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1. Introduction: Solving equations

Solving equations or, more precisely, finding the zeros of a given equation has been one of the
first reasons to study mathematics, since the ancient times. The branch of mathematics devoted to
solving equations is called Algebra. We are going to see how elliptic curves represent a very natural
and important step in the study of solutions of equations.

Since 19th century it has been proved that Geometry is a very powerful tool in order to study
Algebra. Elliptic curves offer a beautiful example of how different areas of math join together.

1.1. Equation of degree one in one variable. Let R be any ring, and let R[x1, ..., xn] denote
the polynomial ring with n variables over R. Let f(x1, ..., xn) be an element of R[x1, ..., xn] and let
K be a field containing R.

Solving f = 0 over K or, more precisely, finding the roots of f in K means finding the n-tuples
(a1, ..., an) ∈ Kn such that

f(a1, ..., an) = 0.

Remark 1.1. In this section we will only consider R = Z or Q, and K = Q,R, or C. For elliptic
curves over finite fields see Section 6.

The easiest, and best known, case of an equation is given by

(1) ax+ b = 0,

with a, b ∈ R, a 6= 0 and x the variable; that is, an equation of degree one in one variable. We all
know the following result.

Proposition 1.2. Let K be a field containing R. The equation (1) has always exactly one solution
in K, namely x = −b/a.

1.2. Equations of higher degree in one variable. There are two natural ways to generalise (1):
considering equations of higher degree, or considering equations with more coefficients.

Taking a more classically algebraic approach, the next step is to consider equations of degree 2
over R = Q:

(2) ax2 + bx+ c = 0,

with a, b, c ∈ Q and a 6= 0. We have seen that the quantities

x1,2 =
−b±

√
b2 − 4ac

2a

are (the) two solutions, counted with multiplicity, of (2) over C. Notice though that x1,2 do not
need to be defined over Q or even R.

Proposition 1.3. The following statements hold.
(a) If K = C, then the equation (2) has two solutions, counted with multiplicity, in K.
(b) If K = R, then the equation (2) has two solutions, counted with multiplicity, in K if and only if

b2 − 4ac ≥ 0. Otherwise it has no solutions in K.
(c) If K = Q, then the equation (2) has two solutions, counted with multiplicity, in K if and only if

b2 − 4ac ∈ Q2. Otherwise it has no solutions in K.

Remark 1.4. Notice that when (2) has solutions over K, then they are x1 and x2.
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For the case of equations of degree d ≥ 3 over Q we have similar statements. For these notes it
will be enough to explicitly state only the case d = 3:

(3) ax3 + bx2 + cx+ d = 0.

with a, b, c, d ∈ Q and a 6= 0.

Proposition 1.5. The following statements hold.
(a) If K = C, then the equation (3) has three solutions, counted with multiplicity, in K.
(b) If K = R, then the equation (3) has either one or three solutions, counted with multiplicity, in

K.
(c) If K = Q, then the equation (3) has either three, one, or no solutions, counted with multiplicity,

in K.

Remark 1.6. Note that also in this case it would be possible to write explicit an condition on the
coefficients of (3) in order to determine whether we have one, three or no solutions over K. This
condition is called the discriminant of the polynomial. In Definition 2.11 we explicitly write it down
for the case with a = 1 and b = 0.

An analogous quantity can be defined for d = 4.
For d ≥ 5 we do not have explicit conditions on the coefficients to determine the number of

solutions on K = R,Q (recall that an equation of degree d has always d solutions in C, if counted
with multiplicity). What we can say is that if d is odd, then there is at least one real solution. There
is an algorithm to find all the solutions over Q.

So the situation for equations of degree d in one variable over Q, namely equations of the form

(4)
d∑
i=0

aix
i = 0,

with ai ∈ Q and ad 6= 0, is quite clear.

Theorem 1.7. Let K = Q,R, or C. The equation (4) has finitely many solutions in K. If K = C
then it has exactly d solutions, if counted with multiplicity. If K = Q, there is an algorithm to
determine whether (4) has solutions in K and, in case it does, to find all of them.

1.3. Equations of degree one in more variables. In the previous subsection we have seen what
happen if consider equations over Q of higher degree but in only one variable. In this section we are
going to study the solutions of equations of degree one but allowing more variables. We start with
an example.

Example 1.8. Consider the equation

(5) ax+ by + c = 0,

with a, b, c ∈ Q and a, b 6= 0. Take K ∈ {Q,R,C} and let x = x0 ∈ K be fixed. Then the pair
(x0,

−c−ax0

b ) ∈ K ×K is a solution over K of (5). So for every fixed value of x we have a value of y
that gives us a solution of the equation. We say that the solutions are parametrised by K = A1

K .

Example 1.8 can be easily extended to the general case:

(6) a0 +

n∑
i=1

aixi = 0,

with ai ∈ Q for i = 0, 1, ..., n and ai 6= 0 for i = 1, ..., n. In this case, if we fix the value of the first
n− 1 variables we always get exactly one value of the last variable satisfying the equation.
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Theorem 1.9. The solutions of (6) over K are parametrised by K×n−1 = An−1
K .

Proof. All the solutions are of the form(
x1, ..., xn−1,

−a0 − a1x1 − ...− an−1xn−1

an

)
∈ AnK ,

with (x1, ..., xn−1) ∈ An−1
K . �

Remark 1.10. Notice that in this case the number of solutions does not depend on the field K.

1.4. Equations of degree two in two variables: plane conics. So far we have kept either the
degree or the number of variables equal to one. What happens if we let both grow? The first case is
then given by equations of degree two in two variables:

(7) ax2 + bxy + cy2 + dx+ ey + f = 0,

with a, ..., f ∈ Q and (a, b, c) 6= (0, 0, 0). We will see in the next example how this problem, that
looks purely algebraic, can be solved by using geometric tools. The theory of the conics it is very
beautiful and rich. Here we will only give a quick survey about the rational points of conics.

Example 1.11. Consider the following equation over Q:

(8) f(x, y) := x2 + y2 − 1 = 0.

Our goal is to determine how many solutions does (8) have and, possibly, write them all.
Notice that equation f(x, y) = 0 define the unit circle C in A2, and that P = (−1, 0) is a point

on it, that is, f(−1, 0) = 0. Yet in other words, (−1, 0) is a solution for (8). We call the solution
of f the K-rational points of C; we denote the set of solutions of (8) in K by C(K), the set of
K-rational points of C.

Let ` be a curve defined over K passing through the point P , that is, ` is defined by the equation
y = m(x+ 1), with m ∈ K. Finding the intersection C ∩ ` implies solving an equation of degree two
in one variable, by substituting y in the equation of C:

0 = x2 + (m(x+ 1))2 − 1 =

= (1 +m2)x2 + 2m2x+ x2 − 1.

The solutions to the above equations are −1 (which we already knew) and x = 1−m2

1+m2 . This implies
` ∩ C = {P, ( 1−m2

1+m2 ,
2m

1+m2 )}. Notice that as m ∈ K, then ( 1−m2

1+m2 ,
2m

1+m2 ) ∈ K × K. Since this
construction holds for any m ∈ K, we have

{(−1, 0)} ∪ {(1−m2

1 +m2
,

2m

1 +m2
) | m ∈ K } ⊆ C(K).

Does the equality hold? Assume Q = (x0, y0) ∈ C(K) and consider the line ` passing through Q
and P , that is,

` : y = m(x+ 1),

with m = y0
x0+1 ∈ K. Hence it follows that Q ∈ {(−1, 0)} ∪ {( 1−m2

1+m2 ,
2m

1+m2 ) | m ∈ K }, proving the
equality.

So we have seen that (8) has infinitely many solutions over K, and that they are parametrised by
A1 plus a point.
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The argument used in Example 1.11 can be generalised to any equation f(x, y) = 0 defining a
smooth conic (cf. Definition 1.12).

Definition 1.12. Let C be the curve in A2 defined by the equation f(x, y) = 0. The curve C
is called a conic if f has degree two. Let P = (u, v) be a K-point of C, that is, u, v ∈ K and
f(u, v) = 0. We say that P is a singular point of C if

∂f

∂x
(u, v) =

∂f

∂y
(u, v) = 0.

We say that C is singular if it admits singular points. We say that C is smooth if it is not singular.

Theorem 1.13. Let f(x, y) = 0 be an equation of degree two in two variable defining a smooth
conic C in A2

K . One of the two following statements holds:
(a) f admits no solutions;
(b) the solutions of f are parametrised by A1

K plus a point.

Proof. If f admits no solution then we are done. If it does admit one solution, it means that
C(K) contains at least one point, say P . Consider the lines defined over K passing through P . By
Proposition 1.3 we know that each such line intersects in two points, one of them being P and as P
is defined over K, so is also the other one. �

Corollary 1.14. The points of any smooth conic over C are parametrised by A1
C plus a point.

1.5. Exercises. The exercises marked with * are harder; those marked with ! are important.
1 A triple (A,B,C) of positive integer numbers is called pythagorean if A2+B2 = C2. A pythagorean

triple is called primitive if gcd(A,B,C) = 1. Describe all the primitive pythagorean triples. [Hint:
use Example 1.11.]

2 Describe all the Q-rational points of the hyperbole x2 − y2 = 1.
3 Give an example of a smooth conic over Q and R not admitting rational points.
4 Give an example of a conic with only finitely many K-rational points, for K = Q,R,C. [Hint: for
K = C, it must necessarily be singular.]

5 ! Recall (or read) the definitions of P1 and P2.



8 DINO FESTI

2. Cubic curves and Weierstrass form

After giving a complete answer for the solution of quadratic equations in two variables, we proceed
by studying equations of degree three in two variables. In this section, we will assume K = Q, but
all the statements holds (sometimes trivially) also for R and C.
Definition 2.1. A cubic curve C over K is the curve defined by a polynomial

f(x, y) =
∑

aijx
iyj ,

where the sum ranges over all the 0 ≤ i, j ≤ 3 such that i+ j ≤ 3, aij ∈ K for every i, j and the
polynomial has actual degree 3.

Remark 2.2. The curve C is a curve inside the affine plane A2
K . Let P2 be the projective plane

with coordinates X,Y, Z such that X/Z = x and Y/Z = y. The projective closure of C inside P2
K is

the projective curve C̄ defined by the equation∑
aijkX

iY jZk,

where the sum ranges over all the non-negative integers i, j, k such that i+ j + k = 3.

As in Definition 1.12, we define a singular point of C to be a point where both partial derivatives
vanish; a smooth cubic is a conic with no singular points.

2.1. Weierstrass form. In this section we show that if we work over a field of characteristic 0,
then every cubic curve can be written in a particular practical way. We thank Dr. Joachim Jäger
for carefully reading and correcting the computations in the proof of Proposition 2.4.

Definition 2.3. We say that a cubic is in (short) Weierstrass form if it is defined by an equation
of the form

y2 = x3 + ax+ b.

Proposition 2.4. Let C be a smooth projective cubic over K with a K-rational point. Then C can
be put into Weierstrass form using K-rational maps.

Proof. This proof follows [8, I.3]. Let C̄ denote the projective closure of C inside P2(X,Y, Z). Then
C̄ is defined by the homogeneous degree three polynomial

f0 := a0X
3 + a1X

2Y + a2X
2Z + a3XY

2 + a4XY Z + a5XZ
2 + a6Y

3 + a7Y
2Z + a8Y Z

2 + a9Z
3.

By assumption C̄ has a rational point, say (x0 : y0 : z0); without loss of generality we assume x0 6= 0.
Applying the transformation

t1 :


X ′ = X

Y ′ = x0Y − y0X

Z ′ = x0Z − z0X

we move the point (x0 : y0 : z0) to O := (1 : 0 : 0) and C̄ transforms into the curve C1 defined by

f1 := b1X
2Y + b2X

2Z + b3XY
2 + b4XY Z + b5XZ

2 + b6Y
3 + b7Y

2Z + b8Y Z
2 + b9Z

3.

Notice that the coefficient of X3 is zero as (1 : 0 : 0) is on C1.
Let LO be the tangent curve of C1 at O: it is defined by the equation b2Z+ b1Y = 0. By applying

the transformation

t2 :


X ′ = X

Y ′ = Y

Z ′ = b2Z + b1Y
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we fix the point O and move LO to the line Z = 0. The curve C1 gets mapped to the curve C2

defined by

f2 := c2X
2Z + c3XY

2 + c4XY Z + c5XZ
2 + c6Y

3 + c7Y
2Z + c8Y Z

2 + c9Z
3.

Notice that the coefficient of X2Y is zero since Z = 0 is the tangent line of C2 at O := (1 : 0 : 0).
Let P be the third point of intersection of LO = {Z = 0} and C2, that is, P = (−c6 : c3 : 0).

Then the transformation

t3 :


X ′ = c3X + c6Y

Y ′ = Y

Z ′ = Z

moves P to the point (0 : 1 : 0) and keeps the point O = (1 : 0 : 0) and the line {Z = 0} fixed; it
sends C2 to the curve C3 defined by

f3 := d2X
2Z + d3XY

2 + d4XY Z + d5XZ
2 + d7Y

2Z + d8Y Z
2 + d9Z

3.

Notice that the coefficient of Y 3 is zero since (0 : 1 : 0) is a point on the curve.
As before, we consider the tangent line LP to C3 at (0 : 1 : 0): it is defined by the equation

d3X + d7Z = 0. Then the transformation

t4 :


X ′ = d3X + d7Z

Y ′ = Y

Z ′ = Z

fixes O = (1 : 0 : 0), P = (0 : 1 : 0) and the line {Z = 0}; it sends the line LP to {X = 0} and the
curve C3 to the curve C4 defined by

f4 := e2X
2Z + e3XY

2 + e4XY Z + e5XZ
2 + e8Y Z

2 + e9Z
3.

Notice that the coefficient of Y 2Z is zero since X = 0 is the tangent line to C4 at (0 : 1 : 0).
Consider the affine part of C4 given by C4 ∩ {Z 6= 0}; for sake of simplicity we will denote it

again by C4. If we take x = X/Z, y = Y/Z to be the affine coordinates of A2 = {Z 6= 0}, we can
write C4 as the curve defined by the equation

xy2 + (α0x+ α1)y = α2x
2 + α3x+ α4.

We can multiply both sides by x obtaining the curve

C5 : (xy)2 + (α0x+ α1)xy = α2x
3 + α3x

2 + α4x.

By applying the transformation

t5 :

{
x′ = x

y′ = xy

we send C5 to the curve

C5 : y2 + (α0x+ α1)y = α2x
3 + α3x

2 + α4x.

Using the transformation

t6 :

{
x′ = x

y′ = y + (α0x+ α1)/2

we transform C5 into the curve

C6 : y2 = β0x
3 + β1x

2 + β2x+ β3.
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Finally, via the transformation

t7 :

{
x′ = x+ β1/3β0

y′ = y

we send C6 to the curve
C7 : y2 = x3 + ax+ b.

�

Remark 2.5. When we say that the curve C ‘can be put into Weierstrass form’ we more precisely
mean that there is a rational map over Q from C to a curve defined by an equation in Weierstrass
form. One can easily see that all the transformation ti, i = 1, ..., 7, are rational transformation of P2

defined over Q. In fact all of them except t5 are automorphisms of P2.
The map t5 is a rational map, i.e., it is not defined on the whole P2, but on an open subset of

it. In fact, it is defined everywhere except at (1 : 0 : 0) and (0 : 1 : 0). This is not too much of
a problem as the point (0 : 1 : 0) is on the curve C6 but not in the image of t5. This means that
passing from the original cubic to the one in Weierstrass form we only lose one solution, the one we
already knew from the beginning and started with.

Remark 2.6. The argument in the proof works in every characteristic until t5. To apply t6 one has
to assume that the characteristic of K is not 2; in addition, to apply t7 one has to assume that the
characteristic of K is not 3 either. This means that for a generic field K, of arbitrary characteristic
we can only say that every elliptic curve can be put in the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This form is also called Weierstrass form, as opposed to the short Weierstrass form defined in 2.3

Remark 2.7. In the proof we tacitly assumed some coefficients to be nonzero. This can be done as
if this were the case, putting the cubic in the desired form would actually be easier, even though the
transformations used would be slightly different. Analogously, we assumed O not to be a flex point.
If it were, we could have assumed that O = (0 : 1 : 0) with tangent line Z = 0. This implies that we
can write the equation of C as

α0y
2 + (α1x+ α2)y = α3x

3 + α4x
2 + α5x+ α6.

From here one can use transformations t6 and t7 as in the proof of Proposition 2.4 to obtain the
short Weierstrass form.

2.2. First definition of elliptic curves.

Definition 2.8. An elliptic curve is a pair (C,P ) where C is a smooth projective cubic and P is a
point on it.

Corollary 2.9. Every elliptic curve can be put in Weierstrass form.

Proof. Immediate from Proposition 2.4. �

Remark 2.10. The (short) Weierstrass form is not the only useful and classical form to write the
equation of an elliptic curves. Other classical forms to write an elliptic curve E are the following:

(9) E : y2 = x(x− 1)(x− λ) (Legendre form),

for some λ ∈ R− {0, 1};
(10) E : y2 = (1− x2)(1− k2x2) (Jacobi form),
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for some k ∈ C− {0,±1};

Definition 2.11. Let C be the curve defined by the equation

y2 = x3 + ax+ b.

We define the discriminant of C to be

∆ = ∆(C) = −16(4a3 + 27b2).

Figure 1. An elliptic curve
with ∆ > 0.

Figure 2. An elliptic curve
with ∆ < 0

Lemma 2.12. Let C be the curve the curve defined by the equation

y2 = x3 + ax+ b.

Then (C̄, (0 : 1 : 0)) is an elliptic curve if and only if ∆(C) 6= 0.

Proof. Notice that if C is defined as in the hypothesis, then C̄ always has at least one point, namely
(0 : 1 : 0). So to prove the statement it is enough to prove that C is smooth if and only if ∆ 6= 0.

Let f(x) be the polynomial x3 + ax+ b, and notice that the discriminant of f is exactly ∆.
By studying the partial derivatives of the equation defining C, one can see that C has a singular

point if and only if f admits a double root, that is, if and only ∆ = 0. �

Remark 2.13. Notice that if the cubic C is singular, then its rational points can be studied
by projecting from a (the) singular point, using the same argument as in the case for conics.
(cf. Exercises 2.4).
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Figure 3. The three possible types of singular cubics.

2.3. The j-invariant. In Subsection 2.2 we have seen that every elliptic curve can be put into
Weierstrass form. Is this form unique?
This question can be phrased in a different way: what are the isomorphism of affine curves that
preserve the Weierstrass form?

Lemma 2.14. The only change of variables preserving the short Weierstrass form is

tu :

{
x = u2x′

y = u3y′

for some u ∈ K∗.

Proof. The generic change of variables can be written as

t :

{
x = α1x

′ + α2y
′ + α3

y = β1x
′ + β2y

′ + β3

Substituting these expression x and y into the short Weierstrass form and imposing the conditions
on the coefficient in order to obtain again a short Weierstrass form, we get that t must be of the
form

t :

{
x = α1x

′

y = β2y
′

with α3
1 = β2

2 . From this it follows that (α1, β2) = (u2, u3) for some u ∈ K∗. �

Definition 2.15. In what follows, we say that two elliptic curves E and E′ given in short Weierstrass
form are form if there is a change of variables (as in Lemma 2.14) sending one to the other.

Remark 2.16. Consider u ∈ K∗ and apply the transformation tu to the curve C with equation
y2 = x3 +ax+ b. We get the curve C ′ with equation y2 = x3 +a′x+ b′ with a′ = a/u4 and b′ = b/u6.
From this it also follows that ∆(C ′) = ∆(C)/u12. Can we define a quantity associated to C that is
invariant under this kind of transformation?

Definition 2.17. Let E be the elliptic curve defined by y2 = x3 + ax+ b. We define the j-invariant
of E to the quantity

(11) j(E) := −1728
(4a)3

∆(E)
= 1728

4a3

4a3 + 27b2
.
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Proposition 2.18. Let K be any field and fix an algebraic closure K̄ of K. The following statements
hold.
(a) Two elliptic curves over K are isomorphic (over K̄) if and only if they have the same j-invariant.
(b) Let j0 ∈ K̄∗. Then there exists an elliptic curve E, defined over K(j0), such that j(E) = j0.

Proof. (a) By Lemma 2.14, Remark 2.16 and the definition of the j-invariant one can immediately
see that if two elliptic curves are isomorphic then they have the same j-invariant.

Conversely, assume that C : y2 = x3 + ax+ b and C ′ : y′2 = x′3 + ax′ + b are two elliptic with
the same j-invariant, that is

1728
4a3

4a3 + 27b2
= 1728

4a′3

4a′3 + 27b′2
.

The equality above yields a3b′2 = a′3b2. Recall that our goal is to find a u ∈ K̄ such that tu
sends C to C ′. We have three cases.

I. a = 0. It follows that: a′ = 0, as C and C ′ have the same j-invariant; b 6= 0, as
C is an elliptic curve and so ∆(C) 6= 0; b′ 6= 0, for the same reason. Then consider
u = (b/b′)1/6 ∈ K̄∗.

II. b = 0. It follows that: j(C ′) = j(C) = 1728; b′ = 0; a 6= 0 and a′ 6= 0. Then consider
u = (a/a′)1/4.

III. ab 6= 0. It follows that a′b′ 6= 0. Then consider u = (b/b′)1/6 = (a/a′)1/4.
(b) Exercise.

�

2.4. Exercises. The exercises marked with * are harder; those marked with ! are important.
1 ! Find all the Q-rational points of the singular cubic y2 = x3.
2 ! Prove Proposition 2.18.ii) . [Extra*: For every fixed j0, how many different, yet isomorphic,
elliptic curves in Weierstrass form with j invariant equal to j0 are there? ]

3 Put the Fermat cubic u3 + v3 = 1 in Weierstrass form.
4 * Find a rational solution of the following equation:

x

y + z
+

y

x+ z
+

z

x+ y
= 4.

5 Write an explicit example for each type of singular curve in Figure 3.

3. Rational points of an elliptic curve

In Section 2 we have seen that every elliptic curve can be put into Weierstrass form. Having an
elliptic curve written in Weierstrass form helps considerably the study of rational points.

3.1. The group law. In Definition 2.8 we have defined an elliptic curve to be a smooth cubic
C together with a point P ∈ C. From now on, if the curve C is a smooth curve defined by an
equation in the Weierstrass form, then we will assume that the rational point is always the point
O = (0 : 1 : 0).

Definition 3.1. Recall that C̄(K) is the set of K-rational points of C̄. It is possible to define an
operation on this set. Let P,Q ∈ C̄(K), and let L the line passing through P,Q. Let P ∗Q be the
third point of intersection of L and C̄. Let L′ be the line passing through P ∗Q and O. We define
P +Q to be the the third point of intersection of L′ and C̄.

Remark 3.2. Notice that Definition 3.1 makes sense also if C is not given in Weierstrass form.
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Remark 3.3. Given the genuinely geometric nature of Definition 3.1, we naturally have that the
sum P + P =: 2P is obtained by considering the tangent line to C at P .

Figure 4. Geometric construction of the sum of two points.

Proposition 3.4. The following statements hold:
(a) the addition + on C̄(K) is well defined;
(b) the addition + is associative and commutative;
(c) O is the neutral element for +;
(d) for every P the element −P exists.
(e) P +Q+R = O if and only if P,Q,R lie on a line.

Proof. (a) In order to prove that the operation is well defined, it is enough to show that P+Q ∈ C̄(K).
By Proposition 1.5 we have that as P and Q are defined over K, so is P ∗Q. The same argument
shows that also P +R is defined over K.

(b) Exercise. Note that commutativity is almost trivial; associativity is the hard part.
(c) Let L the line passing through P and O. Then L ∩ C̄ = {P,O, Q}, from which it follows that

P +O = P .
(d) Exercise.
(e) Exercise.

�

Corollary 3.5. (C̄,+) is an abelian group.

Proof. Immediate from Proposition 3.4.ii)–iv). �

Remark 3.2 tells us that the sum of two points can be defined on any elliptic curve, independently
of the Weierstrass form. Nevertheless, if the elliptic curve is given in Weierstrass form, then it is
much easier to explicitly write the coordinates of P +Q in terms of the coordinates of P and Q.

Proposition 3.6. Let C be the elliptic curve in Weierstrass form y2 = x3 + ax+ b; let P = (x1, y1)
and Q = (x2, y2) be two elements of C(K). Then

(12) P +Q := (x3, y3) = (λ2 − x1 − x2,−λ(x2 − x1)− y1),

where λ = y2−y1
x2−x1

;

(13) − P = (x1,−y1).
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Proof. The lineL passing through P and Q has equation y− y1 = λ(x−x1). We can then substitute
y in the equation of C, getting a cubic monic polynomial f(x). Doing the computations, one can
check that the coefficient of x2 is −λ2. Since the coefficient of x2 equals minus the sum of the roots
of a cubic monic polynomial, and we already know that x1 and x2 are roots of f , we have that
the third root, x3 is λ2 − x1 − x2. The value of y3 follows by simply plugging the value x3 in the
equation of L. �

Remark 3.7. One can use Proposition 3.6 to prove 3.4.

Remark 3.8. One can also find explicit formula to express the coordinates of 2P (cf. Remark 3.3).

We have seen that if E is an elliptic curve over K = Q, the set of rational points E(Q) can be
endowed with a group structure. The natural question is then: how does this group look like?

3.2. Group structures theorems over Q. Let C be an elliptic curve over a field K, and let +
the addition on C(K) be defined as in 3.1 From Corollary 3.5 we know that (C̄(K),+) is an abelian
group. This extra structure can help us in the study of the rational points of C.
A first difference among elements of a group comes from the distinction between elements of finite
order and elements of infinite order. In an abelian group, the set of elements of finite order form a
subgroup.

Definition 3.9. We denote by E(Q)tors the subgroup E(Q) formed by torsion elements:

E(Q)tors := {P ∈ E(Q) | ∃m ∈ Z : mP = O}.
An element of E(Q)tors is called a (rational) torsion point of E.

We have several tools to study the torsion points of an elliptic curve. Below we state some very
useful ones.

Theorem 3.10 (Nagell–Lutz). Let E/Q be the elliptic curve with equation

y2 = x3 + ax+ b,

with a, b ∈ Z. Suppose P = (x(P ), y(P )) is a torsion point. Then:
(a) x(P ), y(P ) ∈ Z;
(b) either 2P = O or y(P )2 divides 4a3 + 27b2.

Proof. See [7, Corollary VIII.7.2]. �

Theorem 3.11 (Mazur). Let E/Q be an elliptic curve. Then the torsion subgroup Etors(Q) is one
of the following fifteen groups:

Z/NZ 1 ≤ N ≤ 10 or N = 12;

Z/2Z× Z/NZ 1 ≤ N ≤ 4.

Further, each of these groups does occur as an E(Q)tors.

Studying the points of infinite order is definitely more complicated, and here we will only state the
Mordell–Weil theorem. The proof of this theorem is not very complicated, but pretty long and
requiring some background.

Theorem 3.12 (Mordell–Weil). Let E/Q be an elliptic curve. Then the group E(Q) is finitely
generated.
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Proof. See [7, VIII.4]. �

We will not focus on the proof of this theorem, but on an immediate consequence. From Theorem 3.2
it immediately follows that

E(Q) ∼= Zr ⊕ E(Q)tors,

for some integer r ≥ 0.

Definition 3.13. We define r to be the rank of E/Q.

Remark 3.14. To our knowledge, there is no known algorithm to compute the rank of a given
elliptic curve.

3.3. Exercises. The exercises marked with * are harder; those marked with ! are important.
1 ! Prove 3.4.ii), iv), and v). [Extra: do not use Proposition 3.6.]
2 ! (Duplication formula) Let C be an elliptic curve given in Weierstrass form and let P be a point
of C. Write down the formula for the coordinates of 2P = P + P (cf. Remark 3.3). Give a
characterisation of the two torsion points.

3 Consider the cubic curve C over Q given by

y2 = x3 + 17.

The points P1 = (−2, 3) and P2 = (−1, 4) are on the curve. Compute P1 + P2. Find all the
Q-torsion points of C.

4 Find all the Q-torsion points of the elliptic curve C : y2 = x3 − x.
5 * Find more Q-rational solutions of the following equation:

x

y + z
+

y

x+ z
+

z

x+ y
= 4.

4. Divisors on a curve

In this section we define the notion of divisors, divisors group and Picard group for a curve C (cf. [7,
Section II.3]).

4.1. The divisor group.

Definition 4.1. Let C be a curve, we define the divisor group of C, denoted by DivC to be the
free abelian group generated by the points of C.

From the definition it follows that an element D of DivC has the form

D =
∑
P∈C

nPP,

where nP is an integer and it is equal to zero for almost all P .

Definition 4.2. Let D =
∑
nPP be a divisor of C. We define the degree of D as∑

P∈C
nP ∈ Z.

This defines a map (in fact a group homomorphism)

deg : DivC → Z .

We define Div0 C to be the kernel of deg.
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If C is defined over a field k, then Gal(k/k) acts on DivC (and Div0X) in the obvious way: if
σ ∈ Gal(k/k) and D =

∑
nPP , then

Dσ =
∑

nPP
σ.

Definition 4.3. Let D ∈ DivC a divisor on C. We say that D can be defined over k if Dσ = D
for any σ ∈ Gal(k/k).

Definition 4.4. Let C ⊂ An be an affine curve. A regular function of C is a function that can be
expressed as

P = (x1, ..., xn) 7→ f1(x1, ..., xn)

f2(x1, ..., xn)
,

where f1, f2 are polynomials in n variables. Notice that a regular function of C does not need to be
defined on the whole C.
If C is a projective curve, that is, C ⊂ Pn, then a regular function of C is a function that can be
expressed as

P = (x0 : ... : xn) 7→ f1(x0, ..., xn)

f2(x0, ..., xn)
,

where f1, f2 are polynomials of the same degree in n + 1 variables. Also in this case, a regular
function of C does not need to be defined on the whole C.

Example 4.5. Let C be the affine line A1
K with coordinate x. Then a function of C is given by a

ratio f1/f2, with f1, f2 polynomials in x. For example,

f : x 7→ x− 2

x2 − 1
.

Notice that f is not defined at 1 and −1, that is, it has poles (of multiplicity one) at 1 and −1; it
has a zero at 2
If we embed A1 into P1 via

x 7→ (X : Y ) = (x : 1),

then f extends to the regular map of P1 given by

(X : Y ) 7→ (X − 2Y )Y

X2 − Y 2
.

Then notice that it has poles at (1 : 1), (−1 : 1) and zeros at (2 : 1), (1 : 0).

Definition 4.6. Let f be a function of C defined over k, that is an element of k(C), then we defined
the divisor associated to f to be the divisor

(f) = div f =
∑

ord(P )P.

Divisors of the form D = div f for f ∈ k(C) are called principal.
Two divisors D1, D2 are called linearly equivalent if their difference is principal.

Example 4.7. Continuing Example 4.5, the divisor associated to the map of P1 defined by

(X : Y ) 7→ (X − 2Y )Y

X2 − Y 2
.

is
(2 : 1) + (1 : 0)− (1 : 1)− (−1 : 1).
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Example 4.8. Let E be the elliptic curve over Q given by the equation

E : y2 = x3 − x .
Consider the points P1 = (−1, 0), P2 = (0, 0), P3 = (0, 0) ∈ E(Q), and the points Q1 = (2,

√
6), Q2−

(2,−
√

6).
Then D = 2(−1, 0)− 3(0, 0) + (2,

√
6) is a divisor of E. The degree of D is 0, and hence D ∈ Div0E.

Let σ ∈ Gal(Q/Q) be the map defined by

σ :
√

6→ −
√

6.

Then Dσ = 2(−1, 0)− 3(0, 0) + (2,−
√

6) 6= D, hence D cannot be defined over Q.
Consider instead the divisor D1 = (2,−

√
6) + (2,

√
6). Notice that Dσ

1 = (2,
√

6) + (2,−
√

6) = D1

and hence D1 can be defined over Q, even though Q1 and Q2 cannot, if taken singularly!
Consider the function of E defined by

f := y =
Y

Z
.

Then f has three zeros of multiplicity one at P1, P2, P3 and one pole of multiplicity three at
O = (0 : 1 : 0). It follows that P1 + P2 + P3 ∼lin 3O.

Facts 4.9. Let C be a smooth curve and f ∈ k(C). let φ : C1 → C2 be a noncostant map of curves.
Then the following statements hold.
(a) div f = 0 if and only if f ∈ k∗.
(b) deg div f = 0.

4.2. The Picard group.

Definition 4.10. The Picard group of C, denoted by PicC := DivC/ ∼lin, is the quotient of DivC
by linear equivalence.
We define Pic0 C to be Div0 / ∼lin.

Example 4.11 (Picard group of P1). It is easy to see, that if C = P1, then a divisor D ∈ DivP1 is
principal if and only if degD = 0. It follows that the map deg induces an isomorphism between
PicP1 and Z

Example 4.12. As in Example 4.8, consider the function of E defined by

f := y =
Y

Z
.

Then f has three zeros of multiplicity one at P1, P2, P3 and one pole of multiplicity three at
O = (0 : 1 : 0). It follows that P1 + P2 + P3 ∼lin 3O or, equivalently, that P1 + P2 + P3 = 3O in
PicE.

Definition 4.13. Let D =
∑
nP P be a divisor of C. We say that D is effective, denoted by

D ≥ 0,

if nP ≥ 0 for every P .
We say that D1 ≥ D2 if D1 −D2 is effective.

Definition 4.14. Let D be a divisor of C. We associate to D the set of function

L(D) := {f ∈ k(C)∗ : div f ≥ −D} ∪ {0}.
We denote the dimension of L(D) by `(D) := dimk L(D).
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Example 4.15. We continue with Example 4.8. The divisor D2 = P1 + P2 + P3 is effective, and
f ∈ L(D2).

Facts 4.16. Let D ∈ DivC. Then the following statements hold.
(a) If degD < 0, then L(D) = {0}.
(b) L(D) is a finitely dimensional k-vector space.
(c) If D′ is linearly equivalent to D, then L(D) ∼= L(D′).

Theorem 4.17 (Riemann–Roch for elliptic curves). Let E be an elliptic curve and D any divisor
on E. Then

`(D)− `(−D) = degD .

Example 4.18. We again use Example 4.8 and 4.15. As D2 ∼lim 3O, we have that L(D2) ∼= L(3O).
As deg−3O = −3 < 0, from Facts 4.16a it follows that `(−3O) = 0 and hence, by Theorem 4.17, it
follows that `(D2) = `(3O) = 3.

Theorem 4.19. Let E be an elliptic curve. Then the map

κ : E → Pic0E

P 7→ [P −O]

is a group isomorphism.

Proof. In this proof we will use ⊕ to denote the sum of points on E, while + to use the sum of
divisors.
First we show that the map is injective. Take P,Q ∈ E such that [P −O] = [Q−O], that is, P −Q
is a principal divisor. Let f be a function of E such that div f = P −Q. Then f ∈ L(Q). At the
same time notice that 1 ∈ L(Q) and that, by Theorem 4.17, dimL(Q) = 1. It follows that L(Q) = k
and hence f is constant. Therefore div f = 0 and hence P = Q.
Now we prove that κ is a group homomorphism, that is, κ(P ⊕Q) = κ(P ) + κ(Q). Let f be the
equation of the line passing through P and Q and let R be its third point of intersection with E. Let
f ′ be the equation of the line passing through O and R and notice that its third point of intersection
with E is exactly P ⊕Q (by definition of the sum on E). Consider the functions f/Z and f ′/Z on
E. As Z intersects E in O with multiplicity 3, we have

div f/Z = P +Q+R− 3O,
div f ′/Z = R+ (P ⊕Q)− 2O.

It follows that

div f/f ′ = P +Q−O − (P ⊕Q) = (P −O) + (Q−O)− (P ⊕Q−O),

that is,
κ(P ) + κ(Q)− κ(P ⊕Q) = 0,

proving that κ is a group homomorphism.
Finally, notice that the surjectivity of κ directly follows from the property of being a group
homomorphism. �

Corollary 4.20. Let E be an elliptic curve and D =
∑
nPP a divisor on E. Then D is principal

if and only if degD = 0 and
∑

[nP ]P = 0.
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Proof. First assume that D is principal. Then by Facts 4.9b it follows that degD = 0. By
Theorem 4.19 we have that the sums in Pic0E and E coincide, and hence

∑
[nP ]P = 0.

Conversely, assume that degD = 0 and
∑

[nP ]P = 0. Then D = 0 ∈ Pic0E and hence it is a
principal divisor. �

Example 4.21. Consider again Example 4.8. From Proposition 3.4e and Corollary 4.20 it immedi-
ately follows that the divisor P1 +P2 +P3− 3O is a principal divisor, without the need of exhibiting
the function f .

5. Isogenies

After giving to an elliptic curve a group structure, it is very natural to look for morphisms that
preserve this structure. We will start with some general theory about morphisms of curves.

5.1. Maps between curves. The results in this subsection are stated without proofs. For the
proofs (and much more!) you can consult [2, Chapters I and IV] and/or [7, Chapter II].

Definition 5.1. Let C ⊂ Pm be a projective curve and let V be a subvariety of Pn. We define a
rational map from C to V a map C → V defined by

P 7→ (f0(P ) : ... : fn(P ))

such that f0, ..., fn are homogeneous polynomials in m + 1 variables of the same degree, and
(f0(P ) : ... : fn(P )) ∈ V for every point P such that (f0(P ), ..., fn(P )) 6= (0, ..., 0).
Let P be a point of C; we say that f is defined at P if (f0(P ), ..., fn(P )) 6= (0, ..., 0).
If a rational map is defined everywhere (some authors say everywhere regular), then we say that the
map is a morphism.

Example 5.2. Consider the curve C = P1, the variety V = P2 and the map P1 → P2 defined by

(X : Y )→
(
X2(X2 − Y 2) : Y 2(X − Y )2 : (X2 − Y 2)(X − Y )2

)
.

Notice that the map is not defined at (1 : 1).

We give a list of results about morphism of curves.

Facts 5.3. Let C be a curve, V ⊂ Pn a variety, φ : C → V a rational map. The following statements
hold.
(a) If P ∈ C is a smooth point for C, then φ is defined at P . In particular, if C is smooth, φ is a

morphism.
(b) If φ is a morphism and V is also a curve, then φ is either surjective or constant.

Definition 5.4. Let φ : C1 → C2 be a rational map of curves, and let Q ∈ C2 a point of C2. We
define the degree of φ to the be the number of points in the pre-image φ−1(Q) of Q, counted with
multiplicity. If φ is constant, the degree is defined to be zero.

Example 5.5. Let E : Y 2Z = X3 + aXZ2 + bZ3 and let π : E → P1 be the projection on the
X-axis, i.e.,

π : (X : Y : Z)→ (X : Z).

Notice that π is not defined at (0 : 1 : 0), it is not surjective as (1 : 0) is not in the image, and it has
degree 2. Indeed, if Q = (x : 1), then π−1(Q) = {±

√
x3 + ax+ b}.

The rational map π can be extended to a morphism defining π((0 : 1 : 0)) = (1 : 0).

Facts 5.6. The degree of φ is independent of the choice of Q.
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Remark 5.7. By multiplicity here we mean what in [7] is called ramification index. See [7, Section
II.2] for more details about this notion.

Definition 5.8. Let f : C1 → C2 be a map of curves. Then f induces two maps at the level of
divisors:

φ∗ : DivC2 → DivC1

Q 7→
∑

P∈f−1(Q)

eφ(P )P

where eφ(P ) is the multiplicity of P inside f−1(Q);

φ∗ : DivC1 → DivC2

P 7→ φ(P ) .

Remark 5.9. One can rephrase Definition 5.8 for Div0 C, PicC, and/or Pic0 C.

Facts 5.10. Let φ : C1 → C2 be a noncostant map of curves. Then the following statements hold.
(a) For all D ∈ DivC2, deg φ∗D = deg φ · degD.
(b) For all f ∈ k(C1), φ∗(div f) = div(φ∗f).
(c) For all D ∈ DivC1, deg(φ∗D) = degD.
(d) For all f ∈ k(C1), φ∗(div f) = div(φ∗f).
(e) φ∗ ◦ φ∗ acts as multiplication by deg φ on DivC2.
(f) If ψ : C2 → C3 is another nonconstant morphism of curves, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and
(ψ ◦ φ)∗ = ψ∗ ◦ φ∗ .

5.2. Isogenies of elliptic curves.

Definition 5.11. Let C1 and C2 be two elliptic curves over a field K. We define an isogeny from
C1 to C2 over K to be a morphism φ of curves from C1 to C2 defined over K and such that
φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ C̄(K).

Remark 5.12. Let (E1,O1) and (E2,O2) be two elliptic curves, and φ : E1 → E2 an isogeny. From
the definition, it immediately follows that φ(O1) = O2. It turns out that this condition is equivalent
to our definition (cf. [7, Theorem III.4.8]).

Definition 5.13. Given two elliptic curves E1, E2, we denote the set of isogenies from E1 to E2

defined over K by
HomK(E1, E2) := {φ : E1 → E2 | φ isogeny over K }.

Given an elliptic curve E, we define the set of endomorphisms of E as

EndK(E) := HomK(E,E).

The set of invertible elements of EndK(E) is denoted by AutK(E).

Remark 5.14. The set HomK(E1, E2) can be endowed with an abelian group structure (and hence
of Z-module) by defining the sum φ+ ψ : P 7→ φ(P ) + ψ(P ).
This structure is inherited by EndK(E), that can also be endowed with the composition:
(EndK(E),+, ◦) is called the endormorphism ring of E.
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As AutK(E) is set of invertible elements of EndK(E) and so (AutK(E), ◦) has the structure of
group; it is called the automorphism group of E.

Example 5.15. The first and easiest example of an isogeny comes from the multiplication by an
integer. Let E be an elliptic curve and let m ∈ Z be an integer. We define the map [m] : E → E by
sending a point P to

[m](P ) :=



P + ...+ P︸ ︷︷ ︸
m times

if m > 0

(−P ) + ...+ (−P )︸ ︷︷ ︸
−m times

if m < 0

O if m = 0

.

One can immediately check that [m] is indeed an isogeny.

Proposition 5.16. Let E be an elliptic curve over a field K of characteristic 0. The map [ ] : Z→
End(E) is an injective ring homomorphism.

Proof. Checking that [ ] is a ring homomorphism is immediate: in fact, [m+ n] = [m] + [n] and
[mn] = [m] ◦ [n].
First notice that the duplication formula (cf. 3.3) shows that [2] 6= 0. Then over K̄ there are
three non-trivial 2-torsion points (use the duplication formula). Let P0 be one of them. Then
[m](P0) = P0 6= 0 for every odd m, in particular for every odd prime. This shows that the kernel of
[ ] is trivial. �

Remark 5.17. When K has characteristic zero, the map [ ] is usually also surjective, that is,
EndK(E) ∼= Z.
When this is not the case, we say that E has complex multiplication.

Example 5.18. Let E be the elliptic curve y2 = x3 − x over K = C (but any field containing Q(i)
is also fine). Beside Z, in EndK(E) there is also the element

[i] : (x, y)→ (−x, iy).

Definition 5.19. Let E be an elliptic curve over K and m an integer. We define the m-torsion
points of E over K, denoted by E(K)[m], as the elements in the kernel of [m], that is:

E(K)[m] := {P ∈ E(K) | [m]P = O}.

Remark 5.20. Trivially

E(K)tors =

∞⋃
m=1

E(K)[m].

Later we will see that the size of E[m] is bounded by m2. If K is algebraically closed the bound is
reached (see Proposition 9.5).

5.3. Automorphisms of elliptic curves. Let E be an elliptic curve over a field k. Recall we ha
defined the automorphisms of E as those isogenies from E to itself (endomorphisms) which hare
invertible. In this subsection, we are going to see that the j-invariant completely determines the
structure of the Automorphism group Aut(E). We state the result considering only fields with
characteristic greater than 3, but analogous statements are known also in the remaining cases of
characteristic 2 and 3.
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Theorem 5.21. Let E be an elliptic curve over a field K with of characteristic different from 2
and 3. The the following holds.

AutE ∼=


Z/2Z if j(E) 6= 0, 1728;

Z/4Z if j(E) = 1728;

Z/6Z if j(E) = 0.

Proof. Lemma 2.14 tells us that the only isomorphisms of elliptic curves preserving the Weierstrass
form are of the form

x′ = u2x , y′ = u3y

for some invertible element u ∈ K×, sending the elliptic curve with coefficients a, b to the elliptic
curve with coefficients u4a, u6b. Let ψ be such an isomorphism. In order for ψ to be an automorphism
of E, we must have that u4a = a and u6b = b.
If j(E) 6= 0, 1728, then a, b 6= 0 and therefore u must be at the same time a fourth and a sixth root
of unity, hence u = ±1.
If j(E) = 1728, then b = 0 and u must be a fourth root of unity. Hence we have four possible
automorphism. It is easy to see that the set of these four automorphisms with composition forms a
group isomorphic to Z/4Z.
If j(E) = 0, then a = 0 and u must be a sixth root of unity. Hence we have six possible automorphism.
It is easy to see that the set of these six automorphisms with composition forms a group isomorphic
to Z/6Z. �

Remark 5.22. Theorem 5.21 can be proven also with lattice theoretic tools, using the correspondence
between elliptic curves and complex lattices. See Corollary 9.3.

6. Elliptic curves over finite fields

In this section we focus on elliptic curves over finite fields. We will briefly recall the basic theory
of finite fields. The main goal of the section is to state and prove the Weil conjectures for elliptic
curves.

6.1. Finite fields. For an account on this subject you might read [4, Section V.5] or [1, Chapter
12].
A finite field is simply a field with finitely many elements.

Example 6.1. Let p be a prime number, and define Fp as the ring obtained by taking Z/pZ with
the usual sum and multiplication. One can easily verify that Fp is a field.

Example 6.2. Let p be a prime number, and let q = pn be a power of p. Define Fq as the ring
obtained by taking Z/qZ with the usual sum and multiplication. One can verify that Fq is a field.

Let K be a field (not necessarily finite). We define the characteristic of K, denoted by charK, to
be smallest non-negative integer n such that n · 1 = 0 in K.

Example 6.3. The fields Q, R, and C all contain the ring Z and therefore they all have characteristic
0.

Example 6.4. The fields Fp and Fq (cf. 6.1 and 6.2), have characteristic p.

The following result completely classifies the finite fields.
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Theorem 6.5 (Moore, 1893). Let K be a finite field. Then K is of the form Fq for some prime p
and some integer n such that q = pn.
For every prime power q there are finite fields of order q, and they are all isomorphic.
In Fq every element satisfies the equation

(14) Xq = X.

Proof. For a proof, see [1, Theorem 12.1] or [4, Theorem V.5.2]. �

Corollary 6.6. The field Fq contains the field Fq′ if and only if q = pn, q′ = pm, and m ≤ n.

Let K be a finite field of characteristic p. We define the Frobenius automorphism of K as the
automorphism given by

Φ: x 7→ xp.

Theorem 6.7. Let K be a finite field of characteristic p Let K be an algebraic closure of K. Then
the Frobenius map Φ of K defines an automorphism of K. Furthermore, Φ topologically generates
the Galois group Gal(K/K). For every integer n, the set of elements of K fixed by Φn is a subfield
isomorphic to Fpn .

Proof. See [1, Section 12.5]. �

Remark 6.8. Let K be a finite field of characteristic p, and let K be an algebraic closure of K.
Then K is an infinite field of characteristic p.

6.2. The Frobenius endomorphism. Let q = pr be a prime power and consider the finite field
Fq. Then the frobenius map Frobq : x 7→ xq acts as the identity on Fq. Let K = Fq be a fixed
algebraic closure of Fq and let E be an elliptic curve defined over K.

Definition 6.9. The Frobenius endomorphism of E is the isogeny defined by

Frobq : E(K)→ E(K)

(x, y) 7→ (xq, yq) .

Clearly, the map acts as the identity on the points in E(Fq), but not on the others. In fact, it is easy to
see that these are exactly the points fixed by the Frobenius endomorphism, i.e., E(Fq) = E(K)Frobq .
This property is useful in order to count the number of points in E(Fq).

6.3. The Hasse bound. Let K be a finite field with q = pn elements, and let E be a cubic curve
over K. As K is finite, we know that the set E(K) of rational points is also finite. Then the next
question is: can we estimate the size of E(K), that is, the number of K-rational points of E. If
E has a singular point, then the answer only depends on the type of singularity, as shown by the
following result.

Proposition 6.10. Let E/K be a cubic with a singularity in the point P ∈ E(K). Let Ens(K) ⊂
E(K) be the set of nonsingular points of E.

(1) If P is a node and the slopes of the tangent lines to E at P are defined over K, then
#Ens(K) = q − 1.

(2) If P is a node and the slopes of the tangent lines to E at P are defined over K, then
#Ens(K) = q + 1.

(3) If P is a cusp, then #Ens(K) = q.
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Proof. Let Λ denote the set of lines defined over K passing through P . Then Λ ∼= P1
K and hence

#Λ = q + 1. As P is a singular point, it has multiplicity 2; as E is a cubic, any other point
Q ∈ Ens(K) corresponds to a line in Λ not tangent to E at P . Hence #Ens(K) = #Λ0 + 1, where
Λ0 ⊆ Λ is the set of lines defined over K passing through P and not tangent to E.
If P is a node and the slopes of the tangent lines are defined over K, then #Λ0 = q + 1− 2 = q − 1.
If P is a node and the slopes of the tangent lines to E at P are defined over K, then Λ0 = Λ and
hence #Ens(K) = q + 1.
If P is a cusp, then P admits only one tangent line and it is defined overK, hence #Λ0 = q+1−1 = q,
concluding the proof. �

The answer for elliptic curves is not as easy and it depends on the elliptic curve itself. Here we give
a bound on the possible values.

Lemma 6.11. Let A be an abelian group and d : A→ Z a positive definite quadratic form. Then
for all a, b ∈ A,

|d(a− b)− d(a)− d(b)| ≤ 2
√
d(a)d(b).

Proof. For a, b ∈ A, let
L(a, b) := d(a− b)− d(a)− d(b).

As d is quadratic, L is bilinear. As d is positive definite, then for m,n ∈ Z

0 ≤ d(ma− nb) = m2d(a) +mnL(a, b) + n2d(b).

Then for m = −L(a, b) and n = 2d(a) we have

0 ≤ d(a)[4d(a)d(b)− L(a, b)2]

If a 6= 0, as d is positive definite, d(a) > 0 and so 0 ≤ 4d(a)d(b)− L(a, b)2, leading to the statement.
If a = 0, then d(a) = 0 and the statement is trivially true. �

Theorem 6.12. Let E and K defined as above. Then

|#E(K)− q − 1| ≤ 2
√
q

Proof. Choose a Weierstrass equation for E with coefficients in K and consider the map φ : E(K)→
E(K) defined by

(x, y) 7→ (xq, yq).

Notice that the map above is the n-th power of the Frobenius morphism. Then, using Theorem 6.7,
P is in E(K) if and only if φ(P ) = P . Therefore E(K) = ker(1−φ) and so #E(K) = # ker(1−φ) =
deg(1− φ).
The degree is a quadratic form on End(E) and the degree of φ is q, then the result follows from
Lemma 6.11. �

6.4. The Weil conjectures for elliptic curves. In this subsection we introduce the Weil conjec-
tures for elliptic curves. The whole topic could be trated in greater generality, concerning varieties
of any dimension on finite fields, but that would go beyond the scope of these notes.
Let q = pr be a prime power and Fq the finite field with q elements. Let E/Fq be an elliptic curve
and recall that for any n > 0 one can consider the points of E defined over the extension Fqn , that
is, E(Fqn).

Example 6.13. Consider E/F5 : y2 = x3 + x+ 1. Then #E(F5) = 8 and #E(F25) = 26.
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Definition 6.14. We define the zeta function of E/Fq as the power series

Z(E, T ) := exp

( ∞∑
n=1

#E(Fqn)
Tn

n

)
.

If F (T ) ∈ Q[[T ]] is a power series with no constant term, we define

exp(F (T )) :=

∞∑
k=0

F (T )k

k!
.

In 1949, Weil conjectured some important properties of this function: these are known as Weil
conjectures. Weil himself proved them for the case of curves and abelian varieties, hence for elliptic
curves in particular.

Theorem 6.15 (Weil conjectures for elliptic curves). Let E/Fq be an elliptic curve. Then the
following statements hold.

(1) Rationality:
Z(E, T ) ∈ Q[T ] .

(2) Factorization:

Z(E, T ) =
P1(T )

P0(T )P2(T )

with
P0(T ) = 1− T and P2(T ) = 1− qT

and P2(T ) ∈ Z[T ].
(3) Riemann hypothesis: The polynomial P2(T ) ∈ Z[T ] factors over C as

P2(T ) =
∏
j=1

(1− αjT )

with |aj | =
√
q.

(4) Functional equation:

Z(E,
1

qT
) = ±Z(E, T ) .

In fact, for elliptic curves we know even more.

Definition 6.16. We define the trace of the Frobenius of E to be the integer

a := q + 1−#E(Fq) .

The name ‘trace’ is justified by the following result.

Theorem 6.17. The following statements hold.
(1) The Frobenius enodmorphism satisfies the following relation in End(E):

Frob2
q −aFrobq +q = 0 .

(2) The factor P2 of Z(E, T ) is

P2(T ) = 1− aT + qT 2 =: (1− α1T )(1− α2T ) .

(3) For every n ≥ 1 we have

#E(Fqn) = qn + 1− αn1 − αn2 .
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Proof. See [6, §V.2]. �

Remark 6.18. From Theorem 6.15 we know that α1, α2 are complex conjugate and have norm √q.

6.5. Exercises. The exercises marked with * are harder; those marked with ! are important.
1 ! Let n be a non-prime integer. Prove that the ring Z/nZ is not a field.

7. Elliptic curves over Q

In this section we focus on elliptic curves defined over the rationals. We will study their reduction
modulo a prime and define their L-function. We will conclude by stating the Birch–Swinnerton-Dyer
conjecture and the modularity theorem for elliptic curves.

7.1. Minimal Weierstrass model. Fix a prime p. Then one can consider the valuation induced
by p:

v := vp : Z→ N ∪ {∞}
0 7→ ∞
n 7→ e

where e is the greatest power of p dividing n, i.e., n = pe · n′ with gcd(p, n′) = 1. Clearly, the
valuation is multiplicative, i.e., vp(n · m) = vp(n) + vp(m), and so, by setting vp(1/p) = −1, it
extends to a valuation

v := vp : Q→ Z ∪ {∞}.

Example 7.1. Set p = 5. Then v5(5) = 1, v5(7) = 1, v5(7/25) = −2.

Let E/Q be an elliptic curve over Q. In §2 we have seen that then E can be written as the zero set
of the polynomial

y2 = x3 + ax+ b

for some a, b ∈ Q and that the only changes of variables preserving this form and the field of
definition are tu : (x, y) 7→ (u−2x, u−3y), for some u ∈ Q∗.

Lemma 7.2. Let E/Q be defined by y2 = x3 + ax+ b and let E′ : y2 = x3 + a′x+ b′ be the image
of E under the substitution tu. Then a′ = u4a, b′ = u6b,∆′ = u12∆.

Proof. By direct computations. �

So we see that if we vary among the short Weierstrass equations of an elliptic curve, the discriminant
of the curve get scaled by the twelfth power of the parameter. This motivates the following definition.

Definition 7.3. A short Weierstrass equation for E/Q is called minimal at vp if vp(a), vp(b) ≥ 0
and vp(∆) ≥ 0 is minimal.

Corollary 7.4. Let E/Q be the elliptic curve given by y2 = x3 + ax+ b with vp(a), vp(b) ≥ 0. Then
the following are equivalent:

(1) The equation y2 = x3 + ax+ b is the minimal short Weierstrass equation of E at vp;
(2) vp(∆) < 12;
(3) vp(a) < 4;
(4) vp(b) < 6.

Proof. It follows immediately from Lemma 7.2 and the hypothesis that vp(a), vp(b) ≥ 0. In particular,
the latter implies that vp(∆) ≥ 0. �
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Proposition 7.5. Let p be a fixed prime. Then every elliptic curve E/Q admits a minimal short
Weierstrass equation. Moreover, the minimal equation is unique up to change of coordinates tu with
u ∈ Z such that vp(u) = 0.

Proof. Let y2 = x3 + ax+ b with a, b ∈ Q not both zero. If any of the two has negative valuation,
we can use substitute the variables by tp until both a, b have positive valuation, cf. Lemma 7.2. By
stopping as soon as they have positive valuation, we obtain the minimal equation, cf. Corollary 7.4.
The second statement follows immediately from Lemma 7.2. �

7.2. Reduction mod p. As before, fix a prime p ≥ 5 and let E/Q be an elliptic curve. Fix a
minimal short Weierstrass equation for E, say

E : y2 = x3 + ax+ b.

As the equation is minimal, vp(a), vp(b) ≥ 0. In particular, using Proposition 7.5, we may assume
that a, b ∈ Z. Then we can consider the reduction modulo p:

Z→ Z/(p) ∼= Fp
n 7→ n := n mod p

Definition 7.6. We define the reduction of E mod p to be the curve E/Fp defined by

E : y2 = x3 + ax+ b.

The reduction modulo p also induces a map on the sets of rational points:

E(Q)→ E(Fp)
(x : y : z) 7→ (x : y : z) .

Notice that the map is well defined as the point (x : y : z) can be taken with integer coordinates
and with at least one of them not divisible by p.
The main problem with the reduction modulo a prime is that the reduction of an elliptic curve does
not need to be an elliptic curve: indeed it can be singular.

Example 7.7. Consider p = 5 and the elliptic curve E : : y2 = x3 + 5. Then the reduction
E : y2 = x3 has a cusp, hence it is not an elliptic curve.

Example 7.8. Consider p = 31 and the elliptic curve E : y2 = x3 + x+ 1. The reduction E has a
node at (14, 0).

This motivates the following definition.

Definition 7.9. Let E/Q be an elliptic curve with a given minimal Weierstrass equation at vp. We
say that the reduction E is
(a) good if it is smooth (and hence E is an elliptic curve over Fp),
(b) multiplicative if E has a node,
(c) additive if E has a cusp.
If E has multiplicative reduction, then the reduction is said to be split if the slopes of the tangent
lines at the node are in Fp, otherwise it is called nonsplit.
If E has not good reduction, we say that p is a prime bad reduction for E with that given equation;
we often shorten it by saying that p is a bad prime for E.

Proposition 7.10. Let p ≥ 5 be a prime and E/Q be an elliptic curve with minimal short Weierstrass
equation y2 = x3 + ax+ b with a, b ∈ Z. Then
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(1) E has good reduction if and only if vp(∆) = 0;
(2) E has multiplicative reduction if and only if vp(∆) > 0 and vp(ab) = 0;
(3) E has additive reduction if and only if vp(a), vp(b) > 0.

Proof. Notice that the reduction E/Fp is a cubic curve with discriminant equal to ∆ = ∆ mod p. As
a cubic curve is singular if and only if it has discriminant equal to 0, the first statement immediately
follows.
If E has multiplicative reduction it means that ∆ = −16(4a3 + 27b2) ∼= 0 mod p and E has node,
i.e., it is not the cusp cubic y2 = x3. Therefore neither a nor b are congruent to 0 mod p. As a, b are
integers, this implies that vp(a), vp(b) = 0 and hence vp(ab) = vp(a) + vp(b) = 0. Conversely, assume
vp(∆) > 0 and vp(a) > 0. Then ∆ = b

3
= 0 mod p and hence vp(b) > 0. This implies that E has

equation y2 = x3 and hence it has a cusp, getting a contradiction. The same argument applies if we
assume vp(∆) > 0 and vp(b) > 0, concluding the proof of the second statement.
Finally, assume E has additive reduction. Then E has cusp, i.e., it is the curve defined by y2 = x3,
from which we conclude that vp(a), vp(b) > 0. The converse is clear. �

Remark 7.11. Proposition 7.10 holds also for p = 2, 3 if we write E : y2 = x3 + 27ax+ 54b. This
is not so interesting at this stage, as the reduction of a short Weierstrass form modulo p = 2, 3 is
always singular.

Surprisingly, the reduction modulo p gives us information about the torsion points of E/Q. In fact,
if p is of good reduction for E and m is an integer coprime with p, we will see there is an embedding
of abelian groups

E(Q)[m] ↪→ E(Fp).

7.3. The L-series. Let E/Q be an elliptic curve, and assume p is a prime of good reduction. Then
the reduction Ep of E modulo p is also an elliptic curve and we can consider its zeta function.
Thanks to theorems 6.15 and 6.17 we can write it explicitly:

Z(Ep, T ) =
Lp(T )

(1− T )(1− pT )
,

where
Lp(T ) = 1− apT + pT 2

and
ap = p+ 1−#Ep(Fp).

We can extend the definition of Lp as follows.

Definition 7.12. Let E/Q be an elliptic curve and p ∈ Z a prime of bad reduction for E, then

Lp(T ) :=


1− T if E has split multiplicative reduction at p,
1 + T if E has nonsplit multiplicative reduction at p,
1 if E has additive reduction at p.

These definition are motivated by Proposition 6.10. Indeed, we have the following result.

Corollary 7.13. Let E/Q be an elliptic curve and p any prime. Then

Lp(1/p) = #Ep,ns(Fp)/p .
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Proof. First assume that p is of good reduction. Then Ep is smooth and #Ep,ns(Fp) = #Ep(Fp).
This yields:

Lp(1/p) = 1− ap
p

+
1

p
=

#Ep(Fp)
p

.

If p is of bad reduction, then Ep is either split multiplicative, nonsplit multiplicative, or additive.
The result then follows from Proposition 6.10. �

Definition 7.14. We define the L-series of E/Q as the product

LE(s) :=
∏
p

1

Lp(p−s)
.

Facts 7.15. The L-series has the following series expansion:

LE(s) =

∞∑
k=1

ak(E)

ks

with a1(E) = 1 and ap(E) = ap. The other coefficients ak(E) are determined by ap for the primes p
dividing k.
Moreover, the L-series converges and gives an analytic function to the whole complex plane.

7.4. The modularity theorem and the Birch–Swinnerton-Dyer conjecture. The L-series
of an elliptic curve plays a crucial role in relating elliptic curves and modular forms. Moreover, it is
conjectured that it can be used to compute the rank of the elliptic curve.

Definition 7.16. Let E/Q be an elliptic curve. We define the conductor of E to be the integer

N :=
∏
p

pfp

where

fp :=


0 if E has good reduction at p,
1 if E has multiplicative reduction at p,
2 + δp if E has additive reduction at p.

For p 6= 2, 3 we have δp = 0. For p = 2, 3 the quantity δp can be determined using the Ogg–Saito
formula.

Theorem 7.17 (Ogg–Saito formula). Let E/Q be an elliptic curve and p a prime. Choose a
minimal model of E at p and let ∆p denote its discriminant. Then

fp := vp(∆p) + 1−mp ,

where mp is the number of irreducible components of the desingularization Ẽp of the reduction Ep.

Remark 7.18. The quantity mp basically keeps track of the blow-ups needed to resolve the
singularity of Ep in case p = 2, 3 is of multiplicative reduction. This number can be determined by
computing discriminant and j-invariant of E, see [6, Table 15.1].

Theorem 7.19 (Modularity). Let E/Q be an elliptic curve. Then there exists a cusp form
f ∈ S2(Γ0(N))

f(q) =

∞∑
k=1

bkq
k , q = e2πiz ,
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where N is the conductor of E, such that

bp = ap

for every prime p of good reduction for E.

Conjecture 7.20 (Birch–Swinnerton-Dyer). Let E/Q be an elliptic curve. Then LE(s) has a zero
at s = 1 of order equal to the rank of E(Q).

7.5. Exercises. The exercises marked with * are harder; those marked with ! are important.

1 ! Show that any elliptic curve E/Q admits a minimal short Weierstrass equation defined over Z.
2 * Rewrite Proposition 7.10 using the Legendre equation of E.

8. Elliptic curves over C

In this section we focus on elliptic curves defined over C. We will see how they relate to classical
problems in calculus and to the modern theory of complex manifolds.

8.1. Ellipses and elliptic curves. If one draws an elliptic curve, he will find that it does not look
at all like an ellipse. Then why are they called elliptic curves? The reason is that they are related
to the computation of the arclength of the ellipses. This theory is classical and vast; we will only
briefly sketch it outlining the basic links and leaving some more details as exercises. More can be
found in [7, Chapter VI] and [9, Section 1].
Let C be the ellipse defined by the equation x2

a2 + y2

b2 = 1, then one can show that the perimeter of
C is given by the integral

4aT (
√

1− (b/a)2),

with

(15) T (k) :=

∫ π
2

0

(1− k2 sin2 θ)−1/2dθ.

The integral T (k) can also be written as

(16) T (k) =

∫ 1

0

(
1− k2x2

1− x2

)1/2

dx.

The problem is that this integral is not path-independent, because the square-root is not single
valued. In order to make it well-defined we have to make branch cuts between the zeros and the
poles of the integrating function, that is, between the points z = ±1,±1/k. Then the integral will
be path independent in the complement of the branch cuts. As the square-root is double-valued,
we have to take two copies of P1

C = C ∪ {∞} and glue them identifying the branch cuts. What we
get is a torus, that is, as we will see later (cf. Proposition 8.17), an elliptic curve. So studying the
arclength of an ellipse leads to the study of integrals on an elliptic curve.
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Figure 5. Construction of a torus by glueing together two copies of P1
C identifying the

branch cuts. In the picture the branch cuts are between the points 0,∞ and z+, z−.

8.2. Lattices and elliptic functions.

Definition 8.1. We define a lattice Λ inside C to be a discrete subgroup of C containing an R-basis
of C, that is, Λ = {n1ω1 +n2ω2 | n1, n2 ∈ Z} with ω1, ω2 ∈ C such that ω1R+ω2R = C. If {ω1, ω2}
is the basis contained inside Λ, we say that Λ is generated by {ω1, ω2}, and we write Λ = 〈ω1, ω2〉.

Example 8.2. The ring Z[i] ⊂ C is a lattice.

Definition 8.3. A fundamental parallelogram for a lattice Λ = 〈ω1, ω2〉 is a set of the form

D = {a+ t1ω1 + t2ω2 | 0 ≤ t1, t2 < 1 }

with a ∈ C. It follows that the projection D → C/Λ is bijective. We denote by D̄ the closure of D
inside C.
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Figure 6. A fundamental domain of the lattice generated by ω1, ω2. In the picture are
also shown the 4-torsion points (cf. Proposition 9.5).

Definition 8.4. We define an elliptic function (relative to the lattice Λ) f to be a meromorphic
function of C such that

f(z + ω) = f(z)

for every z ∈ C and ω ∈ Λ.

Example 8.5. Any constant function trivially is an elliptic function.

Definition 8.6. The order of an elliptic function is its number of poles and zeros (counted with
multiplicity) in a fundamental parallelogram.

Definition 8.7. Let Λ ⊂ C be a lattice. We define C(Λ) to be the set of all the elliptic functions
for Λ.
The pointwise sum and multiplication give C(Λ) the structure of field.

Proposition 8.8. Let Λ ⊂ C be a lattice and f an elliptic function relative to Λ. The following
statements hold:
(a) if f has no poles (or no zeros) then it is constant;
(b)

∑
w∈C/Λ resw(f) = 0;

(c)
∑
w∈C/Λ ordw(f) = 0;

(d)
∑
w∈C/Λ ordw(f)w ∈ Λ;

(e) A non-constant elliptic function has order at least 2.

Proof. See [7, Proposition VI.2.1, Theorem VI.2.2, Corollary VI.2.3]. �
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8.3. The Weierstrass ℘ function. In this section we give some examples of (non-constant) elliptic
functions.

Definition 8.9. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function (relative to Λ) is defined by
the series

℘(z; Λ) :=
1

z2
+
∑
w∈Λ
w 6=0

1

(z − w)2
− 1

w2
.

The Eisenstein series of weight 2k (for Λ) is the series

G2k(Λ) :=
∑
w∈Λ
w 6=0

w−2k.

We might write ℘(z) and G2k is the lattice is fixed or clear from the context.

Lemma 8.10. Let Λ ⊂ C be a lattice. Then the function ℘(z; Λ) is an elliptic even function.

Proof. To show that it is even elliptic just notice that we can write

℘(z) =
∑
w∈Λ

1

(z − w)2
−
∑
w∈Λ
w 6=0

1

w2
.

As the first sum, the only one where z appears, ranges over all the elements of Λ, the shifting by
λ ∈ Λ does not affect the sum.
The result about the parity is elementary �

Remark 8.11. Notice that we can explicitly write the first derivative of ℘, in fact

℘′(z) = −2
∑
w∈∆

1

(z − w)3
.

From this expression or, more directly, from Lemma 8.10, it follows that ℘′ is an odd elliptic function.

Proposition 8.12. Let ∆ ⊂ C be a lattice. The following statements hold:
(a) G2k(Λ) is absolutely convergent for k > 1;
(b) ℘(z,Λ) converges uniformly on every compact subset of C \ Λ.
(c) ℘ is an even elliptic function having a double pole with residue 0 at z = 0 (and so at every

lattice point) and no other poles.
(d) C(Λ) = C(℘, ℘′).

Proof. See [7, Theorem VI.3.1, Theorem VI.3.2]. �

Theorem 8.13. The following statements hold:
(a) the Laurent series for ℘(z) at z = 0 is given by

℘(z) = z−2 +

∞∑
n=1

(2n+ 1)G2n+2z
2n;

(b) for all z ∈ C with z /∈ ∆, we have that

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.
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Proof. (a) Recall that the Laurent expansion of 1
1−z at 1 for |z| < 1 is

∑∞
k=0 z

n. By derivation, it
follows that

1

(1− z)2
=

∞∑
k=1

kzk−1

and hence
1

(1− z)2
− 1 =

∞∑
k=1

(k + 1)zk.

Write ℘(z) as

z−2 +
∑
w∈Λ
w 6=0

1

(z − w)2
− 1

w2
= z−2 +

∑
w∈Λ
w 6=0

w−2[(1− z/w)−2 − 1].

As we are computing the Laurent series of ℘ at z = 0 we may assume that |z| < |w| for every
w ∈ Λ, and hence we can apply the Laurent expansion computed before, getting

℘(z) = z−2 +
∑
w∈Λ
w 6=0

∞∑
k=1

(k + 1)
zk

wk+2
=

= z−2 +

∞∑
k=1

(k + 1)zk
∑
w∈Λ
w 6=0

w−(k+2) =

= z−2 +

∞∑
n=1

(2n+ 1)z2nG2n+2,

where k = 2n; notice that
∑
w∈Λ
w 6=0

w−(k+2) = 0 for k odd. This proves the statement.

(b) Consider the first terms of the following Laurent expansions:

℘(z) = z−2 + 3G4z
2 + · · ·

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · ·

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · .

It follows that the function

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

is holomorphic around z = 0 and it vanishes at z = 0. As f is a combination of functions that
are elliptic for Λ, it is also elliptic for Λ. Then, by Proposition 8.12.i), it follows that f(z) is the
constantly 0, proving the statement.

�

Remark 8.14. It is customary to set

g2 = g2(Λ) := 60G4,

g3 = g3(Λ) := 140G6.

Then the relation in Theorem 8.13 reads

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.
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Definition 8.15. Let Λ ⊂ C be a lattice and g2, g3 the quantities associated to it defined in
Remark 8.14. We define the curve E = E(Λ) as

E(Λ): y2 = x3 − g2

4
x− g3

4
.

Lemma 8.16. The curve E(Λ) is an elliptic curve.

Proof. To show that E is an elliptic curve it is enough to show that ∆(E) 6= 0 or, equivalently, that
the equation

(17) x3 +
g2

4
x+

g3

4
= 0

has no repeated roots. Notice that the equation (17) has the same roots of the equation

f(x) := 4x3 − g2x− g3 = 0.

So we have to show that f(x) has no repeated roots.
In order to do so, let {w1, w2} a basis for Λ, and define w3 := w1 + w2 ∈ Λ As ℘′(z) is an odd
elliptic function,

−℘′(−wi/2) = ℘′(wi/2) = ℘′(wi/2− wi) = ℘′(−wi/2),

from which it follows that ℘′(wi/2) = 0 for i = 1, 2, 3. By Theorem 8.13 it follows that ℘(wi/2), i =
1, 2, 3 are the three roots of f . We are left to show that they are distinct.
As ℘ is an even elliptic function, so is the function ψi(z) := ℘(z)− ℘(wi/2), for every i = 1, 2, 3. As
℘′(wi/2) is zero, then wi/2 is a zero of order at least 2. Notice that ψi(z) has exactly one pole of
order 2 (inside a fundamental domain) at z = 0 (as ℘ does) and so wi/2 has order exactly 2 and it
is the only zero. This shows that ℘(wi/2) 6= ℘(wj/2) for i 6= j, proving the statement. �

Proposition 8.17. The map

φ : C/Λ→ Ē(Λ)

z 7→ (℘(z) : ℘′(z)/2 : 1)

0 7→ O

is an isomorphism of Riemann surfaces which is also a group homomorphism.

Proof. See [7, Proposition 3.6.(b)]. �

Remark 8.18. The elliptic curve E(Λ) has j-invariant j(Λ) = 1728
g32

g32−27g23
. This construction

allows us to define the j-invariant of a complex lattice.

Remark 8.19. If we did not already define the group structure on E, we could use the bijection
given by φ to define it. In this case it would be immediately follow that the addition on E is
associative and commutative.

Example 8.20. Consider the lattice Λ = Z[i] = 〈1, i〉. We will see that E(Λ): y2 = x3 − x.

The construction given in Definition 8.15 has also a converse.

Theorem 8.21 (Uniformization theorem). Let a, b ∈ C such that a3 − 27b2 6= 0. Then, up to
homotheties, there exists a unique lattice Λ ⊂ C such that g2(Λ) = a and g3(Λ) = b.

Proof. Later. �
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8.4. Exercises.
1 Let E be an elliptic curve given by the Weierstrass equation

E : y2 = x3 + ax+ b.

(a) Prove that there is a λ ∈ R− {0, 1} such that E can be put in Lagrange form

y2 = x(x− 1)(x− λ).

(b) For given a, b, find all possible values of λ; vice versa, for a given λ, find all possible values of
a and b.

(c) Express j(E) in terms of λ.
2 Prove that the arclength of the ellipse

x2

a2
+
y2

b2
= 1

is given by
4aT (

√
1− (b/a)2),

with T defined as in (15). [Hint: use the formula for the length of a plane curve y = f(x) given
by: ∫ b

a

√
1 +

(
dy

dx

)2

dx.

Also, recall the parametrization of the ellipse given by (a cos θ, b sin θ).]
3 Prove Equation (16).

9. Isogenies and j-invariant: revisited

So we have seen that given a lattice inside C we can associate an elliptic curve to it. From this
construction many questions arise: is this association unique? How maps of lattices translate into
the language of elliptic curves?

Figure 7. A visual explanation of Remark 9.1.

Remark 9.1. In the previous section we have mentioned the quotient C/Λ, with Λ being a complex
lattice. Recall that this quotient is isomorphic to a complex torus.

9.1. Isogenies. Let Λ1 and Λ2 be two lattices. A map C → C induces a well defined map
C/Λ1 → C/Λ2 if and only it sends Λ1 into Λ2. One example is given by considering the multiplication
by α ∈ C, with α such that αΛ1 ⊆ Λ2. It induces the map

φα : C/Λ1 → C/Λ2

z 7→ αz mod Λ2 .

Theorem 9.2. Keeping the notation as above, the following statements hold:
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i) The association

{α ∈ C : αΛ1 ⊂ Λ2} → {holomorphic maps φ : C/Λ1 → C/Λ2 with φ(0) = 0}
α 7→ φα

is a bijection;
ii) let E1 and E2 be the elliptic curves corresponding to the lattices Λ1 and Λ2 (cf. 8.15), then the

natural inclusion

{isogenies φ : E1 → E2} → {holomorphic maps φ : C/Λ1 → C/Λ2 with φ(0) = 0}
is a bijection.

Proof. i) First we proof the injectivity of the association. Let α, β ∈ C be such that φα = φβ ,
that is αz ≡ βz mod Λ2 for every z ∈ C or, equivalently, that g(z) := z(α− β) ∈ Λ2 for every
z ∈ C. As Λ2 is discrete, this implies that g is constant and hence α = β.

To prove the surjectivity, consider a holomorphic map φ : C/Λ1 → C/Λ2 with φ(0). As C is
simply connected, we can lift it to a map f : C→ C such that the following diagram commutes.

C C

C/Λ1 C/Λ2

f

φ

As the diagram commutes, for any z ∈ C and w ∈ Λ we have f(z + w) ≡ f(z) mod Λ2. As
before, since Λ2 is discrete, the function f(z+w)− f(z) is constant in z, and so its derivative is
zero and so f ′(z + w) = f ′(z) for every z ∈ C and w ∈ Λ1. It follows that f ′ is a holomorphic
elliptic function. Then, by Proposition 8.8.i), f ′ is constant. This implies that f(z) = αz + β,
for some α, β ∈ C. The condition φ(0) = 0 implies β = 0. The fact that f(Λ1) ⊆ Λ2 implies
that αΛ1 ⊆ Λ2.

ii) First notice that since an isogeny is defined everywhere, the map induced on the corresponding
complex torus is holomorphic. Hence the association

Hom(E1, E2)→ Holo. Map(C/Λ1,C/Λ2)

is well-defined and it is clearly injective.
To prove the surjectivity, using i), it is enough to consider maps of the form φα with α ∈ C∗

such that αΛ1 ⊂ Λ2. The induced map on the Weierstrass equation is given by

E1 → E2

(℘(z; Λ1) : ℘′(z; Λ1)/2 : 1) 7→ (℘(αz; Λ2) : ℘′(αz; Λ2)/2 : 1).

Using the fact αΛ1 ⊆ Λ2, one can easily show that ℘(αz; Λ2) and ℘′(αz; Λ2) are elliptic functions
for Λ1 and so the map above is the desired isogeny.

�

Corollary 9.3. Let E1, E2 be the complex elliptic curves corresponding to the lattices Λ1,Λ2 ⊂ C.
Then E1 and E2 are isomorphic (over C) if and only if there is a α ∈ C such that αΛ1 = Λ2 (that
is, Λ1 and Λ2 are homothetic).

We can summarise the previous results in the following theorem.

Theorem 9.4. The following categories are equivalent:
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(i) (Elliptic curves over C; Isogenies);
(ii) (Complex tori; Complex analytic maps taking 0 to 0);
(iii) (Lattices up to homothety; {α ∈ C : αΛ1 ⊆ Λ2}).

A first application of the study of elliptic curves over C is given by the following result about torsion
points.

Proposition 9.5. Let E/C be an elliptic curve and m ≥ 1, then the following statements hold.
(a) As abstract groups,

E[m] ∼= Z/mZ× Z/mZ.
(b) The multiplication-by-m map [m] has degree m2.

Proof. Exercise. �

9.2. The special linear group. In order to prove Theorem 8.21 we need to introduce some notions.

Definition 9.6. We define the upper-half plane to be the region H of C defined by

H := {z ∈ C | =(z) > 0}.

Definition 9.7. We define the general linear group of C to be the group

GL2(Z) :=
{(a b

c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = ±1
}
.

We define the special linear group of C to be the normal subgroup of GL2(Z) defined by

SL2(Z) :=
{(a b

c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = 1
}
.

Sometimes, we might denote SL2(Z) by simply Γ.

Define T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
∈ SL2(Z) .

Lemma 9.8. The group Γ is generated by S and T .

Proof. Just notice that S2 = − Id and then follow the proof of [3, Proposition III.1.4]. �

We define an action of the group SL2(Z) on P1
C in the following way. For every z ∈ H and

g =

(
a b
c d

)
∈ SL2(Z) we define:

gz :=
az + b

cz + d
,

g∞ :=
a

c
,

where z := (z : 1) and ∞ := (1 : 0).

Lemma 9.9. The action of SL2(Z) on P1
C is well defined. Furthermore, it preserves H.

Proof. Exercise. �

As H is preserved by the action of Γ = SL2(Z), we can consider the action induced on it, and hence
consider the quotient H/Γ. Let F be the region of the upper-half plane defined as

F := {z ∈ H : |z| ≥ 1 and − 1

2
≤ <(z) <

1

2
}.
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Figure 8. A visual rendition of the region F (the one in grey). The boundaries of other
fundamental domains are also shown (the blue curves).

Lemma 9.10. The region F is a fundamental domain of H/Γ.

Proof. Let z be any point in H. Use a power T j of T to move z to a point z′ inside the strip
− 1

2 ≤ <(z) < 1
2 . If it is outside the unit circle, then it is in F ; otherwise use S to move the point

outside the unit circle, and the again a power T k to move it inside the strip. Go on like this until
you get a point in F . We leave the details of the proof as an exercise. (Note that they can be found
in [3, Proposition 1]) �

9.3. The j-function. In Subsection 8.2 we have seen how to construct an elliptic curves starting from
a complex lattice. We used this construction to define the j-invariant of a lattice (cf. Remark 8.18).
In this subsection we will justify such a name and we will see how to extend this definition to a
complex function.

Lemma 9.11. Two complex lattices are homothetic if and only if they have the same j invariant.

Proof. Let Λ1 and Λ2 two complex lattices, and assume they are homothetic, that is, there is a
α ∈ C such that αΛ1 = Λ2. Then G2k(Λ2) = α−2kG2k(Λ1). From this it immediately follows that
j(Λ2) = j(Λ1).
On the other hand, if two lattices have the same j-invariant, the elliptic curves associated to them
have the same j-invariant and, by Proposition 2.18, they are isomorphic. As they are both in (short)
Weierstrass form, by Lemma 2.14 it follows that there exists a u ∈ C∗ such that tu is the isomorphism
between the two elliptic curves. This implies that g2(Λ2) = g2(Λ1)/u4 and g3(Λ2) = g3(Λ1)/u6.
Then gk(uΛ1) = gk(Λ2), for k = 2, 3. Using the relation ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3, one can
prove that this implies ℘(z, uΛ1) = ℘(z,Λ2), for every z ∈ C. So in particular, the two Weierstrass
functions have the same set of poles, namely Λ2 = uΛ1. �

Lemma 9.12. Every lattice is homothetic to a lattice 〈1, τ〉 with τ ∈ H.

Proof. Let {w1, w2} be any basis of Λ, and assume τ := w2/w1 ∈ H (if this is not the case, take
τ := −w2/w1). Then 〈1, τ〉 is homothetic to Λ, via the multiplication by 1/w1. �

Lemma 9.13. Let Λ1,Λ2 be the lattices generated by {1, w1} and {1, w2}, respectively, with w1, w2 ∈

C. Then the two lattices are homothetic if and only if w2 = aw1+b
cw1+d , for some

(
a b
c d

)
∈ GL2(Z).

Proof. By Corollary 9.3 we know that two lattices are homothetic if and only if there is a α ∈ C
such that αΛ2 = Λ1. Then there exist a, b, c, d ∈ Z such that

α = a+ bw1
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αw2 = c+ dw1

ad− bc = ±1.

The statement follows by noticing that w2 = αw2

α . �

Corollary 9.14. Let Λ1,Λ2 be the lattices generated by {1, w1} and {1, w2}, respectively, with

w1, w2 ∈ H. Then the two lattices are homothetic if and only if w2 = aw1+b
cw1+d , for some

(
a b
c d

)
∈

SL2(Z).

Proof. The condition of preserving H implies that ad− bc = 1. �

Let τ be a complex number in H. We define the complex lattice associated to τ as the lattice
Λτ = 〈1, τ〉.

Definition 9.15. We define the j-function as the function of H defined by

j : H→ C

τ 7→ j(τ) := 1728
g2(Λτ )3

g2(Λτ )3 + 27g3(Λτ )2
.

Remark 9.16. For computational purposes, it might be useful to state the Laurent series in terms
of q = exp(2πiτ) associated to the j-function:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + ... .

Lemma 9.17. Let γ be an element of SL2(Z) = Γ and τ ∈ H. Then j(γτ) = j(τ).

Proof. It immediately follows from Lemma 9.11 and Corollary 9.14. �

Lemma 9.17 tells us that the j-function induces a function on the quotient H/Γ.

Proposition 9.18. The function H/Γ→ C induced by j is a bijection.

Proof. Here we follow [9, Proof of Theorem 3.6]. The injectivity comes from Corollary 9.14. We
are left to prove the surjectivity. We will show it by proving that the image j(H) is both open and
closed in C. Then, by the connectedness of C, the result will follow.
As j is a non-constant holomorphic function on H, its image is open in C.
Let j = limn→∞ j(zn) be a limit point of j(H) in C. Without loss of generality, we may and do
assume that all the zn lie in F . If the values =(z) are bounded, the sequence {zn} lie in a bounded
subset of F , that is compact. Hence they converge to a limit point z ∈ H and so j = j(z) ∈ j(H).
So assume that the values =(zn) are not bounded. Then we can pass to a subsequence and assume
limn→∞=(zn) = +∞. Then

lim
n→∞

g2(zn) =
4π4

3

lim
n→∞

g3(zn) =
8π6

27
,

and so
lim
n→∞

∆(zn) = lim
n→∞

(g2(zn)3 − 27g3(zn)3) = 0,

from which it follows that j = limn→∞ |j(zn)| = ∞, contradicting the assumption that the j(zn)
converge. �



42 DINO FESTI

We are now ready to prove the Uniformization theorem.

Proof of Theorem 8.21. By Proposition 9.18 we know that, up to homotheties, there exists a unique
lattice Λ such that j(Λ) = a3

a3−27b2 . This means that the elliptic curve EΛ : y2 = x3 − g2/4x− g3/4

is isomorphic to the elliptic curve given by y2 = x3 + a/4x+ b/4 and so there is a u ∈ C such that
g2(Λ) = u−4a and g3(Λ) = u−6b. Then the lattice 1

uΛ is the one required in the statement. �

9.4. Exercises.
1 Prove Proposition 9.5.
2 Prove Lemma 9.9.
3 Find in F an SL2(Z)-representative of 1+2i

100 .
4 Let E be a complex elliptic curve given by a Legendre equation

E : y2 = x(x− 1)(x− λ).

(a) Prove that there is a k ∈ C− {0,±1} such that E can be put in the Jacobi equation

E : y2 = (1− x2)(1− k2x2).

[Hint: consider a transformation of the form x′ = (ax+ b)/(cx+ d) and y′ = ey/(cx+ d) for
appropriate a, b, c, d, e ∈ C.]

(b) For a given value of λ find all possible values of k, and vice versa.
(c) Express j(E) in terms of k.

10. Elliptic curves as double covers of the line

In this section we present elliptic curves as double covers of the projective line ramified above four
points. Although less explicit and requiring more advanced tools in algebraic geometry (like the
notion of genus and the Riemann–Hurwitz theorem), this approach has the advantage to give a
more natural introduction to the j-invariant and the short Weierstrass model.

10.1. The cross-ratio. In this subsection we will mostly follow [5, §2.3]. Let z1, z2, z3, z4 ∈ C be
pairwise distinct.

Definition 10.1. We define the cross-ratio of the 4-tuple (z1, z2, z3, z4) ∈ C4 of pairiwse distinct
points as the quantity

(z1, z2; z3, z4) :=
z1 − z3

z1 − z4
:
z2 − z3

z2 − z4
.

Using the embedding C ↪→ P1
C, z 7→ (1 : z), one can extend the definition of the cross-ratio to four

pairwise distinct points zi = (ai : bi) ∈ P1
C.

Definition 10.2. We define the cross-ratio of the 4-tuple (z1, z2, z3, z4) ∈ (P1
C)4 as the quantity

(z1, z2; z3, z4) :=
[13][24]

[14][23]
∈ P1

C,

where

[ij] := det

(
ai aj
bi bj

)
.
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Remark 10.3. Notice that if z1 =∞ = (0 : 1), then

(z1, z2; z3, z4) = ((0 : 1), (1 : b2); (1 : b3), (1 : b4)) =
b2 − b4
b3 − b4

.

From this we deduce that the cross-ratio of three pairwise distinct points in C ⊂ P1
C and ∞ ∈ P1

C is
just the ratio obtained from Definition 10.1 deleting the terms in which ∞ appears.

Example 10.4. The cross-ratio of the points 1, 2, 3, 4 ∈ P1 is
−2

−3
:
−1

−2
=

4

3
.

The cross-ratio of the points 1, 2, 3,∞ ∈ P1 is
−2

−1
= 2.

One can further extend the definition of the cross-ratio for 4-tuple of points in P1
C such that no three

of them are equal.

Definition 10.5. Let U ⊂ (P1
C)4 be the set of 4-tuples of points such that no three of the points

are equal. Then we define the cross-ratio as above.

(−;−) : U → P1
C

Lemma 10.6. The cross-ratio (−;−) : U → P1
C is surjective.

Proof. For every z ∈ P1
C \ {0, 1,∞} we have that (0,∞; z, 1) = z.

Moreover

(a, a; z3, z4) = (a, a; b, b) = (z1, z2; b, b) = 1

(a, z2; a, z4) = (a, b; a, b) = (z1, b; z3, b) = 0

(a, z2; z3, a) = (a, b; b, a) = (z1, b; b, z4) =∞.

�

The group PGL2 acts on P1: let g =

(
α β
γ δ

)
be an element in PGL2, then it sends the point

z = (a : b) ∈ P1 to the point

z′ = g · z :=

(
α β
γ δ

)(
a
b

)
= (αa+ βb : γa+ δb).

Remark 10.7. An element of PGL2(C) viewed as an automorphism of P1
C is also called a Möbius

transformation.

Proposition 10.8. The group PGL2(C) acts sharply 3-transitively on P1
C, i.e., for any triple of

pairwise distinct points z1, z2, z3 ∈ P1
C and x1, x2, x3 ∈ P1

C there is exactly one element g ∈ PGL2(C)
such that g · xi = zi for i = 1, 2, 3.

Proof. Notice that it is enough to consider (x1, x2, x3) = (0,∞, 1). Let v1, v2, v3 ∈ C2 be three
vectors representing z1, z2, z3, respectively. As the points z1, z2, z3 are pairwise distinct, the vectors
v1, v2, v3 are pairwise linearly independent so we can write v3 = λv1 + µv2 for some λ, µ ∈ C∗. We
can then define an automorphism of C2 by sending the standard basis (e1, e2) = ((1, 0), (0, 1)) to
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(λv1, µv2). Denote this automorphism by γ ∈ GL2(C) and notice that γ · (e1 + e2) = v3. Let g := [γ]
its image in PGL2(C) and notice that

g · x1 = g · 0 = [λv1] = z1,

g · x2 = g · ∞ = [µv2] = z2,

g · x3 = g · 1 = [λv1 + µv2] = z3,

proving the statement. �

The action of PGL2 on P1 diagonally induces an action on (P1)4. One might then wonder how is
the cross-ratio affected by this action. It turns out that the cross-ratio is invariant, as shown by the
following result.

Proposition 10.9. The cross-ratio (−;−) : U → P1
C is invariant under the action of PGL2(C) on

U ⊂ (P1
C)4.

Proof. For i = 1, 2, 3, 4, consider the point zi = (ai : bi) ∈ P1 and take g ∈ PGL2. Let z′i = (a′i : b′i)
denote g · zi. Then

det

(
a′i a′j
b′i b′j

)
= det

(
g ·
(
ai aj
bi bj

))
= det g · det

(
ai aj
bi bj

)
.

From this it immediately follows that

(z1, z2; z3, z4) = (z′1, z
′
2; z′3, z

′
4).

�

In Proposition 10.8 we have seen that PGL2 acts 3-transitively on P1. The cross ratio is useful to
see when two 4-tuples of pairwise distinct points lie in the same orbit in (P1)4.

Proposition 10.10. Let x1, x2, x3, x4 and z1, z2, z3, z4 be two 4-tuples of pairwise distinct points
in P1

C. Then there is a Möbius transformation g ∈ PGL2(C) sending zi to xi for i = 1, 2, 3, 4 if and
only if

(x1, x2;x3, x4) = (z1, z2; z3, z4).

If this is the case, then g is unique.

Proof. As before, it is enough to consider (x1, x2, x3, x4) = (x1, 1, 0,∞), with x1 ∈ C. Then,
by Proposition 10.8, there is a unique transformation g ∈ PGL2(C) sending zi to xi for i = 2, 3, 4.
It is easy to see that g is the transformation defined by:

g : z 7→ z − z3

z − z4

z2 − z4

z2 − z3
.

Then
g(z1) =

z1 − z3

z1 − z4

z2 − z4

z2 − z3
= (z1, z2; z3, z4)

and x1 = (x1, 1, 0,∞) = (x1, x2, x3, x4), proving the statement. �

Corollary 10.11. Let (z1, z2, z3, z4) be a 4-tuple of pairwise distinct points and let λ denote its
cross-ratio. Then there exists an element of PGL2 sending (z1, z2, z3, z4) to (λ, 1, 0,∞).

Proof. Notice that (z1, z2; z3, z4) = (λ, 1; 0,∞). Then the statement follows directly from Proposi-
tion 10.10. �
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Let z1, z2, z3, z4 be four pairwise distinct points of P1. Then the permutation group S4 acts on them
by changing the order and one might ask how this action affects their cross-ratio.

Proposition 10.12. Let z1, z2, z3, z4 be four pairwise distinct points of P1 and let S4 act on them
by permutation. Let λ := (z1, z2; z3, z4) ∈ P1 denote their cross-ratio. Then:

• the cycles 1, (12)(34), (13)(24), (14)(23) act trivially on λ;
• the cycles (12) and (34) send λ to 1

λ ;
• the cycles (14) and (23) send λ to 1− λ;
• the cycles (13), (24), and (1234) send λ to λ

λ−1 ;
• the cycle (123) sends λ to λ−1

λ ;
• the cycle (132) sends λ to 1

1−λ .
The orbit of λ under the action of S4 is{

λ,
1

λ
, 1− λ, λ

λ− 1
,

1

1− λ
,
λ− 1

λ

}
.

Proof. By direct computations. �

Notice that the stabilizer of λ is the group given by 1, (12)(34), (13)(24), (14)(23), i.e., the Klein
group V4.
Proposition 10.12 means that there is an action of S4 on P1, that is, a group homomorphism

(18) χ : S4 → PGL2(C).

Moreover, the kernel of χ is the group given by 1, (12)(34), (13)(24), (14)(23), i.e., the Klein group V4.

Remark 10.13. As the quotient S4/V4 is isomorphic to S3, the map χ induces an action of S3 on
PGL4. Moreover, the group S3 is given the classes of the elements

{1, (12), (23), (13), (123), (132)}.

Let P1/χ denote the quotient of P1 modulo the action given by χ, then we have the following
corollary.

Corollary 10.14. The map
(−,−) : (P1)4 ⊃ U → P1/χ ,

given by composing the cross-ratio with the projection P1 → P1/χ, is invariant under the action of
S4 on (P1)4.

10.2. The j-function. In §10.1 we have seen that the permutations of four elements induce an
action of S3

∼= S4/V4 on P1 via the cross-ratio. Generically, we have seen that the orbit of λ has
length six: {

λ,
1

λ
, 1− λ, λ

λ− 1
,

1

1− λ
, 1− 1

λ

}
.

Nevertheless, some (non-trivial) elements of S3 admit fixed points, making the orbits of these points
shorter.

Lemma 10.15. The non-trivial permutations in S3
∼= S4/V4 have the following fixed points:

(12) : 1 , −1 ;

(23) : ∞ ,
1

2
;
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(13) : 0 , 2 ;

(123), (132) : ζ6 , ζ5
6 = ζ̄6 = ζ−1

6 ;

where ζ6 = 1+i
√

3
2 is the primitive sixth root of unity.

These eight points are grouped into three orbits:

{0, 1,∞}, {−1, 1/2, 2}, {ζ6, ζ5
6}.

Proof. By direct computations using Proposition 10.12. For example, we compute the fixed points
of (12). We know that (12) sends λ to 1/λ, hence its fixed points are the solutions to the equation

λ = 1/λ,

i.e., λ = ±1. All the other statements are proven in a similar way. �

The action of S3 on P1 induces an action of S3 on C(λ), by simply sending an element f(λ) to
f(g(λ)), for g ∈ S3. Then it is interesting to find out what are the elements of C(λ) that are invariant
under this action, that is, we want to compute C(λ)S3 . Clearly the polynomial

(19) (x− λ) ·
(
x− 1

λ

)
· (x− (1− λ)) ·

(
x− λ

λ− 1

)
·
(
x− 1

1− λ

)
·
(
x− λ− 1

λ

)
is invariant under S3. It is easy to show that this polynomial is equal to the palyndromic polynomial

x6 − 3x5 −Ax4 +Bx3 −Ax2 − 3x+ 1,

with

A =
(λ2 − λ+ 1)3

λ2(λ− 1)2
− 6 and B = 2 · (λ2 − λ+ 1)3

λ2(λ− 1)2
− 7.

This motivates the following definition.

Definition 10.16 (Klein). The j-function is the function j : P1 → P1 defined by sending λ to

j(λ) := 28 · (λ2 − λ+ 1)3

λ2(λ− 1)2
.

Theorem 10.17. C(λ)S3 = C(j).

Proof. By construction, we know that j(λ) is S3-invariant, hence

C(j) ⊆ C(λ)S3 ⊆ C(λ).

We are left to show that the reverse inclusion holds.
On the one hand, C(λ)/C(λ)S3 is a Galois extension of degree 6 and with Galois group S3; on the
other hand, λ satisfies the following algebraic relation of degree 6 over C(j):

28 · (λ2 − λ+ 1)3 − j · λ2(λ− 1)2.

Because of the inclusion chain above, the statement follows. �

One can finally consider the composition of the cross-ratio with the j-function.

Theorem 10.18. The map

(P1)4 ⊃ U → P1, (z1, z2, z3, z4) 7→ j((z1, z2; z3, z4))

is invariant under the action of PGL2×S4 on U .
The fiber above t 6=∞ consists of exactly one orbit.
The fiber above ∞ consists of two orbits: the orbit of (0, 0, 1,∞) and the orbit of (0, 0,∞,∞).
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Proof. By Proposition 10.9, the cross-ratio is invariant under the action PGL2 on U ; by Theo-
rem 10.17 the j-function is invariant under the action of S4, recalling that S3 = S4/V4 and V4 acts
as the identity on the cross-ratio, cf. Proposition 10.12. This proves the first statement.
Let (z1, z2, z3, z4), (x1, x2, x3, x4) ∈ U be two 4-tuples sent to t 6= ∞. If t 6= ∞, then j−1(t) ∈
P1 \ {0, 1,∞}. This means that (x1, x2;x3, x4), (z1, z2; z3, z4) ∈ P1 \ {0, 1,∞} and so, the two
4-tuples are of pairwise distinct points (cf. Exercise 1). As they are sent to the same j-invariant,
their cross-ratios are in the same S3-orbit. This means that, up to the action of S3, we may assume
that

(x1, x2;x3, x4) = (z1, z2; z3, z4).

By Proposition 10.10 we know that two 4-tuples of pairwise distinct points have the same cross-ratio
if and only if they are in the same PGL2-orbit, proving the second statement.
Finally, consider a 4-tuple (z1, z2, z3, z4) sent to ∞. As j−1(∞) = {0, 1,∞}, we know that
(z1, z2; z3, z4) ∈ {0, 1,∞}. This implies that at least on point is repeated. If only one point is
repeated, using the action of PGL2×S4 we may assume that the 4-tuple is (0, 0, 1,∞) and let O
denote its orbit. If two points are repeated, then we may assume that the 4-tuple is (0, 0,∞,∞)
and let O′ denote its orbit. Hence the fiber over ∞ is the union F = O ∪O′. �

10.3. Elliptic curves as double covers of the projective line. In this subsection we introduce
the elliptic curves as covers of the projective line P1 ramified above four distinct points.

Definition 10.19. We define an elliptic curve to be the double cover of P1 ramified above four
pairwise distinct points.
Let E,E′ be the elliptic curves given as double covers of P1 ramified above the points z1, z2, z3, z4 and
z′1, z

′
2, z
′
3, z
′
4 respectively. We say that E and E′ are isomorphic if (z1, z2, z3, z4) and (z′1, z

′
2, z
′
3, z
′
4)

are in the same PGL2×S4-orbit.

Proposition 10.20. Every elliptic curve is isomorphic to the projective closure of the plane curve
defined by

y2 = x(x− 1)(x− λ)

for some λ ∈ C \ {0, 1}.

Proof. Let E be an elliptic curve as defined in Definition 10.19. Then E is the double cover of P1

ramified above four points, say z1, z2, z3, z4 ∈ P1. By Corollary 10.11, there is an element of PGL2

sending z1, z2, z3, z4 to λ, 1, 0,∞, with λ = (z1, z2; z3, z4). As the four points are pairwise distinct,
λ ∈ C \ {0, 1}. The double cover of P1 ramified above λ, 1, 0,∞ can be written as the projective
curve

E : Y 2Z = X(X − Z)(X − λZ),

and the projection

π : E → P1

(x : y : 1) 7→ (x : 1) = x

(0 : 1 : 0) 7→ (1 : 0) =∞.

As the point (0 : 1 : 0) is the only point with Z = 0, the map is well defined. It is easy to see that
the map is generically 2-to-1 except above the points λ, 1, 0,∞, proving the statement. �

Remark 10.21. The equation y2 = x(x− 1)(x−λ) is called the Legendre form of the elliptic curve
E. See also Remark 2.10.
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Figure 9

Using the j-function defined in §10.2, we can define the j-invariant of an elliptic curve. Indeed, if E
is an elliptic curve, then E can be written as E : y2 = x(x− 1)(x− λ).

Definition 10.22. We define the j-invariant of E : y2 = x(x− 1)(x− λ) as the quantity

j(E) := 28 · (λ2 − λ+ 1)3

λ2(λ− 1)2
.

Theorem 10.23. Two elliptic curves are isomorphic if and only if they have the same j-invariant.

Proof. Let E and E′ be the elliptic curves given as double covers of P1 ramified above the points
z1, z2, z3, z4 and z′1, z′2, z′3, z′4 respectively. This means that we can write

E : y2 = x(x− 1)(x− λ) and E′ : y2 = x(x− 1)(x− λ′)

where λ and λ′ are the cross-ratios of z1, z2, z3, z4 and z′1, z′2, z′3, z′4 respectively.
Assume that E and E′ are isomorphic, i.e., there is an element of PGL2×S4 sending z1, z2, z3, z4 to
z′1, z

′
2, z
′
3, z
′
4. This means that

λ′ ∈
{
λ,

1

λ
, 1− λ, λ

λ− 1
,

1

1− λ
,
λ− 1

λ

}
,

i.e., λ′ is in the S4-orbit of λ. As the j-function is S4-invariant, it follows that j(E) = j(E′).
Now assume j(E) = j′(E). As the the four points are pairwise distinct, j(E) = j′(E) = t 6=∞, and
hence the two 4-tuples are in the same orbit of PGL2×S4, cf. Theorem 10.18. �

10.4. Exercises.
(1) Show that if (z1, z2, z3, z4) ∈ (P1

C)4 are pairwise distinct, then the cross-ratio (z1, z2; z3, z4) ∈
P1
C is different from 0, 1,∞.

(2) Show that the points A,B,C,D and A′, B′, C ′, D′ in Figure 9 have the same cross-ratio.
(3) Compute the Legendre form of the double cover of P1 ramified above the points {1, 2, 3, 4} ⊂

P1.
(4) Compute the following values of the j-function as defined in Definition 10.16:

j(0), j(1), j(−1), j(∞), j(ζ6).
(5) Give an example of two isomorphic elliptic curves with different Legendre form.
(6) Given an elliptic curve in its Legendre form, transform it into a short Weierstrass form.
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