and surjectivity being consequences le as an exercise). So h ∈ Dil(A) and since
we already know h(a) = a, we have h ∈ Homa(A). ◇

Step 2. λh = λ.
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Veri�cation. Take any t ∈ Trans(A); say t = ta ,b for some b. ¿en λh(t) = hth−1 is
the translation taking a to hth−1(a) = ht(a) = h(b) = λ(ta ,b)(a) = λ(t)(a). So
λh(t) = λ(t), for any translation; hence λh = λ in F. ◇

So h ∈ Homa(A) and λh = λ.

¿is proves the proposition.

11.4 Coordinatisation assuming (c, p)-Desargues
One can thus retrieve a skew-�eld under as weak a property as (p,p)-Desargues. Now
the F-module Trans(A) is actually a vector space. One may think this is close to co-
ordinatising, yet the dimension theory of Trans(A) is not clear at all.

Recall that the direction (De�nition 11.2.2) of a translation t is denoted by dt .

11.4.1. Proposition. Suppose A has (c, p)-Desargues. ¿en:

(i) for t, t′ ∈ Trans(A) ∖ {Id}, one has dt = dt′ i� there is λ ∈ F with t′ = λt;

(ii) Trans(A) is 2-dimensional as a le -vector space over F;

(iii) A ≃ A2(F).

Proof. Recall from Corollary 11.1.6 that (c, p)-Desargues implies (p, p)-Desargues,
which in turn implies (sharp) transitivity of Trans(A) on A by Proposition 10.3.2.
Whevener a ≠ b ∈ A, we let ta ,b be the unique translation taking a to b. Its direc-
tion is then the parallelism class of (ab).

(i) Let t, t′ ∈ Trans(A) ∖ {IdA}. If there is λ ∈ F with t′ = λt then λ ≠ 0, so by
de�nition, λ is direction-preserving; hence dt′ = dt .
Now suppose dt′ = dt , and say t = to ,a , t′ = to ,a′ . By (c, p)-Desargues, there is
h ∈ Homo(A) doing h(a) = a′. ¿en let λ = λh . We know that:

λt = hth−1

= to ,hth−1(o)
= to ,ht(o)
= to ,h(a)
= to ,a′
= t′ .

(ii) It su�ces to show that two translations with di�erent directions span Trans(A).
¿ese exist under (p, p)-Desargues. Let t1, t2 have directions d1 ≠ d2. Let t be
another translation. By (i) we may suppose that the direction of t is neither d1
nor d2. Fix a ∈ A and let b = t(a).
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a

d1d2

b

c

Lines (d1)b and (d2)a are not parallel, so they meet at say c. Clearly c is neither
a nor b. So tc ,b has direction d1, which is the same as t1. By (i), there is λ ∈ Fwith
tc ,b = λt1. Likewise, the direction of ta ,c is d2, so there is µ ∈ F with ta ,c = µt2.
Now:

t = ta ,b = tc ,b ○ ta ,c = (λ(t1)) ○ (µ(t2)),
as transformations ofA, which in vector space notation rewrites: t = λ ⋅ t1+µ ⋅ t2.

(iii) Fix any o ∈ A. ¿en by sharp transitivity, A = Trans(A) ⋅ o is parametrised by
Trans(A) ≃ F2 as a le -vector space over F. So we may represent points inA by
pairs in F2.
Let p1 ≠ p2 be two points in A. ¿en for any q ∈ A one has equivalences:

q ∈ (p1p2) i� q = p1 or (p1q)//(p1p2)
i� q = p1 or dtp1 q = dtp1 p2
i� (∃λ ∈ F)(tp1 ,q = λtp1 ,p2).

So (p1p2) = {p1 + λ ⋅ tp1 ,p2 ∶ λ ∈ F}. ¿us lines in A correspond to parametric
a�ne lines in F2. ¿is gives an isomorphism A ≃ A2(F).

11.4.2. Remarks.

• I do not know which �nite values of dimF Trans(A) are possible in abstract a�ne
planes.

• Objects Trans(A) and F are intrinsic, viz. do not depend on anything. On the
other hand coordinatisation does: it depends on the choice of o. Notice that we
do not introduce other extrinsic data; Artin’ method requires no axes.

• Hilbert’s and Artin’s methods have in common that one has to go to the a�ne part
of a desarguesian projective plane. I am not aware of proofs entirely taking place
in the original projective plane.

• I am not aware either of quicker arguments directly coordinatising ‘projective 3-
spaces’ (De�nition 4.1.1).19

11.5 Exercises
11.5.1. Exercise. Prove Proposition 11.1.4, viz.: A has (c,p)-Desargues i� for any line ℓ and
point o ∈ ℓ,Homo(A) acts transitively on ℓ ∖ {o}.

For the direct implication, �rst construct a partial map ȟo ,a→a′ de�ned on A ∖ ℓ.
19To some extent, the following sketches an answer, but not a very satisfactory one as it resembles an in-

termediate stage between Hilbert and Artin. M. K. Bennett, Coordinatization of a�ne and projective space,
Discrete Mathematics 4, pp. 219–231, 1973.
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11.5.2. Exercise. ¿ere is a (c, c)-Desargues property; draw its picture. Now give a geo-
metric proof that (c, p)-Desargues implies (c, c)-Desargues.20

(It is a consequence of coordinatisation that (c, p) implies all other a�ne forms.)

12 Duality
Abstract. § 12.1 dualises geometric statements; if a geometric statement φ holds in
all projective planes, then so does its dual statement φ∗. § 12.2 dualises projective
planes, viz. attaches to each projective plane a dual plane, with dual properties.
§ 12.3 studies the behaviour of the Desargues and Pappus properties under duality.

We use the following notation from mathematical logical. For Γ an incidence geo-
metry and φ a geometric statement (one about points, lines, incidence), write Γ ⊧ φ if
Γ satis�es φ.

12.1 Duality
Return to the de�nition of a projective plane (De�nition 2.1.1). ¿ere is a noticeable
symmetry in the axioms when one exchanges points and lines.

12.1.1. De�nition (dual statement). Let φ be a statement about projective planes. Its
dual statement is the statement φ∗ obtained by exchanging the words ‘point’ and ‘line’,
and exchanging the symbols ∈ and ∋.

12.1.2. Example. ¿e dual statement of PP1 is PP1
∗ = PP2. Likewise, PP2

∗ = PP1. ¿is
is not surprising since φ∗∗ = φ.

12.1.3.¿eorem (duality theorem). Let φ be a statement about projective planes. ¿en φ
holds in every projective plane i� φ∗ does.

Be careful that ‘being desarguesian’ does not hold in every projective plane, so it is
not a suitable φ. But ‘Pappus implies Desargues’ is an example of such a statement.

Proof using mathematical logic. Since φ∗∗ is always the formula φ, one implication
is enough. We want to argue by symmetry of the axioms for projective planes. We
know that PP1

∗ = PP2, but we should also do something about PP3.
Step 1. Let Γ be an incidence geometry satisfying PP1 and PP2. ¿en in Γ, PP3 is
equivalent to:

PP3
∗. ¿ere are four distinct lines, no three of which are concurrent.

Veri�cation. Suppose PP3. ¿ere are four points a, b, c, d no three of which are col-
linear. So lines (ab), (ac), (bc), (bd) are four in number and no three of them con-
cur. Hence PP3

∗ holds. ¿e converse can be obtained similarly. ◇

Suppose that all projective planes satisfy φ. ¿en by ‘Skolem-Gödel’s completeness
theorem’ there is a proof of φ using only axioms PP1 ,PP2 ,PP3. Now exchange the

20A solution may be found in: M. Prażmowska, A proof of the projective Desargues axiom in the desar-
guesian a�ne plan, Demostratio Mathematica, xxxvii(4), pp. 921–924, 2004.
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words ‘points’ and ‘lines’ in the proof (and revert incidence accordingly). ¿e resulting
text is a proof of φ∗ using only axioms PP1

∗ = PP2, PP2
∗ = PP1, and PP3

∗. Since the
latter is a consequence of PP1 ,PP2, and PP3, it holds in any projective plane. ¿erefore
so does φ∗.

12.1.4. Remark. ¿eproof is not very satisfactory as it relies on proof theory. § 12.2 gives
a better one.

12.2 ¿e dual plane
Let us now dualise planes.

12.2.1. De�nition (dual incidence geometry). Let Γ = (P ,L, ∈) be an incidence geo-
metry. Set P∗ = L, L∗ = P , and take I∗ to be ∋. Let Γ∗ = (P∗ ,L∗ , I∗) be the dual
incidence geometry of Γ.

12.2.2. Remark (dual incidence as membership). In order to have I∗ be ∈, proceed as
follows. For p ∈ P let Lp = {ℓ ∈ L ∶ p ∈ ℓ}. Now take P∗ = L, L∗ = {Lp ∶ p ∈ P}, and
I∗ =∈. We claim that this construction is isomorphic to the previous one.

Introduce better notation: let Γ∗1 be the original construction with I∗ and Γ∗2 be the
one with ∈. Let f ∶ P∗1 = L → L = P∗2 be the identity map. Now let g∶ L∗1 = P → {Lp ∶
p ∈ P} = L∗2 take p to Lp . ¿en letting p∗1 = ℓ ∈ P∗1 and m∗

1 = q ∈ L∗1 , one has:

p∗1 I
∗
1 m

∗
1 ⇔ ℓ ∋ q ⇔ ℓ ∈ Lq ⇔ f (p∗1 ) ∈ g(m∗

1 ).

12.2.3. Proposition. Let Γ be an incidence geometry and φ be a sentence. ¿en Γ ⊧ φ i�
Γ∗ ⊧ φ∗. In particular, Γ is a projective plane i� Γ∗ is one.

Proof. Short, not rigorous: by induction on what a statement is.
Long, rigorous: de�ne elementary formulas with parameters φ(a). Now a point

p ∈ P maps to the line p∗ ∈ L∗ and a line ℓ ∈ L to the point ℓ∗ ∈ P∗; so parameters
a∗ are well-de�ned. ¿en prove by induction on formula with parameters: Γ ⊧ φ(a)
i� Γ∗ ⊧ φ∗(a∗). (¿is is an easy induction.) In particular, a sentence is a formula with
no parameters, giving the result.

Since axioms of a projective plane are self-dual, but axioms of an a�ne plane are
not, we focus on projective planes. (¿e dual geometry of an a�ne plane is not an a�ne
plane.)

12.2.4. Remark. In general, P /≃ P∗. However P ≃ P∗∗ always and canonically.

Better proof of the duality¿eorem 12.1.3. Suppose all projective planes satisfy φ.
In particular, for all projective planesP, one hasP∗ ⊧ φ; henceP ⊧ φ∗. So all projective
planes satisfy φ∗. Applying to φ∗, we get the converse.

Let F be a skew-�eld. Remember that the opposite skew-�eld Fop has same underly-
ing set, same addition, but multiplication:

a ⋅op b = b ⋅ a.

It is a skew-�eld, in general not isomorphic to F.
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12.2.5. Remarks.

• ¿ere is a general notion of the opposite group Gop, and one always has Gop ≃ G
(using inversion). But knowing F× ≃ (F×)op is not enough as addition is not
necessarily preserved.

• F = Fop i� F is commutative.

• H ≃ Hop thanks to quaternion conjugation. In general, F ≃ Fop i� F admits an
‘anti-automorphism’.

• So in general, F /≃ Fop.

12.2.6. Proposition. Let F be a skew-�eld. ¿en (P2(F))∗ ≃ P2(Fop).

12.2.7. Remarks.

• In particular, if F is a commutative �eld, then (P2(F))∗ ≃ P2(F).

• ¿e converse may fail. For instance, althoughH is not commutative, i.e.H ≠ Hop,
one hasH ≃ Hop. So (P2(H))∗ ≃ P2(Hop) ≃ P2(H).

Proof of the Proposition. Onemust pay attention to sides. ¿ere are three important
ideas.

1. ¿e dual of a le -vector space is a right-vector space.
¿is is achieved by letting (φ ⋅ λ)(v) = φ(v) ⋅ λ. (Also notice that (λ ⋅ φ)(v) =
λ ⋅ φ(v) is not a linear form.)
More generally the usual duality pairingW ↝W⊥maps le -F-vector subspaces
of V to right-F-vector subspaces of V∗. (If things are too abstract, one is al-
lowed to think in terms of equations, but then remember that in our conven-
tion matrices act from the right. Say elements of V are rows, elements of V⊥ are
columns, and one computes ⟨v , φ⟩ by row-columnmultiplication, which returns
a scalar.)

With this in mind, duality theory works like in the commutative case.

2. A right-vector space over F is a le -vector space over Fop.
¿is is achieved by letting λ ∗ v = v ⋅ λ. Indeed:

(λ ⋅op µ) ∗ v = (µ ⋅ λ) ∗ v
= v ⋅ (µ ⋅ λ)
= (v ⋅ µ) ⋅ λ
= λ ∗ (µ ∗ v).

3. P2(F) is obtained from F3 as a le -vector space. But F3 also bears a right-vector
space structure by letting (x , y, z) ⋅ λ = (xλ, yλ, zλ). ¿ese two actions di�er,
but commute. Hence F3 is both a le -vector space and a right-vector space over
F, alternatively: both a F and Fop le -vector space. But these structures di�er
as soon as F is non-commutative.

LetK = Fop for clarity. It will save notation to write PF = P2(F) and PK = P2(K).
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If L ≤ K3 is a (le -K-)vector line, then L⊥ ≤ K3 is a (right-K-)vector plane, so
L⊥ ≤ F3 is a (le -F-)vector plane. Likewise, if H ≤ K3 is a (le -K-)vector plane, then
H⊥ ≤ F3 is a (le -F-)vector line. Now de�ne:

f ∶ P(PK) → L(PF),
L ↦ L⊥

and:
g ∶ L(PK) → P(PF).

H ↦ H⊥

¿ese are clearly bijections. Now let (p, ℓ) ∈ P(PK) × L(PK), say p = L ≤ K3 and
ℓ = H ≤ K3. Since duality reverses inclusion:

p ∈ ℓ ⇔ L ≤ H ⇔ H⊥ ≥ L⊥ ⇔ g(ℓ) ∋ f (p).

¿erefore PFop = PK ≃ (L(PF),P(PF), ∋) ≃ P∗F, as desired.

12.3 Dualising Desargues and Pappus
¿eDesargues and Pappus properties may be called ‘self-dual’, but that would be in two
distinct senses:

• the Desargues property is equivalent to its dual, meaning that a plane has one i�
it has the other;

• the (much stronger) Pappus property implies the (much stronger too) self-duality
of a plane, meaning that the pappian plane is isomorphic to its dual.

12.3.1. Proposition (Desargues implies Desargues∗). Let P be a projective plane. ¿en
P is desarguesian i� P∗ is.

First proof. One implication su�ces since P∗∗ ≃ P. Suppose P is desarguesian. ¿en
using Hilbert coordinatisation, there is a skew-�eld F with P ≃ P2(F). ¿en by Pro-
position 12.2.6, P∗ ≃ (P2(F))∗ ≃ P2(Fop) is desarguesian as well.

Second proof. To prove that P∗ satis�es Desargues, we check that P satis�es
Desargues∗. One should �rst write Desargues∗; it so happens that it is the ‘converse
Desargues property’ (Remark 3.1.5).

So let ω, α, α′ , β, β′ , γ, γ′ be lines such that:

• ω, α, α′ are concurrent;

• ω, β, β′ are concurrent;

• ω, γ, γ′ are concurrent.

To prove Desargues∗ is to prove that lines α′′ = (β ∩ γ β′ ∩ γ′), β′′ = (α ∩ γ α′ ∩ γ′),
and γ′′ = (α ∩ β α′ ∩ β′) are concurrent.
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a0 b0 c0

a

a′

b

b′

c

c′

α
α′

β β′ γ
γ′

ω

Will dotted lines concur?

We name these points and a few more. Let:

• a0 = α ∩ α′, b0 = β ∩ β′, and c0 = γ ∩ γ′;

• a = β ∩ γ and a′ = β′ ∩ γ′;

• b = α ∩ γ and b′ = α′ ∩ γ′;

• c = α ∩ β and c′ = α′ ∩ β′.

With this notation we now have α′′ = (aa′), and so on.
Consider the following Desargues con�guration (mind the swap on line ω):

a0

c0

b0

b c

b′
c′

¿e various collinearities occur on lines ω, α, α′. Now compute the ‘Desargues points’:

• (c0b) = γ and (b0c) = β meet at a;

• (c0b′) = γ′ and (b0c′) = β′ meet at a′;

• (b′b) = β′′ and (c′c) = γ′′ meet at say x.

Since P is desarguesian, x ∈ (aa′) = α′′. So α′′ , β′′ , γ′′ concur at x, as desired.

Assuming the Pappus property, the conclusion can be made even stronger.

12.3.2.¿eorem (Pappus implies self-duality). LetP be a projective plane. IfP is pappian,
then P∗ ≃ P. (In particular P∗ is pappian.)

Proof. Suppose P is pappian; we use coordinatisation. By the Pappus property, P ≃
P2(F) for some commutative �eldF (Corollary 6.3.2). In particularFop = F. ¿erefore
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taking duals with Proposition 12.2.6:

P∗ ≃ P2(F)∗ ≃ P2(Fop) = P2(F) ≃ P,

which is pappian by assumption.

12.3.3. Remarks.

• ¿ere is a geometric proof (without coordinatisation) that if P is pappian then so
is P∗. ¿is is much weaker than¿eorem 12.3.2.

• I am not aware of a geometric proof that if P is pappian, then P ≃ P∗ (one would
have to go to self-dualities).

• Be careful that (P ≃ P∗ and desarguesian) does not imply commutativity of the
underlying skew-�eld: one only has Fop ≃ F, as in the quaternions.

12.4 Exercises
12.4.1. Exercise. Prove that in an incidence structure satisfyingPP1 andPP2, the following
are equivalent:

• every line has at least three points;

• every point is on at least three lines.

12.4.2. Exercise. Let F be a skew-�eld.

1. Prove that (F)2P ≃ P2(Fop) (see Remark 2.1.4).

2. Prove that F ≃ Fop i� P2(F) ≃ (P2(F))∗ i� P2(F) ≃ (F)2P.

12.4.3. Exercise. Give a geometric proof (in the spirit of Proposition 12.3.1) thatDesargues∗
implies Desargues.

12.4.4. Exercise. Give a geometric proof (in the spirit of Proposition 12.3.1) that a projective
plane P is pappian i� P∗ is.

Further reading
• E. Artin, Geometric algebra. Interscience Publishers, New York/London. 1957.

¿e coordinatisation theorem is proved in chapter 2. ¿e whole book is a classic.

• P. Cameron, Projective and polar spaces. QueenMary andWest�eld Maths Notes,
13, London. 1992.

Available on the author’s webpage.21

• R. Hartshorne, Foundations of Projective Geometry. Harvard University Lecture
Notes, W. A. Benjamin, Inc., New York. 1967.

Technically out of print but on the internet one �nds a modern typeset.
21https://webspace.maths.qmul.ac.uk/p.j.cameron/pps/
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• D. Hilbert, Grundlagen der Geometrie. B. G. Teubner, Leipzig. 1899.
One may �nd a translation of this historical text online.22 Chapter 5 (on Desar-
gues’ ¿eorem) is the origin of the topic.

• D.Hughes andF. Piper, Projective planes. Graduate texts inmathematics, 6. Springer-
Verlag, New-York/Berlin. 1973.

Recommended reference on projective planes.

• H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel,
Compact projective planes, with an introduction to octonion geometry. de Gruyter
Expositions in Mathematics, 21. 1995.

Adding back topological ingredients, a complete study of the projective plane over
the octonions.

22https://math.berkeley.edu/~wodzicki/160/Hilbert.pdf
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