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Each section corresponds to a lecture of 2 hours, with the introduction �tting into § 1.
¿e class can be taught in a di�erent order as there are independences between lectures.
Lectures § 1, § 2 (which can be made shorter) and § 4 form a �rst block; §§ 8–10 form
another block. Lecture § 3 may be seen before or a er § 4. Each of lectures § 5, § 6, § 7,
and the block §§ 8–10, can be presented at any moment a er § 4.

Introduction
Disclaimer. ¿is is not really a course on quaternions, as the author does not care for
quaternions. It is a review of elementary notions andmethods in algebra, linear algebra,
and geometry, together with an invitation to basic Lie theory. Quaternions are a pretext.

Hopefully you know what a �eld is. A skew-�eld is almost like a �eld, except that
multiplication is not required to be commutative (addition remains commutative). His-
torically the �rst example of a skew-�eld was discovered by Hamilton; it isH, the skew-
�eld of real quaternions, to which this two-week course is devoted. Remarkably, H is
a real vector space of dimension 4 with a certain magical multiplication. ¿e algeb-
raic structure on R4 actually encodes rotations of the Euclidean space R3, which makes
quaternions useful when rotating computer-generated 3d-images.
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Technically, quaternions are real linear combinations of the form a ⋅1+b ⋅ i+c ⋅ j+d ⋅k,
where the non-trivial relations are:

i2 = j2 = k2 = −1; i j = k; ji = −k; jk = i; etc.

there is a notion of conjugate, namely (a + bi + c j + dk)∗ = a − bi − c j − dk. We urge
the reader to start manipulating quaternions now; in particular, they form a skew-�eld.

Hamilton had started with the following key observation.

Complex numbers can be used to code rotations in the vector space R2.

Namely, multiplying by complex number z = e iθ amounts to rotating the real vector
space C ≃ R2 by θ. Complex numbers of this form are on the circle S1 = {z ∈ C ∶
∣z∣ = 1} ≃ SO2(R). Not all complex numbers have norm 1, but there is therefore a �eld
‘enveloping’ the group SO2(R). It was then natural to try to generalise to R3.

Question. Is there a �eld structure which can be used for coding rotations of R3?

Since the group SO3(R) (studied in § 9) of rotations of R3 is not commutative, this
requires leaving commutative mathematics. To Hamilton’s despair, he could not �nd
a nice algebraic structure on R3 compatible with multiplication in SO3(R). But to his
surprise, he could in R4. Quaternions were born.

Prerequisites
¿e class is supposedly accessible to a third year student.

Analysis: Almost none. Real numbers are required but we never use their analytic
properties. Instead we focus on real closed �elds, which will be de�ned. ¿e few
topological arguments are all optional.

Algebraic structures: In theory there are little prerequisites; in practice, maturity is
required. One needs to be very comfortable with general notions such as asso-
ciativity, commutativity; groups, rings, domains, �elds, and algebras over �elds;
morphisms and factoring kernels. Conjugation actions play an important role
throughout. ¿e �rst lecture could prove challenging to beginners in abstract al-
gebra but things get better in § 2.

Geometry: Preliminar knowledge of the cross/wedge product × inR3 is recommended
for § 8. Familiarity with rotations of the plane and of the space (SO2(R), SO3(R))
and orientations of planes inR3 will also help, though all are recalled in § 9. Euler
angles are not discussed in this class.

Linear algebra: One must know matrices, and eigenvalues. ¿e orthogonal group is
important. At some optional point, the de�nition of unitary groups is required.

Number theory: For one striking though optional application of quaternions in § 7, the
notion of a Euclidean ring is needed.

1 Fields, skew-�elds and algebras
¿is lecture provides background on �elds, skew-�elds, and algebras. Hopefully all
de�nitions are already familiar. On skew-�elds we say little, because skew-�eld the-
ory is technically too challenging for an undergraduate course. On algebras there will
be three main results to remember.

2



1. Only commutative �elds can have non-trivial algebras (lemma 1.2.3).

2. Every associative, unital K-algebra A embeds in some EndK(V) (lemma 1.2.7,
‘Wedderburn’s representation theorem’).

3. In this case,K embeds in the centre of A (lemma 1.2.10, ‘central embedding’).

1.1 Fields and skew-�elds
1.1.1. De�nition.

• A �eld (F;+, ⋅) is an associative, commutative, unital ring (= with 1) such that
every element has a multiplicative inverse.

• A skew-�eld (K;+, ⋅) is an associative, unital ring such that every element has a
2-sided multiplicative inverse.

In order to stress the di�erence, we use the redundant phrase ‘commutative �eld’.

1.1.2. Examples. ¿e following are �elds (under expected operations):

• the �elds of rational numbersQ, of real numbers R, of complex numbers C;

• for any �eldK, the �eld of rational fractionsK(X);

• for any prime p, the �eld with p-elements Fp ≃ Z/pZ;

• it is a theorem by Galois that for any prime power q = pk , there exists a unique
(up to isomorphism) �eld of order q.

1.1.3. Examples. Quaternions form a skew-�eld denoted byH.

¿e second list of examples is shorter. Of course there are other skew-�elds; but
they are fairly complicated objects. A whole book has been written on how to produce
skew-�elds1. Even the construction of a skew-�eld structure on Q9 takes a couple of
pages.

Hence ‘in nature’ only quaternions appear without too many technicalities. ¿ere
are two reasons.

1. In addition to the expected R and C, there is only one skew-�eld which is �nite-
dimensional over the reals.

¿eorem (Frobenius). LetA be a skew-�eld which is �nite-dimensional over the
reals. ¿en A ≃ R, C, orH.

We shall prove this theorem in § 6. It says that from the point of view of geometry,
the only natural non-commutative skew-�eld is the one found by Hamilton.

2. Skew-�elds do not arise at the �nite level.

¿eorem (Wedderburn). Every �nite skew-�eld is actually commutative.

We shall not prove the latter. It says that from the point of view of discrete math-
ematics, the only natural skew-�elds are commutative, and those found byGalois.

1Cohn, P., Skew �elds, theory of general division rings, Encyclopedia of Mathematics and its Applications,
vol. 57, Cambridge University Press, 1977
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¿ese explain why if you want another skew-�eld than the quaternions, you have to
leave ‘basic’mathematics. ¿is is another indication that quaternions form a particularly
robust structure, one which has to be investigated at least once in the course of your
mathematical studies.

Vector spaces over skew-�elds

If K is a skew-�eld, one can de�ne le -vector spaces over K by the usual de�nition,
which does not require commutativity.

Elementary linear algebra can be carried, and there still is dimension theory (ex-
istence of bases, well-de�nedness of the dimension). Of course other tools such as the
determinant are lost.

One can also de�ne right-vector spaces, letting scalars act from the right. In the
commutative case, a le - and right-structure coincide; not so ifK is a skew-�eld, because
λ ⋅ (µ ⋅ x) = (λµ) ⋅ x need not equal (x ⋅ µ) ⋅ λ = x ⋅ (µλ). So when V is a le - and right-
vector space overK, the two linear structures can disagree strongly.

1.1.4. Remark. Le - and right-dimension theories need not agree. § 5.9 of Cohn’s book
contains the following result solving an old question by E. Artin.

¿eorem (Schoe�eld, 1985). Let λ, ρ be two cardinals, �nite or in�nite, but both > 1.
¿en there exist skew-�elds K1 < K2 such that the le -dimension of K2 over K1 is λ
while its right-dimension is ρ.

(Nothing such can happen ifK1 is commutative.)

All this shows that general skew-�eld theory is complicated beyond reason; we shall
focus on quaternions and not discuss other skew-�elds.

1.2 Algebras over �elds; three lemmas
Hopefully the following is familiar as well.

1.2.1. De�nition. LetK be a (commutative) �eld. An algebra overK is aK-vector space
A equipped with an inner bilinear map A × A → A. Its dimension is its dimension as
K-vector space, denoted by dimKA.

Be careful that a ‘dot product’, e.g.Rn ×Rn → R, does notmakeRn into aR-algebra:
the bilinear map must take values in A, not inK.

1.2.2. Remark. In this general de�nition,A is not assumed to be commutative nor even
associative (see remark 1.2.5 below).

Only commutative �elds have non-trivial algebras

¿e de�nition of an algebra may look too narrow as we restricted ourselves to a com-
mutative base �eld. Here is why.

1.2.3. Lemma (proper skew-�elds have no algebras). If K is a skew-�eld admitting a
K-algebra with non-zero multiplication, thenK is actually commutative.

Proof. Suppose thatK is any skew-�eld, and that the product map onA is non-trivial.
Let λ, µ ∈ K and a1 , a2 ∈ A. For enhanced clarity we denote by λµ the �eld product,
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by λ ⋅ a the scalar action, and by a1 ∗ a2 the inner algebra product.
Since the productmap onA is non-trivial, wemay assume a1∗a2 ≠ 0. Computing

with this pair one has for any λ, µ ∈ K:

(λµ) ⋅ (a1 ∗ a2) = λ ⋅ (µ ⋅ (a1 ∗ a2) (def. of the scalar action)
= λ ⋅ ((µ ⋅ a1) ∗ a2) (le -linearity of ∗)
= (µ ⋅ a1) ∗ (λ ⋅ a2) (right-linearity of ∗)
= µ ⋅ (a1 ∗ (λ ⋅ a2)) (le -linearity of ∗)
= µ ⋅ (λ ⋅ (a1 ∗ a2)) (right-linearity of ∗)
= (µλ) ⋅ (a1 ∗ a2) (def. of the scalar action).

¿erefore λµ = µλ for any λ and µ, which is commutativity ofK.

Representation of associative, unital algebras

During undergraduate years, one tends to focus on ‘associative’ structures.

1.2.4. De�nition. Let A be aK-algebra.

• A is associative if its inner productA×A→ A is associative, viz. satis�es the axiom
(∀a, b, c ∈ A)[a(bc) = (ab)c].

• A is unital if there is an identity element 1A, viz. with (∀a ∈ A)(a ⋅ 1A = 1A ⋅a = a).

1.2.5. Remark. Associativity is not always assumed in mathematics. A LieK-algebra is
a certain form of K-algebra which is not associative. One hundred � y years a er the
introduction of continuous transformation groups (in modern terms: Lie groups), the
central role of Lie algebras in mathematics cannot be denied.

For the moment you know only one Lie algebra, without knowing it is one: (R3 ,×),
where × is the cross/wedge-product with de�nition:

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
×
⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠
=
⎛
⎜
⎝

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎞
⎟
⎠
.

¿e class focuses on associative algebras; we shall come near Lie algebras when ex-
ploring geometric aspects in § 8.

1.2.6. Example. ¿e set Mn(K) of n × n-matrices over K (more intrinsically, the set
EndK(V) ofK-endomorphisms of aK-vector space V ) is an associativeK-algebra.

Indeed, matrix multiplication (resp. composition of functions) is associative and bi-
linear. ¿ere is an identity element, namely In (resp. Id).

¿e matrix example is typical by the following crucial representation result.

1.2.7. ¿eorem (Wedderburn’s representation theorem). Every associative, unital K-
algebra A can be represented as a subalgebra of EndK(V) for some vector space V.

Proof. LetV be the underlying vector space ofA (i.e. when talking aboutV we simply
forget that there was a multiplication).
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For a ∈ A consider the le -mutiplication map:

λa ∶ V → V .
x ↦ a ⋅ x

¿is is aK-linear map, in symbols λa ∈ EndK(V).
Now consider the le -representation:

Λ∶ A → EndK(V).
a ↦ λa

Quite interestingly, one has Λ(a + b) = Λ(a) + Λ(b). Also Λ(1A) = IdV . Moreover,
for any x ∈ V , one �nds by associativity:

(Λ(a) ○ Λ(b))(x) = λa(λb(x))
= λa(b ⋅ x)
= a ⋅ (b ⋅ x)
= (a ⋅ b) ⋅ x
= λa⋅b(x)
= (Λ(a ⋅ b))(x).

So as functions, Λ(a ⋅b) = Λ(a)○Λ(b) and therefore Λ∶A→ EndK(V) is a morphism
ofK-algebras.

Finally, Λ is injective: we simply prove ker Λ = {0}. Indeed if a ∈ ker Λ then
λa = 0, so a = a ⋅ 1A = λa(1A) = 0. So the le -regular representation (‘action of A on
itself from the le ’) injects A into EndK(V) asK-algebras, where V is the underlying
vector space.

1.2.8. Remarks.

• ¿is is another instance of an idea also present in ‘Cayley’s theorem’ (abstract
groups embed into symmetric groups): the regular representation, obtained by
letting a structure act on itself, is faithful. (¿is also underlies the Yoneda embed-
ding in category theory.)

• ¿is theorem of great historical signi�cance reduced the growing catalogue of so-
called ‘hypercomplex number systems’ (viz. real associative algebras) to one clear
theory: matrix algebra.
Apparently not everyone is aware of Wedderburn’s theorem: on wikipedia there
are pages for: split complex numbers, split quaternions, bi-quaternions, coqua-
ternions, tessarines, . . .All actually represent as realmatrices and should be treated
as such.

¿e central embedding

1.2.9. De�nition. Let K be a �eld and A be an associative algebra. ¿e centre of A is
Z(A) = {a ∈ A ∶ (∀x ∈ A)(a ⋅ x = x ⋅ a)}.

¿e centre (of an associative algebra) is a subalgebra, and is commutative. Our last
lemma explains the position of the base �eld in an associative, unital algebra: in the
centre.
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1.2.10. Lemma (central embedding of the base �eld). LetK be a commutative �eld. Let
A be an associative, unitalK-algebra. ¿en up to isomorphism,K ≤ Z(A).

Proof. Consider the map:
Λ∶ K → A

λ ↦ λ ⋅ 1A
and let K′ be its image. It is easy to see that Λ∶K ≃ K′ is a �eld isomorphism. So we
may supposeK′ = K, so thatK ≤ A. As a matter of fact since 1A is central and Z(A) is
a vectorK-subspace ofA, this givesK ≤ Z(A). ¿e proof used associativity freely.

1.2.11. Remark. ¿is need not be true if A has no identity element, or if A is not asso-
ciative.

As a form of converse to lemma 1.2.10, we make a simple observation.

1.2.12. Observation. Suppose A is an associative, unital algebra and L ≤ A is a subal-
gebra which happens to be a skew-�eld.

• ¿en A is an L-vector space.

• In general A need not be an L-algebra. (Typically C ≤ H butH is no C-algebra.)
However, if L ≤ Z(A), then A is an L-algebra.

1.3 Exercises
1.3.1. Exercise. LetK be a skew-�eld. Prove that its centre Z(K) is a commutative sub�eld
ofK, and thatK is an associative Z(K)-algebra.

1.3.2. Exercise. Let K be any �eld and A be a �nite-dimensional, associative K-algebra.
Prove that A is a skew-�eld i� it is a domain.

2 ¿e real and complex �elds
Historically the terminology of ‘real’ and ‘imaginary’ numbers goes back to Descartes;
only calling the latter ‘complex numbers’ is due to Gauß. (We believe that none of these
is good terminology.)

¿emain contents of this lecture should be familiar. Howeverwe shallmake a couple
of additions to the basic high school material.

• One can work over other �elds than R, the so-called ‘real closed �elds’ of de�ni-
tion 2.1.1. (¿e course can be followed with only R in mind.)

• ¿e formalisation of C as a 2-dimensional algebra over R is better understood
with the tools of linear algebra (proposition 2.2.2).

• In particular, and in accordancewithWedderburn’s representation theorem, com-
plex numbers can be viewed as 2 × 2 matrices over R (proposition 2.2.5).

• ¿is in turn gives rise to an isomorphism between the 1-sphere S1 and the special
orthogonal group SO2(R), �nally explaining the polar decomposition c = re i t
without refering to function ‘e i t ’.
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2.1 Real numbers
In this class we admit basic properties of the real numbers. We aimneither at describing,
nor at formalising them. Perhaps you already know some ‘constructions’ of real numbers
(viz. formalisations from other mathematical objects that one would regard as prior,
more elementary, or more reliable). ¿ere exist around 20 di�erent ‘constructions’ in
the literature.2

One may also regard R as a fundamental object, in which case ‘constructing’ it is
a very immodest waste of time: there is no need to construct what enjoys su�cient
uniqueness to be canonical, hence intuitively universal, hence philosophically safe.

¿e course never uses the property characterisingR up to isomorphism, viz. order-
completeness. Most of the class applies to other �elds with the same algebraic properties
as R.

2.1.1. De�nition. A real closed �eld is an ordered �eld (R;+, ⋅, <) such that:

• the non-negative numbers are exactly the squares:

(∀x ∈ R)[x ≥ 0↔ (∃y ∈ R)(x = y2)];

• every odd degree polynomial has a root: for each odd n,

(∀a0 , . . . , an ∈ R)[an ≠ 0→ (∃x ∈ R)(anxn + ⋅ ⋅ ⋅ + a0 = 0)].

2.1.2. Remark. ¿ere are other equivalent de�nitions in the literature; in any case:

• R is real closed;

• every real closed �eld has characteristic 0, since it is ordered;

• R ∩Q is real closed, but not isomorphic to R by a cardinality argument;

• there exist real closed �elds which do not embed into R, because they violate
‘archimedianity’ (in modern parlance, co�nality of the integers): they have in�n-
itesimals, while R has none.

Here and there one could relax real closedness to weaker algebraic constraints; large
parts of the whole course would still hold.

2.2 Complex numbers
It is hard for us to imagine that the complex numberswere controversial once; as amatter
of fact among their �rst name was ‘impossible numbers’. Consequently need was early
felt for a proof that using them introduces no contradiction (it is a pity wemay not dwell
on logic in this class), a problem one may consider solved around 1800—if the reals are
granted then complex numbers are plane numbers, viz. a certain algebra on R2.

In modern language, the well-known interpretation is as follows.

2.2.1. De�nition. Equip the R-vector space R2 with the operation:

(a1 , a2) ⋅ (b1 , b2) ∶= (a1b1 − a2b2 , a1b2 + a2b1).

Let C be the resulting structure.
2Weiss, I., ‘¿e real numbers—a survey of constructions’, Rocky Mountain J. Math. 45(3), 737–762, 2015
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2.2.2. Proposition. C is a 2-dimensional associative R-algebra with multiplicative iden-
tity (1, 0), and actually a (commutative) �eld.

Letting i = (0, 1) one sees that C = Vect(1, i) = R[i]; remember that the latter
denotes the R-algebra generated by i. Since i2 = (−1, 0) = −(1, 0), one sometimes
writes C = R[

√
−1].

Proof. ¿ere are a couple of things to check.

• Multiplication is bilinear. Indeed it is bi-additive, and compatible with the scalar
action in either variable.

• Le - and right-‘distributivity’ are special cases of bilinearity.

• Multiplication is associative, viz. (∀c1 , c2 , c3 ∈ C)[(c1 ⋅ (c2 ⋅ c3) = (c1 ⋅ c2) ⋅ c3)].
One should not rush to a computation. Sincemultiplication is bilinear, it su�ces
to take c1 , c2 , c3 all in the basis {1, i}. But 1 never violates the associativity axiom
so it su�ces to deal with c1 = c2 = c3 = i; it is now trivial.

• Multiplication is commutative, viz. (∀c1 , c2 ∈ C)(c1 ⋅ c2 = c2 ⋅ c1).
Same argument: it is enough to work with c1 , c2 ∈ {1, i}. But since 1 is central
this is obvious.

• (1, 0) is a multiplicative identity (obvious);

• Every c ≠ (0, 0) has a (two-sided) inverse.
¿is is interesting. De�ne the conjugate of c = (a, b) ∈ R2 as:

c∗ = (a,−b).

One sees that ∗ is an involutive automorphism of the unital R-algebra C, viz. it
preserves addition, multiplication, �xes R ⋅ 1 pointwise, and satis�es c∗∗ = c.
In the above notation, c ⋅ c∗ = a2 + b2 ∈ R, and if a2 + b2 ≠ 0 then:

c−1 ∶= 1
cc∗

⋅ c∗

is a two-sided inverse for c.

2.2.3. Remark. To obtain a commutative �eld we only used that:

• R is a commutative �eld;

• InR, (a ≠ 0 or b ≠ 0) implies (a2 + b2 ≠ 0), viz. −1 is not a square, or alternatively
X2 + 1 is irreducible in R[X].

Hence the construction of R[i] goes well beyond the case of R, or even of real closed
�elds: one needs only some algebraic information, and no analysis at all. We do not even
need to take square roots.

We shall return to the idea of ‘doubling’ R ↝ C with the Cayley-Dickson construc-
tion in § 5.

By central embedding of the base �eld (obtained in lemma 1.2.10), the �eldR embeds
into Z(C) = C. Reading the proof again, and since C is an associative R-algebra with
identity (1, 0), we get the following.
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2.2.4. Remark. Wemay, and will, view R as the proper subring {(a, 0) ∶ a ∈ R} < C.

Matrix representation and polar decomposition

We now derive a matrix representation of complex numbers as elements ofM2(R), and
apply it to the polar representation. Be careful that we do not measure angles.

2.2.5. Proposition (matrix representation of the complex numbers). ¿e set

M = {(a −b
b a ) ∶ (a, b) ∈ R2}

is a 2-dimensional R-algebra, andM ≃ C as such.

Proof. ¿is is an instance of Wedderburn’s representation theorem, lemma 1.2.7. Un-
derstanding its proof, we see that an isomorphismwill be given by c ↦MatB λc , where
B is a real basis of C and λc is le -multiplication by c ∈ C.

Remember that through central embedding we identi�ed any real number a with
the complex number (a, 0). As a real vector space,C has basisB = (1, i). Say c = a+ib.
¿en:

• the image of 1 is λc(1) = c = a + ib, with coordinates (
a
b) in B;

• the image of i is λc(i) = c ⋅ i = ai − b, with coordinates (
−b
a ) in B.

¿erefore,

MatB λc = (a −b
b a ) .

Wedderburn’s theorem predicts that taking c = (a, b) to this matrix is an iso-
morphism of R-algebras. (¿e reader with a doubt should check that it is the case
indeed.)

We build on this isomorphism to give a second presentation of complex numbers.

• Recall that SO2(R), given by:

SO2(R) = {M ∈ GL2(R) ∶ M ⋅M t = M t ⋅M = I2},

is a subgroup of GL2(R). (We shall return to orthogonal groups in § 9, when we
deal with geometric aspects of quaternions.)

• On the other hand, the unit circle is S1 = {c ∈ C× ∶ cc∗ = 1}, clearly a subgroup.

2.2.6. Lemma. As groups, S1 ≃ SO2(R).

Proof. For c ∈ C let ∣c∣ =
√
c∗c. If c = a + bi, then ∣c∣ =

√
a2 + b2: therefore ∣ ⋅ ∣ is the

standard Euclidean norm on the real vector space C ≃ R2.
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Now since ∣ ⋅ ∣ is multiplicative, one has for c, x ∈ C:

∣λc(x)∣ = ∣c ⋅ x∣ = ∣c∣ ⋅ ∣x∣.

In particular, λc is a linear isometry ofR2 i� ∣c∣ = 1. ¿is rephrases into: λc ∈ SO2(R) i�
c ∈ S1. ¿e isomorphism of proposition 2.2.5 thus restricts to the desired isomorphism.

2.2.7. Corollary (polar decomposition inC×). ¿emultiplicative groupC× = (C∖{0}, ⋅)
is isomorphic to R>0 × SO2(R).

Proof. ¿emap:
C× → R>0 × SO2(R)
c ↦ (∣c∣, c

∣c∣)

is now an isomorphism.

2.2.8. Remarks.

• ForR an arbitrary real closed �eld, let C = R[i] and S 1 = {c ∈ C ∶ ∣c∣ = 1}. ¿en
still: S 1 ≃ SO2(R) (with the matrix de�nition) and C∗ ≃ R>0 × S 1.
(True in any �eld where every sum of nonzero squares is a nonzero square. ¿is is
needed to take

√
cc∗ in corollary 2.2.7; such a �eld is called a Pythagorean �eld.)

• Actually lemma 2.2.6 and corollary 2.2.7 even give isomorphisms of topological
groups. Since every ordering induces a topology, this makes sense and remains
true over an arbitrary real closed �eldR.

• Usingmore than the algebraic structure onR, namely trigonometry, onemay also
represent any element of S1 as e i t with t ∈ R/2πZ. ¿is is known as measuring
angles. But to do this one essentially needs the complex exponential map:

R → S1
t ↦ e i t .

¿is function is speci�c to R and no such miraculous morphism is present in an
arbitrary real closed �eld. For instance if R = R ∩ Q, the complex exponential
does not restrict as a mapR→ S 1.

• I do not know what is the class of those real closed �eldsR admitting a continu-
ous, surjective homomorphismR→ SO2(R).

• In short, ‘rotation terms’ in SO2(R) ≃ S 1 need not be measurable by numbers of
the base �eld R. Confusion between ‘linear numbers’ r ∈ R and ‘circular num-
bers’ c ∈ S 1 is sadly common. But measuring angles is possible in R by miracle.

We shall comment further on angle measurements (and how to avoid them) in § 9.
Matrix representations of quaternions, with a polar decomposition, will be given in § 4.3.
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2.3 Exercises
2.3.1. Exercise. LetK be a �eld in which for any x, 1+ x2 is a square. Prove that any sum
of squares is a square.

Solution. A mere induction. It su�ces to treat the case n = 2. Now a2 + b2 = a2(1 +
(a−1b)2 is a product of squares, hence a square.

2.3.2. Exercise. Construct di�erent orderings on the �eldQ(X).

Solution. For any transcendental real number α, we can order K by letting X = α. We
can also orderK byQ < X.

2.3.3. Exercise (the formally real �elds are the orderable �elds).

De�nition. A �eld is formally real if no sum of non-zero squares equals 0.
¿e purpose of this exercise is to prove the following.

¿eorem (Artin). A �eld is formally real i� it is orderable.

1. Prove that a �eld is formally real i� −1 is not a sum of squares. Deduce that every
formally real �eld has characteristic 0 (of course the converse fails: C).

2. A positive cone is a subset P ⊆ K such that:

• −1 ∉ P;
• (∀x , y ∈ P)(x + y ∈ P ∧ x ⋅ y ∈ P);
• (∀x ∈ K)(x2 ∈ P).

Prove that a positive cone is closed under inversion of non-zero elements, and con-
tains the natural integers.

3. Prove that an ordering onK is the same as a maximal positive cone, or as a positive
cone P with (∀x ∈ K)(x ∈ P ∨ −x ∈ P).

4. Deduce that every formally real �eld can be ordered.

Solution.

1. Trivial: ∑ a2i = −1 i� 12 + ∑ a2i = 0. In particular, if K is formally real, then
1 + ⋅ + 1 ≠ 0, soK does not have positive characteristic.

2. Let a ∈ P be nonzero. ¿en a−1 = a ⋅ (a−1)2 ∈ P. Moreover 02 = 0 and 12 = 1 are
in P; from there one uses addition to get N ⊆ P.

3. Suppose ≤ is an ordering on K and let P = {x ∈ K ∶ x ≥ 0}. ¿en P is a positive
cone and we contend it is maximal as such. Indeed, if P ⊂ P′ is another positive
cone and x ∈ P′ ∖ P, then x < 0. ¿en −x > 0 so −x ∈ P ⊆ P′. But then
−1 = −x ⋅ 1x ∈ P

′, a contradiction.
Now suppose P is amaximal positive cone. Let x ∈ K such that (x ∉ P)∧(−x ∉ P);
we prove a contradiction. Let P′ = {a + bx ∶ (a, b) ∈ P2}, which contains P.
Actually since 0, 1 ∈ P one has in x ∈ P′, so P′ strictly contains P. ¿e set P′ is
clearly stable under +. It also is under ⋅, since in obvious notation:

(a1 + b1x)(a2 + b2x) = (a1a2 + b1b2x2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈P

+(a1b2 + a2b1)x .

12



If−1 ∉ P′ then P′ is a positive cone strictly extending P: a contradiction. ¿erefore
there are a, b ∈ Pwith a+bx = −1, and clearly b ≠ 0. But then,−x = (1+a)⋅b−1 ∈ P,
a contradiction.

Finally suppose P is a positive cone satisfying (∀x ∈ K)(x ∈ P ∨ −x ∈ P). Write
a ≤ b if b−a ∈ P. By assumption on P, the ordering is total. It clearly is compatible
with + and ⋅: therefore, a �eld ordering.

4. Let K be formally real and P = {∑n
i=1 a2i ∶ n ∈ N, a1 , . . . , an ∈ Kn}. ¿is is stable

under addition, and also under product. Moreover it contains all squares, but not
−1 as otherwiseK is not formally real.

Hence there exists a positive cone; using Zorn’ lemma, take a maximal one. It is
an ordering onK.

2.3.4. Exercise. Prove that up to isomorphism there are exactly three associative, unital,
2-dimensional R-algebras:

R[i] with i2 = −1, R[ j] with j2 = 1, R[ε] with ε2 = 0.

Which properties of R are needed?

Solution. Let A be such an algebra; use central embedding to assume R < A. Let
α ∈ A∖R. ¿en 1, α, α2 cannot be linearly independent, so there is a non-trivial relation
a0 + a1α + a2α2 = 0. Of course a2 ≠ 0, since otherwise α ∈ R. Since R is a �eld, we may
assume a2 = 1. ¿erefore α satis�es an equation: α2 + a1α + a0 = 0. Up to considering
α − a1

2 , we may assume a1 = 0.
So there is α ∈ A ∖ R such that α2 + a0 = 0. ¿ere are three cases. If a0 > 0, up to

considering 1
√
a0
α we may suppose a0 = 1 and reach case i. If a0 < 0, same reasoning

and reach case j. If a0 = 0 this is case ε.

2.3.5. Exercise. Represent R[ j] and R[ε] of exercise 2.3.4 as matrix algebras. Also de-
termine their multiplicative groups.

(¿e multiplicative group of an associative, unital algebra A is A× = {x ∈ A ∶ (∃y ∈
A)(xy = yx = 1)}, in general much smaller than A ∖ {0}).

3 Two limitation theorems
¿is lecture could also be read a er § 4; we prefer to give it before, as it motivates
Hamilton’s construction.

Can one �nd �elds extending C? Yes, e.g. C(X). But can one �nd �elds extending
C and �nite-dimensional overR? A er understanding irreducible polynomials ofR[X]
(corollary 3.1.3), we run into two obstructions:

1. a �nite-dimensional R-algebra which is a �eld must be isomorphic to R or C
(theorem 3.2.2);

2. no R-algebra structure on R3 is a domain (theorem 3.3.1).

¿ese imply that in order to �nd a �nite-dimensional skew-�eld overR, one must drop
commutativity and use dimension at least 4.

13



3.1 Real and complex polynomials
Complex numbers emerged naturally in the search for polynomial equations: indeed
they form the algebraic closure of the reals. More intrinscally,C is an algebraically closed
�eld, one where every non-constant polynomial has a root (equivalently, one where
every polynomial of degree d has d roots, counting multiplicities).

3.1.1.¿eorem (‘D’Alembert-Gauß theorem’; �rst full proof by Argand, 1806). C = R[i]
is algebraically closed.

3.1.2. Remarks.

• ¿eproof uses a littleGalois theory, forwhichwemay refer to Serge Lang’sAlgebra
(Chap. vi, §2). All we need is that R is a real closed �eld. Topological proofs (for
instance using real, or even complex analysis), however elegant, tend to hide this.

• A remarkable form of converse is the Artin-Schreier theorem: if K is any (com-
mutative) �eld such that [K ∶ K] < ∞, then K is either algebraically closed (in
which case K = K) or real closed (in which case K = K[i]). ¿is is remarkable
since there are no assumptions on the characteristic!

¿e proof of the Artin-Schreier theorem involves even more Galois theory and is
de�nitely not in the scope of this class.

As a consequence of theorem 3.1.1, irreducible polynomials of C[X] have degree 1.
One can also study R[X].

3.1.3. Corollary. ¿e irreducible polynomials of R[X] are exactly:

• all polynomials of degree 1;

• those polynomials of degree 2 with a negative discriminant.

Proof. One direction is obvious. For the converse, recall that whenever K is a �eld,
the polynomial ringK[X] allows unique Euclidean division (the degree being the de-
creasing function). As a corollary to uniqueness, if K ⊆ L is a �eld extension and
P,Q ∈ K[X] are such that Q∣P in L[X], then Q∣P inK[X] already. Bear this in mind.

Let P ∈ R[X] be irreducible; we may suppose that its leading coe�cient is 1. In
C = R[i], which is algebraically closed, write P = ∏(X − αk).

If one of the roots, say α1, lies in R, then X − α1 divides P in C[X], hence also in
R[X]: by irreducibility there, P = X − α1. So we may assume that P has no real root.

¿e conjugation map ∗ (in abstract terms, the non-trivial element in the Galois
group Gal(C/R) ≃ Z/2Z) �xes the elements of R and only them; hence for any root,
one has (P(αk))∗ = P(α∗k ) = 0 so α∗k ≠ αk is another root of P. Observe how Q =
(X −αk)(X −α∗k ) = X −(αk +α∗k )X +αkα∗k divides P inC[X], and has coe�cients in
the �xed �eld of ∗, namely R. Here again, Q divides P in R[X] and by irreducibility,
P = Q has degree 2. If the discriminant were a square, we would �nd a real root: it is
therefore negative.

3.1.4. Remark. ¿e corollary vacuously holds over any real closed �eld; it essentially
states that R is a real closed �eld.
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3.2 No more commutative �elds are �nite-dimensional over R
For the next theorem one needs a simple notion, which builds on principality of K[X]
wheneverK is a �eld.

3.2.1. De�nition. Let K be a �eld, A be an associative, unital K-algebra, and α ∈ A be
such that the subalgebraK[α] is �nite-dimensional overK. ¿en the (unique) generator
of the ideal {P ∈ K[X] ∶ P(α) = 0} with leading coe�cient 1 is called the minimal
polynomial of α overK, and denoted by MinαK.

¿e condition on α obviously holds ifA itself is �nite-dimensional overK. We prove
that the only commutative �elds which are �nite-dimensional over R are R and C.

3.2.2. ¿eorem. Let A be a �nite-dimensional R-algebra. If A is a commutative �eld,
then A = R or A ≃ C.

Proof. Notice that A is associative and unital, being a �eld. By central embedding
(lemma 1.2.10), we may identify R with R ⋅ 1A, so that R ≤ A is now a �eld extension.
Of course we may suppose dimRA > 1, or we are done.

Take any α ∈ A ∖ R and let P(X) = MinαR(X) be its minimal polynomial with
coe�cients in R. Since A is a domain, P must be irreducible. Indeed, suppose P =
Q1Q2. Since A is a domain, Q1(α)Q2(α) = 0 implies that one of Q1 ,Q2 vanishes at α.
So by minimality one of them is already divisible by P, hence equal to P. (Same proof,
fancier language: A ≃ K[X]/(P) is a domain so (P) is a prime ideal in the factorial
domainK[X]; hence P is irreducible inK[X].)

By the classi�cation of irreducible polynomials in R[X] (corollary 3.1.3), one has
deg P ≤ 2; of course deg P ≠ 1 since otherwise α ∈ R. So we may write P(X) =
X2 + pX + q. Up to replacing α by α + p

2 , we may assume α
2 = r ∈ R, actually clearly

in R≤0; up to rescaling we may assume α2 = −1. ¿en A ≥ R[α] ≃ R[i].
So we found an isomorphic copy of C = R[i] inside A. ¿is makes A a C-vector

space, but here there is more (you may wish to read observation 1.2.12 again): since A
is commutative,A is actually an associativeC-algebra. Now if β ∈ A thenMinβC ∈ C[X]
is irreducible, so by algebraic closedness of C its degree is 1: hence β ∈ C, proving
A = C.

3.2.3. Remarks.

• In particular, there is no �eld extending C in a �nite-dimensional way (of course
one can always form transcendental extensions C(X), but this has in�nite linear
dimension over C): which amounts to saying that C is algebraically closed.

¿eorem 3.2.2 is stronger because it supposes only an R-algebra structure, not a
C-algebra structure.

• Return to the moment we turned A into a C-algebra (and to observation 1.2.12).
For right-linearity of ⋅A over C, commutativity of A is required.

¿e argument does not work if A is merely assumed to be a skew-�eld. And in-
deed, we shall construct the skew-�eldH ≠ R,C.

¿erefore if one wants another �nite-dimensional real algebra which is a skew-�eld,
one has to drop commutativity.
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3.3 Can’t multiply triplets
¿e following explains why Hamilton could not �nd a �eld structure on R3.

3.3.1. ¿eorem. No 3-dimensional, associative R-algebra is a domain.

Proof. Let A be such an algebra and α ∈ A ∖ R. Let P = MinαR, which has degree 2
or 3. Since A is a domain, P is irreducible in R[X]; since R is real closed and always
by corollary 3.1.3, P has degree 2. Now R[α] is a commutative domain and a �nite-
dimensional R-algebra: it is a commutative �eld, and since α ∉ R we �nd R[α] ≃ C
by theorem 3.2.2.

Hence A can be seen as a vector space over C, and has a dimension as such,
dimCA, which is an integer. ¿en dimRA = 2 dimCA must be even, a contradic-
tion.

3.3.2. Remarks.

• In the proof A is turned into a C-vector space, but not into an associative C-
algebra: one would need commutativity of A, or at least C ≤ Z(A) for this to
hold. We do not assume it. ¿e same situation will happen with quaternions.

• One can classify associative, unital R-algebras of dimension 3 : exercise 3.4.1

¿e conclusion of theorem 3.3.1 is that in order to retrieve a domain (equivalently, a
skew-�eld: see exercise 1.3.2) one has to look in dimension at least 4.

3.4 Exercises
3.4.1. Exercise (tedious but instructive). Classify associative, unitalR-algebras of dimen-
sion 3. You may proceed as follows:

1. If there is an element of degree 3, then A is commutative. Classify these up to iso-
morphism.

2. Otherwise choose a ∈ A ∖R and b ∈ A ∖R[a] such that a2 , b2 ∈ {−1, 0, 1}; prove
that −1 is not possible, then �nish classi�cation by hand.

4 Quaternions: a �rst algebraic study
We opt for non-commutativity in dimension 4 and construct a skew-�eld structure on
R4 (§ 4.1); pay attention to quaternion conjugation and norm (§ 4.2). We then move to
geometric aspects. ¿e 3-dimensional sphere S3 can be seen as a Lie group. One can
represent quaternions both as real or complex matrices (§ 4.3), giving rise to a polar
decomposition.
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4.1 Constructing the quaternions
4.1.1. De�nition (Hamilton, 1843). LetH = R4 with basis (1, i , j, k) and for multiplica-
tion the unique bilinear map extending:

↱ 1 i j k
1 1 i j k
i i −1 k − j
j j −k −1 i
k k j −i −1

(Symbol ↱ in the table tells you in which order you must multiply. As the table is not
symmetric, the order does matter: multiplication is not commutative.)

4.1.2. Proposition. H is an associativeR-algebra with multiplicative identity 1 and centre
Z(H) = R (through central embedding).

(It will remain to prove that it is a skew-�eld, in corollary 4.2.4.)

Proof. Bilinearity is by construction, and le - and right-distributivity immediately
follow. Clearly 1 is the multiplicative identity. So we only have to prove associativity.
But by bilinearity again, it su�ces to check it for basic relations, i.e. for triples from
the table. Since 1 cannot violate associativity, it is enough to check a(bc) = (ab)c for
elements a, b, c ∈ {i , j, k}; a priori there still are 33 = 27 routine veri�cations.

Let us make this a bit faster. Consider the cycle σ :

σ
ij

k

extended linearly: this is an automorphism of order 3 of the R-vector spaceH. Notice
that σ preserves the multiplication table, viz. σ(ab) = σ(a)σ(b) for a, b, c ∈ {i , j, k}.
So σ is an automorphism of the (not yet associative) R-algebra H. Hence we may
assume a = i; there are only 27

3 = 9 remaining veri�cations.
Now let τ do τ(i) = −i, τ( j) = k and τ(k) = j. Here again τ is an automorphism

ofH as an algebra; since −1 is central, the only remaining non-trivial veri�cation is:

i( jk) = i2 = −1 = k2 = (i j)k,

and associativity holds, proving thatH is an associative, unital R-algebra.
In particular we may embed R ↪ Z(H) (see lemma 1.2.10) and now consider

R ≤ Z(H). ¿e converse inclusion is seen in coordinates: let q = a+bi+c j+dk ∈ Z(H);
we prove q ∈ R. By assumption qi = iq, with j-coordinate d = −d, viz. d = 0. But σ
is an automorphism of H, so it must stabilise Z(H). ¿erefore b = c = 0 as well and
q ∈ R. (It is also possible to take the k-coordinate in qi = iq, then also use equality
q j = jq.)

4.1.3. Remarks.
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• Be extremely careful that H is not a C-algebra! Otherwise by central embedding
(lemma 1.2.10) we would have C ↪ Z(H) ≃ R, a contradiction. However, H is a
C-vector space.
To feel the di�erence, just see that the product is not C-bilinear. Indeed,

j ⋅ (i ⋅ j) = j ⋅ k = i ≠ − i = i ⋅ −1 = i ⋅ ( j ⋅ j),

so denoting by µ the multiplication we �nd µ( j, i ⋅ j) ≠ i ⋅ µ( j, j).

• For the construction of the associative algebra, all we need fromR is to be a �eld.
Notice that in characteristic 2 the resulting associative algebra is commutative.

• It is an interesting property that R can be recovered algebraically fromH.¿is is
not the case in C. Logicians say that R is de�nable in (H;+, ⋅) but not in (C;+, ⋅).

4.1.4. Example. Let M = H2, which is both a le - and right- H-module. Let u = (1, j)
and v = (i , k). ¿en inM as a le -module, they are linearly dependent through v = i ⋅u;
inM as a right-module, they are linearly independent since j ⋅ i ≠ k.

4.2 ¿e conjugate and norm of a quaternion
4.2.1. De�nition. Let q = a + bi + c j + dk with a, b, c, d , ∈ R be a quaternion.

• ¿e conjugate of q is q∗ = a − bi − c j − dk.

• ¿e (number-theoretic) norm of q is N(q) = qq∗ = a2 + b2 + c2 + d2 ∈ R.

• ¿e (geometric) norm of q is ∥q∥ =
√
N(q).

4.2.2. Remarks.

• For conjugation, it is safe to use the same notation as for complex numbers: if one
embedsC intoH naturally, i.e. mapping iC to iH, then quaternionic ∗ extends the
complex one.

• Depending on the purpose, one may prefer to work with N(q) or ∥q∥. ¿e di�er-
ence is essentially cosmetic.

People in analysis or geometry will prefer ∥q∥, which coincides with the usual
Euclidean norm on R4 and satis�es the well-known triangle equality ∥q1 + q2∥ ≤
∥q1∥ + ∥q2∥.

4.2.3. Properties. ¿e map q ↦ q∗ is an additive, anti-multiplicative, involutive map,
viz.:

• (∀q ∈ H)(q∗∗ = q);

• (∀q1 , q2 ∈ H)((q1 + q2)∗ = q∗1 + q∗2 );

• (∀q1 , q2 ∈ H)((q1q2)∗ = q∗2 q∗1 ) (mind the reverse order).

Moreover, N(⋅) is multiplicative, and N(q) = 0 i� q = 0.

One sometimes calls ∗ an involutive anti-automorphism, or merely an involution of
the R-algebraH. We shall return to ∗-algebras in § 5.
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4.2.4. Corollary. H is a skew-�eld.

Proof. Let q ∈ H ∖ {0}. ¿en N(q) ∈ R ∖ {0}, so writing q′ = 1
N(q)q

∗ ∈ H makes
sense. ¿en it is readily seen that qq′ = q′q = 1, so q′ is a two-sided inverse for q.

4.2.5. Remarks.

• ¿is will hold over any real �eld (the proof does not require N(q) to be a square,
only a non-zero element).

• Notice that ±i ,± j,±k satisfy equation x2 + 1 = 0. ¿is does not contradict the fact
that H is a skew-�eld: one can bound the number of roots of a polynomial only
in a commutative domain.

We move to geometric aspects.

4.2.6. Corollary. ¿e 3-dimensional sphere S3 = {v ∈ R4 ∶ ∥v∥ = 1} (for the usual
Euclidean norm on R4) can be equipped with an ‘algebraic’ group structure, viz. a group
structure whose operation is given by polynomial functions in the coordinates.

We give a trivial proof through quaternions, without which the result is hard.

Proof. Recall that for q = a + bi + c j + dk one has N(q) = a2 + b2 + c2 + d2. So if one
seesH as the R-vector space R4 with the standard metric, then the quaternion sphere
S = {q ∈ H ∶ N(q) = 1} becomes the usual 3-dimensional hypersphere sitting inside
the 4-dimensional space, viz. S ≃ S3 ⊂ R4 (isometrically).

Now since the norm is multiplicative, S ≤ H× is a subgroup. Multiplication on
R4 ≃ H is clearly polynomial in the coordinates; we are done.

4.2.7. Remark. Over R this is possible only for S0 = {±1}, S1 (the circle), and S3.
Dropping associativity one may still do something with S7 (using octonions, see § 5.3).
¿is is all since deep results in di�erential geometry guarantee that over R, the spheres
R0 ,R1 ,R3 ,R7 are the only ones bearing a compatible algebraic structure.3.

¿is does not seem to be known over arbitrary real closed �elds, le alone real �elds
(the question may fail to make much sense over a fully arbitrary �eld).

4.3 Matrix representations and polar decomposition
We give twomatrix representations of the quaternion algebra. ¿e second is geometric-
ally important as it allows for a polar decomposition.

4.3.1. Proposition. As R-algebras,

H ≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎟
⎠
∶ (a, b, c, d) ∈ R4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

3A beautiful and almost elementary proof in even dimension, using the notion of homology,
can be found at http://www.raczar.es/webracz/ImageServlet?mod=publicaciones&subMod=
revistas&car=revista62&archivo=p075.pdf.
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Proof. ¿is is an instance of Wedderburn’s theorem, lemma 1.2.7. See H as an R-
vector space with basis B = (1, i , j, k). For any q ∈ H consider the le -multiplication
map λq(h) = qh, and write its matrix in B. It is an exercise.

4.3.2. Proposition. Denote by c ↦ c∗ the conjugation in C. ¿en as R-algebras,

H ≃ {(c1 −c∗2
c2 c∗1

) ∶ (c1 , c2) ∈ C2} .

Of course it is not an isomorphism ofC-algebras sinceH is not one as we noticed in
Remarks 4.1.3.

Proof. ¿is is more subtle, and important. Let C = R[i] ⊆ H. One may certainly
view H as a vector space over C, more speci�cally as a le -vector space, viz. for the
operation (c, q) ↦ c ⋅ q. Here le and right do matter since H is not commutative.
Fix q ∈ H. ¿en le -multiplication by q, viz. the map λq(x) = qx, is R-linear, but not
C-linear: for instance, λ j(i ⋅ 1) = ji = −k ≠ k = i ⋅ λ j(1).

One may be tempted to then consider right-multiplication by q, viz. the map
ρq(x) = xq. ¿en ρq is C-linear by associativity: indeed,

ρq(λ ⋅ x) = (λ ⋅ x) ⋅ q = λ(xq) = λ ⋅ ρq(x).

¿is would lure us into considering the representation q ↦ ρq ∈ M2(C). ¿e catch
is that qq′ maps to ρqq′ = ρq′ρq , so we shall not get a morphism of rings, merely an
anti-morphism.

Since using le -multiplications λq seems to be non-negociable, we start over again
by considering H as a right-vector space over C: now (c, q) = qc (no, there is no
inverse on the right: it would be meaningless at 0 and no longer additive; besides, C
is commutative). ¿is is not the same structure as its le -vector space structure since
i j ≠ ji.

So treat H as a right-C-vector space, with basis B̌ = (1, j). With respect to this
structure, le -multiplication by any q ∈ H is C-linear: by associativity of H. Now
compute that if q = c1 + jc2 with c1 = a1 + b1 i and c2 likewise in obvious notation:

λq( j) = (c1 + jc2) j
= (a1 + b1 i) j + j(a2 + b2 i) j
= a1 j + b1k − a2 + b2 i
= −(a2 − b2 i) + j(a1 − b1 i)
= −c∗2 + jc∗1 ,

so

MatB̌ λq = (c1 −c∗2
c2 c∗1

) .

¿e desired isomorphism is now obvious: let Λ(q) =MatB̌ λq .

4.3.3. Example. ¿ismust be understood before going any further. In the isomorphism
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above, one has:

1↦ (1 1) ; i ↦ (i −i) ; j ↦ ( −1
1 ) ; k ↦ ( i

−i ) .

A unitary isomorphism; the polar decomposition

Building on the matrix representation, we prove a quaternionic version of the polar de-
composition of non-zero complex numbers, corollary 2.2.7. ¿is requires leaving ortho-
gonal matrices and going to their complex analogues.

Recall that the unitary group of C over R (more precisely, with respect to complex
conjugation c ↦ c∗) is the group:

Un = Un(C, ∗) = {M ∈ GLn(C) ∶ M−t∗ = M}.

Being closed and bounded in GLn(C), it is a compact group, the complex analogue of
On(R). We then de�ne its normal subgroup:

SUn(C, ∗) = Un ∩ SLn(C).

4.3.4. ¿eorem (cf. lemma 2.2.6). ¿e quaternion sphere S = {q ∈ H ∶ N(q) = 1} is
isomorphic to the group SU2(C, ∗).

Proof. ¿is builds on the complex matrix representation of proposition 4.3.2. If q =
c1 + jc2 with c1 , c2 ∈ C, then:

Λ(q) =MatB̌ λq = (c1 −c∗2
c2 c∗1

) .

¿is matrix is in SU2(C, ∗) i� ∣c1∣2 + ∣c2∣2 = 1. On the other hand, writing c1 =
a1 + ib1 and c2 = a2 + b2 i in real coordinates, one �nds:

q = a1 + b1 i + a2 j − b2k,

whence N(q) = a21 + b21 + a22 + b22 = ∣c1∣2 + ∣c2∣2. So q has norm 1 i� ∣c1∣2 + ∣c2∣2 = 1.
Hence:

Λ∶ S → SU2(C, ∗)
q ↦ MatB̌ λq

is a group isomorphism.

4.3.5. Remark. In notation q = c1 + jc2 and Λ(q) = (c1 −c∗2
c2 c∗1

), one has:

Λ(q∗) = Λ(q)∗ ,

where the le star stands for quaternion conjugation and the right star for the Hermite-
symmetric/complex adjoint of a matrix.

Like in the complex case, we deduce a polar representation.

4.3.6. Corollary (cf. corollary 2.2.7). H× ≃ R>0 × SU2(C, ∗) as groups.
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4.3.7. Remarks.

• Here there is no temptation to ‘measure elements of SU2(C, ∗) by angles’; this is
meaningless (though precisely the theory of Euler angles).

• ¿is shows that the group H× has a non-abelian, simple factor. More generally,
Hua showed that in any non-commutative skew-�eldK, the multiplicative group
K× is non-soluble.

4.4 Exercises
4.4.1. Exercise. Return to the proof of proposition 4.1.2. Describe σ and τ geometrically,
viz. as transformations of Vect(i , j, k) ≃ R3.

4.4.2. Exercise. For q ∈ H compute: − 1
2 (q + iqi + jq j + kqk). Is there anything similar

in the complex case?

4.4.3. Exercise. Prove that the quaternionic conjugation q ↦ q∗ is de�nable in (H;+, ⋅).
Hint: �rst de�ne R, then de�ne Vect(i , j, k).

4.4.4. Exercise. Determine the set of solutions of q2 + 1 = 0.

Solution. Trivial but important. It is the set of those ‘purely imaginary’ quaternions
(viz. in Vect i , j, k) which have norm 1.

4.4.5. Exercise. For a ring R, its opposite ring Rop is the same underlying additive group
with op-multiplication de�ned by a ∗ b = b ⋅ a. In general there is no reason for R and Rop
to be isomorphic. Prove however thatH ≃ Hop.

5 Cayley-Dickson construction of the octonion algebra
¿e purpose of this lecture is to go beyond H and discover the non-associative algebra
of octonions O. It still has some decent algebraic properties. ¿e lecture can be read at
any point, or not at all.

Prepare to lose associativity; we retain unitality, but odd objects will appear. § 5.1 is a
double prologue: de�nitions in the non-associative case, and an alternative construction
of H, directly from the complex �eld (more honestly, from C with ∗). ¿is suggests a
general method which we investigate, the Cayley-Dickson construction, doing R ↝ C
and C ↝ H (§ 5.2). Some properties are transferable under ↝, which will reveal the
non-associative division algebra of octonions (§ 5.3).

¿is lecture is based on Baez’ wonderful exposition4. (Our notation is di�erent since
we prefer to write a ⋅ i than i ⋅ a. ¿is has drammatic consequences when de�ning non-
commutative multiplications.)

5.1 Double prologue: non-associative structures, andH from C
¿e two introductory paragraphs are not related: there is one theoretical thread, and
one practical thread. We shall combine them only at the end of § 5.2.

4Baez, J., ‘¿e Octonions’, Bulletin of the American Mathematical Society, 39(2), 145–205, 2002
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Non-associative structures

5.1.1. Remark. Let A be a unital R-algebra, not supposed to be associative. Since the
centre Z(A) need no longer be a subalgebra, the central embedding lemma 1.2.10 is not
literally true.

However, a ↦ a⋅1A remains an embedding ofR intoA. ¿en by bilinearity, elements
of R ≤ A can be moved freely in products, even through parentheses.

What can itmean for a non-associative algebra to be ‘�eld-like’? We give two possible
formalisations.

5.1.2. De�nition. Let A be aK-algebra.

• A is an algebra with inverses if it is unital and every non-zero element has a two-
sided inverse, viz.:

(∀a ∈ A)(a ≠ 0) → [(∃b ∈ A)(ab = ba = 1)].

• A is a division algebra if it is unital and has no zero divisors, viz.:

(∀a, b ∈ A)((ab = 0) → (a = 0 ∨ b = 0)).

5.1.3. Remark. Both are considerably more general than being a skew-�eld; and they
are in general not equivalent.

• If A is a �nite-dimensional division algebra, then multiplication by a on the le 
λa has an inverse, andmultiplication by a on the right ρa both have inverse maps.
But these need not agree by lack of associativity.

• Conversely, if each a ≠ 0 has a two-sided inverse, then a could still be a zero
divisor by lack of associativity.

Hence in the absence of associativity, ‘algebra with inverses’ and ‘division algebra’ are
unrelated properties. With associativity, ‘with inverses’ implies ‘division’; the converse
is true with associativity and �nite-dimensionality.

So how much associativity is required to do mathematics? ¿e next de�nition sug-
gests that at some cost, one can do with less.

5.1.4. De�nition. A K-algebra A is alternative if the subalgebra generated by any two
elements is associative.

¿is implies equations such as a(ab) = (aa)b, and so on. A characterisation is in
exercise 5.4.1.

A complex approach to the quaternions

Wegive a construction ofH fromC. ViewH = R⋅1+R⋅ i+R⋅ j+R⋅k as a le -vector space
over C = R ⋅ 1 + R ⋅ i. (Not studying representations, we are content with a le -vector
space.)

Every quaternion q can be written as q = c1 + c2 j with c1 , c2 ∈ C = R +R ⋅ i.

5.1.5. Lemma. WriteH = C⊕C j. ¿en conjugation is given by (c1 , c2)∗ = (c∗1 ,−c2) and
multiplication by:

(c1 , c2) ⋅ (d1 , d2) = (c1d1 − d∗2 c2 , c2d∗1 + d2c1).
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5.1.6. Remark. Before the proof: since C is commutative, there are other ways to write
this identity. However this one generalises better as we shall see in de�nition 5.2.3.

Proof. Let c1 = r1 + s1 i with r1 , s1 ∈ R and c2 likewise. ¿en:

(c1 , c2)∗ = (c1 + c2 j)∗

= (r1 + s1 i + r2 j + s2k)∗

= r1 − s1 i − r2 j − s2k
= c∗1 − c2 j
= (c∗1 ,−c2).

¿e key to the multiplication formula is to notice that if c = r + si with r, s ∈ R,
then c j = r j + sk = jr − jsi = j(r − si) = jc∗. So clearly:

(c1 , c2) ⋅ (d1 , d2) = (c1 + c2 j)(d1 + d2 j)
= c1d1 + c1d2 j + c2 jd1 + c2 jd2 j
= c1d1 + c1d2 j + c2d∗1 j − c2d∗2
= (c1d1 − c2d∗2 ) + (c1d2 + c2d∗1 )
= (c1d1 − d∗2 c2 , c2d∗1 + d2c1).

Actually, the same formula enable one to constructC fromR. In either case we start
with a real algebra with some operation ∗ and produce another one. ¿is begs for a
general de�nition. Notice that we demand unitality.

5.2 ∗-Algebras; the Cayley-Dickson construction
5.2.1. De�nition. A ∗-algebra is a unital R-algebra A with an involutive, R-linear map
∗ satisfying (ab)∗ = b∗a∗.

5.2.2. Example. Obviously R (with trivial ∗ = Id), C, and H are ∗-algebras, even asso-
ciative ones.

Also,Mn(C) with Hermite-conjugation.

5.2.3. De�nition. LetA be a ∗-algebra. Let Â = A2, equiped with involution (a1 , a2)∗ =
(a∗1 ,−a2) and multiplication:

(a1 , a2) ⋅ (b1 , b2) = (a1b1 − b∗2 a2 , a2b∗1 + b2a1).

5.2.4. Lemma. Let A be a ∗-algebra. ¿en Â is a ∗-algebra, and A embeds into Â via
a ↦ (a, 0).

Proof. Clearly ∗ is linear, and has order 2, since:

(a1 , a2)∗∗ = (a∗1 ,−a2)∗ = (a∗∗1 , a2).

Now the product is clearly bilinear, and (1, 0) is its identity element; moreover, one
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has:
(a1 , 0) ⋅ (b1 , 0) = (a1b1 , 0),

proving that a ↦ (a, 0) embeds A into Â as R-algebras.

For themoment we have only given the algebraic description, not accounting for the
behaviour of the norm function.

5.2.5. De�nition. Let A be a ∗-algebra.

• Call A real if a∗ = a everywhere.
(If A is real then it is commutative, since ab = (ab)∗ = b∗a∗ = ba.)

• A is nicely normed if for all a ≠ 0 one has a + a∗ ∈ R and aa∗ = a∗a ∈ R>0.

• ¿e norm of a is N(a) = aa∗ (especially useful when A is nicely normed).

Notice that we loseMn(C), which is not nicely normed.

5.2.6. Remark. Clearly, every nicely normed algebra has two-sided inverses (take 1
aa∗ a

∗

in obvious notation).
But recall that in the absence of associativity, there is a di�erence between ‘division

algebra’ and ‘algebra with two-sided inverses’. So in order to get division algebras we
need one more assumption. Recall that ‘alternative’ (de�nition 5.1.4) could be called
‘locally associative’: any two elements generate an associative subalgebra.

5.2.7. Lemma. Every alternative, nicely normed ∗-algebra is a division algebra.

Proof. Let a, b ∈ A.
Step 1. a, b, a∗ , b∗ lie in an associative algebra.

Veri�cation. Let Re(c) = 1
2 (c+c

∗) ∈ R and Im(c) = 1
2 (c−c

∗). Notice that Re(c) ∈ R,
and c = Re(c) + Im(c).

Now 1 (hence R) never violates associativity relations, so it su�ces to see that
Im(a), Im(b), Im(a∗) = − Im(a), and Im(b∗) = − Im(b) lie in an associative al-
gebra. We have reduced the question to only two elements and can use alternativity.
◇

Step 2. N(c) = cc∗∶A→ R≥0 is multiplicative.

Veri�cation. For a, b ∈ A one can freely associate between a, b, a∗ , b∗, and therefore:

N(ab) = (ab)(ab)∗ = (ab)(b∗a∗) = abb∗a∗ = aN(b)a∗ = N(b)N(a).◇

We prove the lemma. If ab = 0, then N(a)N(b) = 0 an identity in R, so one is 0.
But N(c) vanishes only at c = 0.

We now transfer properties up from A to Â.

5.2.8. Proposition (transfering properties). Let A be a ∗-algebra.

(i) A is real i� Â is commutative.
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(ii) A is commutative and associative i� Â is associative.

(iii) A is nicely normed i� Â is nicely normed.

(iv) A is associative and nicely normed i� Â is alternative and nicely normed.

Proof.

(i) If A is real then it is commutative. Now for α = (a1 , a2) and β = (b1 , b2) one
has:

αβ = (a1b1 − b∗2 a2 , a2b∗1 + b2a1)
= (a1b1 − b2a2 , a2b1 + b2a1)
= (b1a1 − a∗2 b2 , a2b1 + b2a∗1 )
= βα

so Â is commutative.

Conversely if Â is commutative, then:

(0, a) = (a, 0)(0, 1) = (0, 1)(a, 0) = (0, a∗),

proving that A is real.

(ii) What an ugly one! You have to compute [(a1 , a2)(b1 , b2)](c1 , c2), then compare
with (a1 , a2)[(b1 , b2)(c1 , c2)]. It is better to skip this one.

(iii) Suppose that A is nicely normed. Let α = (a1 , a2) ∈ Â. ¿en α + α∗ = (a1 +
a∗1 , 0) ∈ R. Moreover,

αα∗ = (a1 , a2) ⋅ (a∗1 ,−a2) = (a1a∗1 + a∗2 a2 , a2a∗∗1 − a2a1) = (a1a∗1 + a∗2 a2 , 0).

Likewise, α∗α = (a∗1 a1+a∗2 a2 , 0). Both are equal sinceA is nicely normed. And
the result is in R>0 whenever a1 or a2 is non-zero.
¿e converse is obvious once you have noticed that ∗ on Â extends ∗ on A.

(iv) One implication is clear: just compute in Â using associativity of A. For the
converse, we assume that Â is nicely normed and alternative. Notice that with
the (a, 0) embedding, A ≤ Â; so A is alternative. Now let a, b, c ∈ A, and
compute:

(a, b) ⋅ [(a, b) ⋅ (0, c)] = (a, b) ⋅ (−c∗b, ca)
= (−a(c∗b) − (a∗c∗b),−b(b∗c) + (ca)a)

= [(a, b) ⋅ (a, b)] ⋅ (0, c) = (aa − b∗b, ba∗ + ba) ⋅ (0, c)
= (c∗(ba∗) − c∗(ba), c(aa) − c(b∗b).

Taking the second coordinates, in view of alternativity of A we have b(b∗)c =
c(b∗b). Now taking �rst coordinates:

a(c∗b) + (a∗c∗)b = c∗(ba∗) + c∗(ba).
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Since Â is nicely normed, this rewrites into:

a(c∗b) + (a∗c∗)b = c∗(b ⋅ 2Re(a)).

Now scalars can bemoved freely by bilinearity, so the right-handmember equals
2Re(a) ⋅ (c∗b). Meanwhile the le -hand member equals:

a(c∗b) + a∗(c∗b) − a∗(c∗b) + a∗c∗)b = 2Re(a)(c∗b) − a∗(c∗b) + (a∗c∗)b.

¿ere remains only:
a∗(c∗b) = (a∗c∗)b,

which implies associativity since ∗ is a bijection.

5.3 Octonions
5.3.1. Corollary. R8 can be equipped with the structure of a unital, alternative division
algebra.

Proof. We see things more generally and iterate the Cayley-Dickson construction
through proposition 5.2.8. First, R is a ∗-algebra with respect to the trivial ∗; it is
real, associative, and commutative. ¿erefore C = R̂ is associative and commutat-
ive. ¿erefore H = Ĉ is associative. At all stages, algebras were nicely normed and
unital; now O = Ĥ is alternative and nicely normed. By lemma 5.2.7, it is a division
algebra.

O is called the algebra of octonions. It is not associative. ¿erefore the collection of
invertible elements is not a group, more something like a ‘non-associative group’. For
completeness we include the de�nition.

5.3.2. De�nition. Definition not given in class.

• A loop is a structure (L, ∗) such that:

– (∃e ∈ L)(∀x ∈ L)(x ∗ e = x ∗ e = x) ;
– (∀a, b ∈ L)(∃!x ∈ L)(a ∗ x = b) ;
– (∀a, b ∈ L)(∃!x ∈ L)(x ∗ a = b).

• AMoufang loop is a loop satisfying in addition, for all x , y, z ∈ L:

– z(x(zy)) = ((zx)z)y;
– x(z(yz)) = ((xz)y)z;
– (zx)(yz) = (z(xy))z;
– (zx)(yz) = z((xy)z).

5.3.3. Corollary. S7 = {v ∈ R8 ∶ ∥v∥ = 1} can be equipped with an algebraic Moufang
loop structure (almost like a group, but associativity fails).
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Proof. S7 is the set of octonions with norm 1: which is stable under multiplication,
since the norm is multiplicative as we just saw.

Here is a useful way to picture octonions. Let R8 have basis {1, i , j, k, ℓ, iℓ, jℓ, kℓ}.
Multiplication is given by the following diagram.

ℓ

ij

kiℓ jℓ

kℓ

Each edge is a triple (x , y, z); the arrow tells us xy = z. For instance,
the le -most brown edge tells us (kℓ) ⋅ j = iℓ.
Hence ( jℓ) ⋅ i = kℓ, while j ⋅ (ℓi) = − j ⋅ (iℓ) = −kℓ: associativity fails.

¿e algebra of ‘sedenions’ Ô is a curiosity and not worth discussing; things get only
worse and worse. Are octonions a curiosity or do they explain something?

5.3.4.¿eorem (É. Cartan). Aut(O) ≃ G2, the exceptional group discovered by Dickson.

5.3.5. Remark. If you have followed the present lecture this far, you might as well start
reading by yourself about Freudenthal’s magic square. (¿e only reasonable conclusion
to this class is: learn Lie theory.)

5.4 Exercises
5.4.1. Exercise (E. Artin). Let A be an algebra such that for all a, b ∈ A:

(∀a, b ∈ A) [ a(ab) = (aa)b ∧ (ba)a = b(aa) ].

Prove that A is alternative. Hint: it su�ces to prove a(ba) = (ab)a. Use the associator
vx , y, zw = (xy)z − x(yz).
Solution. Let a, b ∈ A; wemust show that the subalgebra ⟨a, b⟩ ≤ A generated by a and b
is associative. Using bilinearity of the multiplication (and in the case of a unital algebra,
since 1 never breaks associativity), it su�ces to check only three identities: a(ab) =
(aa)b, a(ba) = (ab)a, and a(bb) = (ab)b.

¿e �rst and last are given by assumption. So we introduce the associator vx , y, zw =
(xy)z − x(yz). Notice that vx , y, zw i� (xy)z = x(yz). Moreover, vx , y, zw is trilinear.
¿en we compute:

va − b, a − b, aw = va, a, aw − va, b, aw − vb, a, aw + vb, b, aw

= 0 − va, b, aw − 0 + 0.
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But the le -hand as well is 0, applying the axiom to c = a − b and a. ¿ere remains
va, b, aw = 0, as desired.

5.4.2. Exercise. Prove the following extraordinarily ugly identity (Degen, 1818), where all
numbers are real:

(a21 + a22 + a23 + a24 + a25 + a26 + a27 + a28)(b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7 − a8b8)2
+ (a1b2 + a2b1 + a3b4 − a4b3 + a5b6 − a6b5 − a7b8 + a8b7)2
+ (a1b3 − a2b4 + a3b1 + a4b2 + a5b7 + a6b8 − a7b5 − a8b6)2
+ (a1b4 + a2b3 − a3b2 + a4b1 + a5b8 − a6b7 + a7b6 − a8b5)2
+ (a1b5 − a2b6 − a3b7 − a4b8 + a5b1 + a6b2 + a7b3 + a8b4)2
+ (a1b6 + a2b5 − a3b8 + a4b7 − a5b2 + a6b1 − a7b4 + a8b3)2
+ (a1b7 + a2b8 + a3b5 − a4b6 − a5b3 + a6b4 + a7b1 − a8b2)2
+ (a1b8 − a2b7 + a3b6 + a4b5 − a5b4 − a6b3 + a7b2 + a8b1)2

Solution. No nead to read it entirely; just use the multiplicativity of the octonion norm.

6 Frobenius’ classi�cation theorem
¿is lecture can be followed at any point but requires knowledge of § 3.

Recall that the only �nite-dimensionalR-algebras which are commutative �elds are
R and C = R[i] (theorem 3.2.2). But dropping commutativity we also have H, a �nite-
dimensional skew-�eld. One may wonder whether there are more such objects: and the
answer is no. We prove this in § 6.1 and discuss some generalisations (without proving
them) in § 6.2.

6.1 ¿e original theorem
6.1.1. ¿eorem (Frobenius, 1877). Let A be a �nite-dimensional, associative, unital R-
algebra which is a skew-�eld. ¿en as R-algebras one has A ≃ R, A ≃ C, or A ≃ H.

¿e associativity assumption is of course redundant, since A is supposed to be a
skew-�eld. But it is good to keep track of it.

Proof. ¿eorem 3.2.2 will be used repeatedly, simply refering to ‘the commutative
case’.

LetAbe as in the statement: being a skew-�eld, it is associative andhas amultiplic-
ative identity. By the commutative case, we may suppose that A is non-commutative.
Step 1. Finding i satisfying i2 = −1.

Veri�cation. Since A is non-commutative, dimRA > 1. Let a ∈ A ∖R; then R[a] is
an associative and commutative R-algebra of dimension > 1; it is a domain (hence a
commutative �eld). By the commutative case, R[a] ≃ C; so there is i ∈ R[a] ≤ A
with i2 = −1. ◇

Let C = R[i] ≤ A; it is not canonical and there are other copies of C inside A but
we �x this one. We know that A is a le -vector space over C. (It is not a C-algebra; as
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a matter of fact, if it were we would get A = C.)
Step 2. Finding j satisfying j2 = −1 ∧ i j = − ji.

Veri�cation. ¿e �rst thing is to understand anti-commutation. Let:

ρ i ∶ A → A
a ↦ ai

be the right-multiplication by i. By associativity, it is C-linear. Now ρ2i = − Id, so in
EndC(A), the linear map ρ i is diagonalisable with eigenvalues ±i. Let Ai and A−i
be the eigenspaces. Notice that Ai is the centraliser of i, viz. {x ∈ A ∶ xi = ix},
while A−i is the subspace of elements anti-commuting with i. Our search for j will
be inside A−i ; before, we study the centraliser.

We contend that Ai = R[i]. On the one hand, R[i] ≃ C is commutative, so
certainly R[i] ≤ Ai . Conversely if a ∈ Ai , then a commutes with i: hence R[i , a]
is a commutative subalgebra of A, and still a domain; it is a �nite-dimensional �eld
extension ofR[i] so by the commutative case,R[i , a] = R[i] and a ∈ R[i]. ¿erefore
Ai = R[i] ≃ C.

Since A is not commutative, Ai < A; since A = Ai ⊕ A−i by diagonalisability,
there is a ∈ A−i ∖ {0}. Notice that a ∉ Ai since otherwise ia = ai = −ia. Always
by the commutative case, R[a] ≃ C (now a di�erent copy). To �nd j we shall �nd
inside the vector line R ⋅ a an element squaring to −1. ¿e argument is elementary
but clever.

Let L = R[a] ∩ R[i], an R-subspace of R[i]. Since 1 ∈ L one has dimR L > 0;
since a ∉ R[i] one has dimR L < 2. So dimR L = 1 and L exactly the vector line
R = R ⋅ 1. Return to a ∈ A−i ; one has:

a2 i = a ⋅ ai = a ⋅ −ia = −aia = ia2 ,

so a2 ∈ R[a] ∩Ai = R[a] ∩R[i] = R.
Of course a2 ≠ 0. If a2 ∈ R>0 then inside the commutative �eld R[a] ≃ C we

�nd a ∈ R, which is a contradiction to a ∉ Ai . Hence a2 ∈ R<0; rescaling we may
assume a2 = −1, and let j = a ∈ A−i . We have found j with j2 = −1 and ji = −i j. ◇

Step 3. Finding k and identifying.

Veri�cation. Let k = i j. Observe how k2 = i ji j = −i2 j2 = −1; moreover ik = − j,
jk = ji j = −i j2 = i, ki = i ji = j, and k j = −i.

It is however not fully clear that 1, i , j, k are linearly independent over R. But
1, i , j are, since j ∉ Vect 1, i ≃ C. Now suppose that k = a+bi+c j for some coe�cients
from R. ¿en multiplying on the le by j one gets:

i = a j − bk − c
= a j − b(a + bi + c j) − c,

whence b2 = −1, a contradiction.
¿e above proves that Vect 1, i , j, k ≤ A is a subalgebra isomorphic to H. To

conclude it remains to prove equality: namely dimRA = 4. Consider the (le -
)multiplication map by j, and restrict it to A−i . If a ∈ A−i then ai = −ia; now
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jai = − jia = i ja so ja ∈ Ai . ¿us λ j injects A−i into Ai ; a similar argument proves
that it also injectsAi intoA−i . As a consequence,Ai ≃ A−i as real vector spaces, and
they have the same dimension. ¿erefore dimRA = dimRAi + dimRA−i ≤ 2 + 2 = 4
and we are done. ◇

¿is completes the proof.

6.1.2. Remarks.

• ¿ere are commutative counter-examples of in�nite dimension, such as C(X).

• ¿e theorem remains true over real closed �elds, but not arbitrary �elds. For in-
stance there exist 9-dimensionalQ-algebras which are skew-�elds. Constructing
them is already fairly involved and better understood through Galois theory.

6.2 Generalisations of Frobenius’ theorem
¿e associative world

¿eorem 6.1.1 admits several extensions. One is about normed algebras; here, ‘norm’
is in the geometric sense (as in linear algebra). ¿e theorem asserts that existence of a
submultiplicative norm (one with ∥ab∥ ≤ ∥a∥ ⋅ ∥b∥) is a strong geometric constraint, as
strong as �nite-dimensionality.

6.2.1.¿eorem (Gelfand-Mazur¿eorem; Mazur, 1938). Let A be an associative, unital
R-algebra which has a submultiplicative norm and is a skew-�eld. ¿enA ≃ R,A ≃ C, or
A ≃ H.

Proof in the case of a complex Banach algebra. We prove a very special case of the
Gelfand-Mazur theorem:

Let A be an associative, unital C-algebra which has a submultiplicative
norm ∥ ⋅ ∥ and is a skew-�eld. If (A, ∥ ⋅ ∥) is complete, then A ≃ C.

¿e completeness assumption is removed in exercise 6.3.2 (always for a C-
algebra).

Let A be given; by central embedding we suppose C ≤ A; even suppose C < A
and �x some a ∉ C. Working in the closed subalgebras CA(a), then Z(CA(a)), we
may assume that A is commutative; actually this will play no role at all.

Consider the entire series:

(a − λ ⋅ 1A)−1 = a−1 ⋅ ∑
n≥0

λn

an
.

¿e function a− λ ⋅ 1A is easily seen holomorphic. Since it does not vanish, the domain
of its inverse, as a holomorphic function, is C, and the right-hand is its expansion.
¿erefore the right-hand must have in�nite radius.

However ∥1A∥ = ∥an ⋅ a−n∥ ≤ ∥a∥n ⋅ ∥a−n∥, so:

n
√

∥a−n∥ ≥ 1
∥a∥ .
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By the usual criteria on formal series (and completeness ofA), the series a−1∑n≥0 λn ⋅
a−n has a �nite convergence radius ≤ ∥a∥, a contradiction.

¿e non-associative world

In § 5, relaxing ‘associative skew-�eld’ into ‘alternative division algebra’ has created the
octonionsO; we may wish to characterise them uniquely. ¿e relevant de�nitions are in
§ 5.1. As opposed to the Gelfand-Mazur theorem, Hurwitz’ does requiremultiplicativity.

6.2.2.¿eorem (Hurwitz, 1898). LetA be a (not necessarily associative) �nite-dimensional,
R-division algebra with a multiplicative norm. ¿en A ≃ R,C,H,O.

6.2.3. ¿eorem (Zorn, 1930). Let A be an alternative, unital, �nite-dimensional, R-
division algebra. ¿en A ≃ R,C,H,O.

And �nally, the strongest to my knowledge.

6.2.4. ¿eorem (Hopf 1940, completed by Kervaire-Milnor 1958). Let A be a �nite-
dimensional R-division algebra. ¿en dimRA ∈ {1, 2, 4, 8}.

Of course we have shi ed from general algebraic structures to functional analysis
and serious geometry, which are more interesting topics indeed.

6.3 Exercises
6.3.1. Exercise. ¿e purpose of this exercise is to prove Zorn’s theorem using Hurwitz’. Let
A be an alternative, unital, �nite-dimensional R-division algebra.

1. For a ∈ A ∖R, show thatMinaR makes sense and is of the form X2 + pX + q.

2. Let N(a) = q as above (for real a, take N(a) = a2). Prove that N is multiplicative.

3. Conclude using Hurwitz’ theorem.

Solution.

1. Let a ∈ A ∖ R. ¿e subalgebra ⟨a⟩ it generates is associative (by alternativity),
commutative, and a �nite-dimensional extension of R. By theorem 3.2.2, one has
⟨a⟩ ≃ C. ¿ere, the minimal polynomial of a has degree 2, and the desired form.

2. Now let a, b ∈ A. We may suppose that neither is in R. By alternativity, ⟨a, b⟩
is associative; by �nite-dimensionality, it is isomorphic at most to H. But there,
N(a) and N(b) coincide with the quaternion norm, so N(ab) = N(a)N(b).

3. Still working in ⟨a, b⟩, we have
√
N(a + b) ≤

√
N(a) +

√
N(b). So we have

equipped A be a multiplicative norm. By Hurwitz’ theorem, A ≃ R,C,H, orO.

6.3.2. Exercise (complex Mazur theorem). ¿e purpose of this longer exercise is an ele-
mentary proof of the following special case of the Gelfand-Mazur theorem.5

¿eorem. LetA be an associative, unitalC-algebra which has a submultiplicative norm
∥ ⋅ ∥ and is a skew-�eld. ¿en A ≃ C.

5Mazet, P., ‘La preuve originale de S. Mazur pour son théorème sur les algèbres normées’, Gazette de la
smf, 111, 5–11, 2007
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By central embedding we assume C ≤ A. ¿roughout, λ, µ denote complex numbers.

1. Let a ∈ A ∖C be �xed and φ(λ) = 1
a−λ ∶C→ A.

(a) Prove relation λ
X−λ =

X
X−λ − 1, and deduce that ∥φ(λ)∥ ÐÐÐÐ→

∣λ∣→+∞
0.

(b) Using a similar rational expression in λ and µ, prove continuity of 1
∥φ∥ and φ.

2. Let j ∈ C be a primitive third root of 1, viz. j3 = 1 ≠ j. For f ∶C → A we de�ne the
function of two complex variables:

(∆ f )(λ, µ) = f (λ + µ) + f (λ + jµ) + f (λ + j2µ).

(a) Let f = N ∶C → R ≤ A which computes N(λ) = λλ∗ = ∣λ∣2. Show that
(∆N)(λ, µ) = 3N(λ) + 3N(µ).

(b) Prove identity:

1
X − µ +

1
X − jµ

+ 1
X − j2µ

= 3
X
+ 3µ3

X(X − µ)(X − jµ)(X − j2µ) ,

and use it to get that for �xed λ, (∆φ)(λ, µ) = 3φ(λ) + o(µ2).

3. Let ε ∈ R>0 and χε = ∥φ∥ + εN.

(a) Fix λ and show that (∆χε)(λ, µ) > 3χε(λ) for small µ ≠ 0.
(b) Let R ∈ R≥0 and DR = {λ ∈ C ∶ ∣λ∣ ≤ R} be the closed disk of radius R. Prove

that χε attains its maximum in DR on the boundary CR = {λ ∈ C ∶ ∣λ∣ = R}.
(c) Conclude that:

∥φ(0)∥ ≤ max
CR

∥φ∥ + εR2 ,

and a �nal contradiction.

Solution. Notice that we �x only one a ∈ A, never two; so we do not require commut-
ativity ofA. But the proof does require complex numbers, soAmust be aC-algebra for
the present argument.

1. Since a ∉ C, for λ ∈ C the di�erence a − λ is never 0; since A is a �eld, φ is
well-de�ned.

(a) ¿e rational relation is trivial. We let X = a and �nd λ
a−λ =

a
a−λ − 1, equival-

ently λφ(λ) = aφ(λ) − 1. ¿is implies ∣λ∣∥φ(λ)∥ ≤ ∥a∥ ⋅ ∥φ(λ)∥ + ∥1∥.
So as ∣λ∣ becomes large, ∥φ(λ)∥ ≤ ∥1∥

∣λ∣−∥a∥ , which goes to 0.

(b) We now guess 1
X−λ −

1
X−µ =

λ−µ
(X−λ)(X−µ) , with the e�ect that φ(λ) − φ(µ) =

(λ − µ)φ(λ)φ(µ). Dividing and taking norms, ∥ 1
φ(µ) −

1
φ(λ)∥ ≤ ∣λ − µ∣.

Do not forget the ‘other’ triangle inequality ∣∥a∥ − ∥b∥∣ ≤ ∥a − b∥; here,
∣ 1
∥φ(λ)∥ −

1
∥φ(µ)∥ ∣ ≤ ∣λ − µ∣. ¿is proves continuity of 1

∥φ∥ , and therefore of
∥φ∥ and φ as well.

2. Recall that 1 + j + j2 = 1 and j∗ = j2.
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(a) Simply compute:

(∆N)(λ, µ) = (λ + µ)(λ + µ)∗ + (λ + jµ)(λ + jµ)∗ + (λ + j2µ)(λ + j2µ)∗

= λλ∗ + λµ∗ + µλ∗ + µµ∗ + λλ∗ + j2λµ∗ + jµλ∗ + j3µµ∗

+ λλ∗ + jλµ∗ + j2µλ∗ + j3µµ∗

= 3λλ∗ + (1 + j2 + j)λµ∗ + (1 + j + j2)µλ∗ + 3µµ∗ ,

with desired vaninshing terms.

(b) Start with 3µ3

X(X−µ)(X− jµ)(X− j2 µ) , which has an expansion of the form:

3µ3

X(X − µ)(X − jµ)(X − j2µ) = c0
X
+ c1
X − µ +

c2
X − jµ

+ c3
X − j2µ

.

Taking the residual value at pole 0, we �nd c0 = 3µ3

− j3 µ3 = −3. ¿en at pole µ,

we obtain c1 = 3µ3

(1− j)(1− j2)µ3 = 1; �nd c2 and c3 likewise.
We apply the identity at a − λ and get:

(∆φ)(λ, µ) = 3φ(λ) + 3µ3φ(λ)φ(λ + µ)φ(λ + jµ)φ(λ + j2µ).

Since φ is continuous, for �xed λ the last term is µ3 ⋅ (φ(λ)+ o(1)) = o(µ2).

3. Notice that f ↦ ∆ f is linear.

(a) As a consequence, ∆χε = ∆∥φ∥ + ε∆N . In particular, using the triangle
inequality,

(∆χε)(λ, µ) = (∆∥φ∥)(λ, µ) + ε(∆N)(λ, µ)
≥ ∥∆φ∥(λ, µ) + 3ε(N(λ) + N(µ))
= 3∥φ(λ)∥ + 3εN(λ) + 3εN(µ) + o(µ2)
= 3χε(λ) + 3εN(µ) + o(µ2).

So if µ is a small non-zero complex number, we have (∆χε)(λ, µ) > 3χε(λ).
(b) By de�nition of ∆χε , this implies:

max{χε(λ + µ), χε(λ + jµ), χε(λ + j2µ)} > χε(λ).

As a consequence, χε can never attain amaximum inside an open setU ⊆ C.
Indeed if λ ∈ U , then for µ small enough the three points λ+µ, λ+ jµ, λ+ j2µ
will be in U , contradicting maximality at λ.
Let DR be as suggested; it is a compact set while χε is continuous. By the
above, χε attains its maximum on the boundary CR .

(c) ¿erefore:
∥φ(0)∥ = χε(0) ≤ max

CR
χε = max

CR
∥φ∥ + εR2 .

We �rst let ε Ð→ 0. ¿is proves ∥φ(0)∥ ≤ maxCR ∥φ∥. Now we let R Ð→
+∞; since ∥φ(λ)∥ ÐÐÐÐ→

∣λ∣→+∞
0, we �nd ∥φ(0)∥ = 0. Hence φ(0) = 0, clearly

a contradiction.
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7 An application to Lagrange’s four square theorem
¿is lecture, which can be followed at any point (or not at all), is a fascinating digression:
quaternions found a striking application to an earlier result in number theory. Needless
to say, in the present section we prefer to work withN(q) = qq∗ = q∗q = a2+b2+c2+d2
(in obvious coordinates) instead of ∣q∣ =

√
N(q).

¿eorem (Lagrange, 1770). Every integer is a sum of four squares.

Remarks.

• No, 7 is not a sum of three squares.

• Euler (1749) had proved that n is a sum of two squares i� for each prime p con-
gruent to 3 modulo 4 the p-adic valuation of n, viz. the highest power of p in n,
is even; something announced by Fermat without a proof (as usual).

¿e proof starts here.

7.1 and multiplicative stability
We shall �rst prove that the problem reduces to prime numbers, and then deal with
those. Both steps involve quaternions although the �rst is substantially easier.

7.1.1. Lemma. ¿e set of integers which are a sum of four squares is closed under product.

Proof. Say n1 = a21 + b21 + c21 + d21 , and n2 likewise. Let q1 = a1 + b1 i + c1 j + d1k,
and q2 likewise; both are quaternions with integer coe�cients, viz. elements of the Z-
submodule ofH generated by 1, i , j, k, viz. elements of the ring Z[1, i , j, k] = Z[i , j].

So is q3 = q1q2. Hence N(q3) = N(q1)N(q2) = n1n2 is a sum of four squares.

7.1.2. Remark. In full form, the identity one could write is:

(a21 + b21 + c21 + d21 ) ⋅ (a22 + b22 + c22 + d22) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a1a2 − b1b2 − c1c2 − d1d2)2
+ (a1b2 + b1a2 + c1d2 − d1c2)2
+ (a1c2 − b1d2 + c1a2 + d1b2)2
+ (a1d2 + b1c2 − c1b2 + d1a2)2

¿is ‘four-square identity’ was discovered by Euler (1748)—without quaternions, such a
discovery certainly required his virtuosity.

7.2 ¿e ring of Hurwitz quaternions
¿e lemma 7.1.1 involves the ring Z[i , j] = Z ⋅ 1+Z ⋅ i +Z ⋅ j+Z ⋅ k; to continue the proof
this would not su�ce as will be clear in its end.

7.2.1. De�nition (and notation). Let σ = 1+i+ j+k
2 ; this quaternion has norm 1 and acts

like the 3-cycle we already met in the proof of proposition 4.1.2:

σ
ij

k ,
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meaning that σ iσ−1 = j, σ jσ−1 = k, and σkσ−1 = i. (Take two minutes to check it.)
Let A be the subring of H generated by i and σ , called the ring of Hurwitz qua-

ternions. (We cannot use letter H because of Hamilton.)

7.2.2. Lemma. A = Z ⋅ 1+Z ⋅ i +Z ⋅ j +Z ⋅ k +Z ⋅ σ = Z[i , j] ∪ (σ +Z[i , j]) = Z[i , σ] is
an associative (but non-commutative) subring ofH. Moreover:

(i) A is stable under ∗;

(ii) for every a ∈ A, one has N(a) ∈ N (recall that this is the number-theoretic norm,
in geometric terms N(a) = ∣a∣2);

(iii) ¿e group of invertible elements (also called units) satis�es A = Z[i , j] × A∗.

Proof.
Step 1. A = Z ⋅ 1 +Z ⋅ i +Z ⋅ j +Z ⋅ k +Z ⋅ σ = Z[i , j] ∪ (σ +Z[i , j]) = Z[i , σ] is a ring
stable under ∗.

Veri�cation. Recall or check again that σ iσ−1 = j, σ jσ−1 = k, and σkσ−1 = i. ¿en:

Z ⋅ 1 +Z ⋅ i +Z ⋅ j +Z ⋅ k +Z ⋅ σ ⊆ Z[i , j] ∪ (σ +Z[i , j]) ⊆ Z[i , σ].

We shall prove the missing inclusion; it is enough to see that the le -hand member
is a subring. Let A0 = Z ⋅ 1 +Z ⋅ i +Z ⋅ j +Z ⋅ k +Z ⋅ σ , a priori only a Z-module.

Now observe that N(σ) = 1
4 (1 + 1 + 1 + 1) = 1, and σ∗ = 1−i− j−k

2 = 1 − σ ; this
already proves us that A0 is closed under ∗. Moreover, σ 2 = σσ∗∗ = σ(1 − σ)∗ =
σ − N(σ) ∈ A0.

¿en a quick computation gives:

iσ = i − 1 + k − j
2

= σ − 1 − j.

We may now quickly check that Z ⋅ 1+Z ⋅ i +Z ⋅ j+Z ⋅ k+Z ⋅ σ is closed under ⋅. First,

σ ⋅ i = (σ i)∗∗ = (i∗σ∗)∗ = (−i(1 − σ))∗ = (iσ − i)∗ = (σ − 1 − i − j)∗ ∈ A0 .

Since σ iσ−1 = j, we derive:
jσ = σ i ∈ A0 .

Similar arguments handle σ j, kσ , σk. We already checked that σ 2 ∈ A0. So A0 is a
subring ofH; since it contains i and σ , we �nd A0 = Z[i , σ] = A. ◇

An important consequence is that if a ∈ A, then either a ∈ Z[i , j], meaning that
all coordinates of a are integers, or a ∈ σ + Z[i , j], meaning that all coordinates of a
are in 1

2 +Z.
Step 2. Norm properties.

Veri�cation. Let a ∈ A = Z[i , j]∪(σ +Z[i , j]). ¿en either a has integer coordinates
in (1, i , j, k), or it has all coordinates in 1

2 +Z; in either case the norm is an integer.
We claim that a ∈ A is invertible in A i� N(a) = 1. If a is invertible, then there

is b ∈ A with ab = 1, so N(a)N(b) = N(ab) = N(1) = 1; since all are integers, we
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�nd N(a) = 1. Conversely if N(a) = 1 then the two-sided inverse of a is a∗ ∈ A, by
closure under ∗. ◇

Step 3. ¿e group of units.

Veri�cation. Elements of Awith norm 1 are exactly {±1,±i ,± j,±k}∪{±1±i± j±k2 }, as
easily seen. Now, if a ∈ A, then either it has all coordinates in Z, or all coordinates in
1
2 +Z.

In the former case we do nothing. In the latter, translation by some ± 1
2 ±

i
2 ±

j
2 ±

k
2 ∈ A× will take it to a point with coordinates in 2Z, viz. a = a0 + u with u ∈ A×,
a0 ∈ 2Z ⋅ 1 + 2Z ⋅ i + 2Z ⋅ j + 2Z ⋅ k. Finally, a = a0 + u = (a0u∗ + 1)u, and a0u∗ has
all coordinates in 1

2 2Z = Z: so a ∈ Z[i , j] ⋅ A×. ◇

¿is completes the proof.

One may picture elements of Z[i , j] as those of the hypercubic lattice with integer
coe�cients. Adding σ has the e�ect of considering also the centres of those cubes. Below
is a picture of the three-dimensional equivalent; bear in mind we are actually describing
a four-dimensional object:

Red: points of σ +Z[i , j], viz. with coordinates in 1
2 +Z.

Blue: points of 2Z ⋅ 1 + 2Z ⋅ i + 2Z ⋅ j + 2Z ⋅ k, viz. with coordinates in 2Z.

¿e key lemma is however the following. Ordinary Euclidean division in commut-
ative rings turns, in the non-commutative case, into le - and right- notions.

7.2.3. De�nition. A ring R is le -Euclidean if there is a function f ∶R → N ∖ {0} such
that:
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• (∀a, b ∈ R)[(ab ≠ 0) → ( f (a) ≤ f (ab))];

• (∀a, b ∈ R)[(b ≠ 0) → (∃q, r ∈ R)(a = bq + r) ∧ (r = 0 ∨ f (r) < f (b)))].

Youmay also remember fromcommutative algebra that a Euclidean ring is principal,
viz. every ideal I◁R is 1-generated, viz. there is x ∈ I with I = (x). Losing commutativity
we have to introduce lateral versions.

7.2.4. Lemma. A is le - and right-Euclidean (with respect to N), hence le - and right-
principal.

Proof. We prove le -Euclideanity. Recall from lemma 7.2.2 that elements of A are
those either with all coordinates in Z, or with all coordinates in 1

2 +Z.
Step 1. (∀x ∈ H)(∃y ∈ A)(N(x − y) < 1).

Veri�cation. Recall that insideH, A forms a lattice (not a cubic one though). Let x ∈
H. Up to translating, we may assume that all coordinates of x (in the basis (1, i , j, k))
lie between 0 and 1. When one coordinate is ≤ 1

2 , approximate it by 0; otherwise
approximate by 1. ¿e resulting approximation lies in A; the squared-distance is at
most 4 ⋅ ( 1

2)
2 = 1, which is attained only when x = σ . But in that case the distance to

A is 0. ◇

Step 2. A is le -Euclidean.

Veri�cation. Recall thatN is multiplicative, vanishes only at 0, and takes only integer
values on A by lemma 7.2.2 (ii). Let a, b ∈ Awith ab ≠ 0; in particular b ≠ 0. Clearly
N(ab) = N(a)N(b) ≥ N(a) ⋅ 1 = N(a).

Now by the �rst step, let q ∈ A be such that N(ab−1 − q) < 1; let r = a − qb ∈ A.
¿en one �nds:

N(r) = N(a − qb) = N((ab−1 − q)b) = N(ab−1 − q) ⋅ N(b) < N(b),

which proves the claim. ◇

¿e fact that le -Euclidean implies le -principal is like in commutative algebra.

7.2.5. Remark. ¿is explains why one had to use Hurwitz quaternions. Without σ we
are just dealing with the hypercubic lattice Z[i , j]. ¿en the centre ( 1

2 ,
1
2 ,

1
2 ,

1
2) can be

approximated by (0, 0, 0, 0), with norm 4 ⋅ ( 1
2)

2 = 1.
Hence the �rst step becomes: (∀q ∈ H)(∃a ∈ Z[i , j])(N(q − a) ≤ 1). But 1 is a

possible value: an attempt at Euclidean division will result in N(r) ≤ N(b), possibly
with equality. ¿is is not enough for principality.

7.3 Proof of Lagrange’s theorem
We want to prove that every positive integer is a sum of four squares. By lemma 7.1.1, it
is enough to prove the following.

7.3.1. Proposition. Every prime number p is a sum of four squares.
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Proof. Since 2 = 12 + 12 + 02 + 02, we may assume that p is odd.
Step 1. ¿ere are m, n ∈ N with p∣m2 + n2 + 1.

Veri�cation. ¿is is independent of our earlier work. Since p is odd, the set {ν2 ∶ ν ∈
Fp} has exactly p−1

2 + 1 = p+1
2 elements. So does the set {−1 − ν2 ∶ ν ∈ Fp}. Since Fp

has order p, the two subsets must intersect: there are therefore µ, ν ∈ Fp such that
1 + µ2 + ν2 = 0. Li ing to N we have the claim. ◇

We �x such m and n for the rest of the proof.
Step 2. Let I = pA + (1 + mi + n j)A. ¿en I is a le ideal with pA < I; moreover for
any x ∈ I one has p∣N(x).

Veri�cation. It is a le ideal by construction. If I = pA, then there is a ∈ A with
pa = (1 +mi + n j); the 1-coordinate of a must be 1

p , but it is in
1
2Z and p ≠ 2: this is

impossible.
Now let x ∈ I. ¿en x can be written x = pa1 + (1 +mi + n j)a2, so that:

N(x) = (pa1 + (1 +mi + n j)a2) (pa1 + (1 +mi + n j)a2)∗

= (pa1 + (1 +mi + n j)a2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b∈A

) (pa∗1 + a∗2 (1 +mi + n j)∗)

= p2N(a1) + (1 +m2 + n2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈pZ

)N(a2) + p(a3a∗1 + a1b∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

)

We contend that r ∈ Z. Indeed, recall from lemma 7.2.2 that A is a ring stable under
∗, and that every element in A has either all coordinates in Z, or all coordinates in
1
2 + Z. So let c = ba∗1 ∈ A. ¿en r = ba∗1 + a1b∗ = c + c∗ = 2Re(c) ∈ Z, as claimed.
Returning to the formula for N(x), we �nd p∣N(x); this holds for any x ∈ I. ◇

(Since 1 ∈ A and p /∣ 1, it follows that I must be proper in A; we will not use this.)
Step 3. p is a sum of four squares.

Veri�cation. Since A is le -principal as proved in lemma 7.2.4, there is x ∈ I with
I = xA. Since A = Z[i , j] ⋅A× by lemma 7.2.2 (iii), up to changing x by a unit, we may
assume x ∈ Z[i , j]. As we know from step 2, p∣N(x).

Since p ∈ I there is a ∈ Awith p = xa; if N(a) = 1 then a ∈ A×, whence I = xA =
xaA = pA, against step 2. Hence N(a) > 1. Now taking norms, p2 = N(x)N(a) is a
factorisation of p2 into two non-trivial integers: it follows N(x) = N(a) = p.

¿us x ∈ Z[i , j] has norm a sum of four squares, equal to p. ◇

¿is proves the proposition, and the four square theorem.

7.4 Exercises
7.4.1. Exercise. Prove that the (commutative) ring of Gauß integers Z[i] is Euclidean.

7.4.2. Exercise. Return to the proof of lemma 7.2.4 and prove this better approximation:
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(∀x ∈ H)(∃y ∈ A)(N(x − y) ≤ 5
8 ).

7.4.3. Exercise. Prove right-Euclideanity of A using ∗.

7.4.4. Exercise. ¿e number-theoretic observation ‘p∣n2 + m2 + 1’ in step 1 of proposi-
tion 7.3.1 is actually a special case of a more general result.

We use tuple notation: X = (X1 , . . . , Xn), a = (a1 , . . . , an).

¿eorem (Chevalley-Warning). Let F be a �nite �eld and {Pi(X) ∶ i = 1 . . . r} be poly-
nomials with variables in X and coe�cients in F. Suppose that their (total) degrees
satisfying:

∑
j
deg Pi < n.

¿en the cardinal of {a ∈ Fnp ∶ (∀i = 1 . . . r)(Pi(a) = 0)} is divisible by p.

1. Let q = ∥F∣. Prove that for any polynomial Q(X) of degree < n(q − 1), one has
∑a∈Fn Q(a) = 0.

2. Deduce the theorem. Hint: consider Q(X) = ∏i(1 − P
q−1
i (X)).

3. Retrieve step 1 of proposition 7.3.1 as an application.

8 Quaternions and the cross-product algebra
Here begins a block of three lectures, §§ 8–10. It can be studied at any point a er § 4.
Moreover § 8 and § 9 are independent.

¿is section returns to basic notions. We show how the quaternion structure on
R4 can explain the cross product on R3. ¿e outline is simple: in § 8.1 we return to,
and prove, the common properties of u × v. In § 8.2 we provide other proofs, using the
quaternion structure.

Onemust know the de�nition of SO3(R): the group of linear isometries ofR3 under
the usual quadratic structure (linear maps preserving any of the following: orthogonal-
ity, the scalar product, the Euclidean norm). ¿is group is investigated in § 9.

8.1 ¿e cross product in R3

8.1.1. De�nition. ¿e vector/cross/wedge product of u1 =
⎛
⎜
⎝

a1
b1
c1

⎞
⎟
⎠
, u2 =

⎛
⎜
⎝

a2
b2
c2

⎞
⎟
⎠
∈ R3 is:

u1 × u2 =
⎛
⎜
⎝

b1c2 − c1b2
c1a2 − a1c2
a1b2 − a2b1

⎞
⎟
⎠
.

¿is is obviously a very bad de�nition, as it is given extrinsically, in terms of co-
ordinates. Is there something intrinsic?

8.1.2. Proposition (properties of ×). (R3 ,×) is a (non-associative, non-symmetric) R-
algebra, satisfying:

● algebraic orthogonality: ⟨u1∣u1 × u2⟩ = 0;

● determinant property: ⟨u1∣u2 × u3⟩ = det(u1 , u2 , u3);
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● SO3(R)-invariance: for f ∈ SO3(R), one has f (u1 × u2) = f (u1) × f (u2);

● Lagrange identity: u1 × (u2 × u3) = ⟨u1∣u3⟩u2 − ⟨u1∣u2⟩u3.

Proof. Notice that ‘algebraic orthogonality’ is a special case of the ‘determinant prop-
erty’.

Let M be the matrix with columns u1 , u2 , u3. Let P be the matrix with columns
u2 × u3 , u3 × u1 , u1 × u2. By de�nition of the coe�cients of a vector product, P is
exactly the comatrix of M, viz. P = comM. We know from determinant expansion
thatM ⋅ P t = M ⋅ comM t = detM ⋅ I3; in particular on the diagonal we �nd:

⟨u1∣u2 × u3⟩ = ⟨u2∣u3 × u1⟩ = ⟨u3∣u1 × u2⟩ = det(u1 , u2 , u3),

this is the determinant property. (Notice that outside the diagonal we �nd
⟨u1∣u1 × u2⟩ = 0, viz. algebraic orthogonality.)

We move to SO3(R)-invariance. Let f ∈ SO3(R). For any three vectors, one has:

⟨ f (u1)∣ f (u2) × f (u3)⟩ = det( f (u1), f (u2), f (u3))
= det f ⋅ det(u1 , u2 , u3)
= det(u1 , u2 , u3)
= ⟨u1∣u2 × u3⟩
= ⟨ f (u1)∣ f (u2 × u3)⟩ .

In particular, the di�erence f (u2) × f (u3) − f (u2 × u3) is in (im f )⊥ = (R3)⊥ = {0}.
For the Lagrange identity, notice that everything here is trilinear, and the formula

holds for all 33 choices u1 , u2 , u3 ∈ {e1 , e2 , e3}.

A geometric proof of the Lagrange identity. ¿e formula is trivial if (u2 , u3) is not
free. So we may suppose that P = Vectu2 , u3 is a plane. Let v = u2 × u3 ≠ 0. ¿en
v ∈ P⊥, which is a line, and v⊥ = P⊥⊥ = P = Vectu2 , u3. Hence u1 ×v ∈ v⊥ = Vectu2 , u3.
¿erefore there are scalars a, b depending on u1 , u2 , u3 such that u1 × (u2 × u3) =
au2 + bu3.

Now take the scalar productwithu1; we �nd0 = a ⟨u1∣u2⟩+b ⟨u1∣u3⟩. In particular,
there is a scalar λ such that:

u1 × (u2 × u3) = λ(⟨u1∣u3⟩u2 − ⟨u1∣u2⟩u3);

notice that this remains true if u2 and u3 are linearly dependent again. ¿e problem is
that a priori, λ depends on u1 , u2 , u3.

8.1.3. Lemma. Suppose f , g∶V → V are two linear maps satisfying: (∀v ∈ V)(∃λv ∈
K)( f (v) = λv g(v)). Suppose in addition that dim im g ≥ 2. ¿en (∃λ ∈ K)(∀v ∈
V)( f (v) = λg(v)).
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Proof. Let v ,w ∈ V be such that g(v) and g(w) are independent. ¿en:

f (v +w) = λv+w g(v +w)
= λv+w g(v) + λv+w g(w)

= f (v) + f (w) = λv g(v) + λw g(w).

Since g(v) and g(w) are linearly independent, one �nds λv = λv+w = λw , which
we simply denote λ. ¿en every non-zero g(u) will be independent from one of
g(v), g(w), and the same argument gives λu = λ as well. ¿ere remains the case
g(u) = 0. But then, f (u) = 0 so we can still take λu = λ.

Let g = ⟨u1∣u3⟩u2 − ⟨u1∣u2⟩u3; see it as a function of u1, then as a function of
u2, and then as a function of u3. Since u2 and u3 are independent, in each case g is
linear with image of dimension 2. Applying the lemma three times gives that λ does
not depend on the vectors. We �nish with u i = e i to see λ = 1.

8.1.4. Corollary. (R3 ,×) is a Lie algebra, viz. it satis�es:

● bilinearity: × is le - and right-linear;

● antisymmetry: u2 × u1 = −u1 × u2;

● Jacobi identity: u1 × (u2 × u3) + u2 × (u3 × u1) + u3 × (u1 × u2) = 0.

Proof. Bilinearity, anti-symmetry are obvious. Using Lagrange’s identity, so is Jacobi’s.

We have proved a number of identities without really explaining them. As always,
lists of formulas tend to hide underlying structures.

8.2 Explaining geometry with quaternions
Quaternions can be used to encode the geometric structure on R3.

8.2.1. Notation. Let P = Vect i , j, k be the space of purely imaginary quaternions.
Notice that P = {q ∈ H ∶ q∗ = −q} = {q ∈ H ∶ q2 ∈ R≤0}.

¿e space P ≃ R3 can be equipped with:

• the scalar product ⟨⋅∣⋅⟩ ∶P × P→ R;

• the cross product ×∶P × P→ P;

• the quaternion product ⋅∶P × P→ H.

(Only the cross product takes values in P.) At �rst this begs for helpful notation. When
we consider y ∈ P as a vector (subject to scalar and cross products), we writeÐ→y . Soon
we shall drop the arrows.

8.2.2. Lemma. Let y1 , y2 ∈ P. ¿en:

y1 ⋅ y2 = Ð→y 1 ×Ð→y 2 − ⟨Ð→y 1∣Ð→y 2⟩ .
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Proof. ¿e proof will not use Jacobi’s or Lagrange’s identity. All operations involved
are bilinear, so it su�ces to deal with elementary cases y1 , y2 ∈ {i , j, k}. ¿en there are
two cases:

• if y1 = y2, then y1 ⋅ y21 = −1 whileÐ→y 1 ×Ð→y 2 = Ð→0 and ⟨Ð→y 1∣Ð→y 2⟩ = 1, proving the
formula;

• if y1 ≠ y2, then ⟨Ð→y 1∣Ð→y 2⟩ = 0 while both y1 ⋅ y2 andÐ→y 1 ×Ð→y 2 compute the ‘third’
basic quaternion in direct order.

(One can also work in coordinates and expand, but this is tedious.)

For instance,Ð→i ×Ð→j = k+⟨Ð→i ∣Ð→j ⟩ = k. Obviously, this is better understood without
the arrows. We now decomposeH = R⊕P; every quaternion can be written in a unique
manner a + u with a ∈ R and u ∈ P.

8.2.3. Proposition. Let (a, u) and (b, v) be quaternions. ¿en:

(a, u) ⋅ (b, v) = (ab − ⟨u∣v⟩ , av + bu + u × v).

(¿e formula is perhaps worth learning; at least, one must remember that a short
formula exists.)

Proof. Since quaternionmultiplication is bilinear, hence biadditive, onemay consider
(a, 0) and (0, u) separately. Since real cases are obvious, the formula reduces to com-
puting (0, u) ⋅ (0, v), which was done in the lemma.

¿is multiplicative structure explains a number of otherwise mysterious properties.
First, we retrieve corollary 8.1.4.

Quaternion proof that (R3 ,×) is a Lie algebra. Bilinearity of× is obvious since qua-
ternion multiplication is bilinear. We prove antisymmetry of ×. Recall that R = {q ∈
H ∶ q∗ = q} and P = {q ∈ H ∶ q∗ = −q}. In particular, if q1 , q2 ∈ P then one has:

(q1q2 + q2q1)∗ = q∗2 q∗1 + q∗1 q∗2
= (−q2) ⋅ (−q1) + (−q1) ⋅ (−q2)
= q1q2 + q2q1 ,

implying q1q2+q2q1 ∈ R. Returning toR⊕R3, one has (0, u)⋅(0, v) = (− ⟨u∣v⟩ , u×v).
¿erefore

(0, u) ⋅ (0, v) + (0, v) ⋅ (0, u) = (−2 ⟨u∣v⟩ , u × v + v × u) ∈ R,

so we �nd u × v + v × u = 0, as desired.
We turn to the Jacobi identity. It is a general fact that given an associative algebra

A, the operation va, bw = ab − ba is a Lie bracket (viz. satis�es the de�nition of a Lie
algebra). Indeed, bilinearity and antisymmetry are clear; for the Jacobi identity, one
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computes using associativity:

va, vb, cww + vb, vc, aww + vc, va, bww

= a(bc − cb) − (bc − cb)a + b(ca − ac) − (ca − ac)b + c(ab − ba) − (ab − ba)c
= abc − acb − bca + cba + bca − bac − cab + acb + cab − cba − abc + bac
= 0

Here, start withH; then in earlier notation:

v(0, u), (0, v)w = (− ⟨u∣v⟩ + ⟨v∣u⟩ , u × v − v × u) = (0, u × v − v × u).

By antisymmetry this also equals (0, 2u × v), which is therefore a Lie bracket. ¿is
proves Jacobi’s identity (without using it); we did not use Lagrange’s either.

We can also return to proposition 8.1.2 and give a better proof.

Quaternion proof of the properties of ×, except SO3(R)-invariance. We use asso-
ciativity of quaternion multiplication. Compute:

(0, u) ⋅ [(0, v) ⋅ (0,w)] = (0, u) ⋅ (− ⟨v∣w⟩ , v ×w)
= (− ⟨u∣v ×w⟩ ,−⟨v∣w⟩u + u × (v ×w)) ,

and similarly:

[(0, u) ⋅ (0, v)] ⋅ (0,w) = (− ⟨u∣v⟩ , u × v) ⋅ (0,w)
= (− ⟨u × v∣w⟩ ,−⟨u∣v⟩w + (u × v) ×w) .

By associativity, they are equal, viz. we have the identity:

(− ⟨u∣v ×w⟩ ,−⟨v∣w⟩u + u × (v ×w)) = (− ⟨u × v∣w⟩ ,−⟨u∣v⟩w + (u × v) ×w) .

¿e real coordinate gives ⟨u∣v ×w⟩ = ⟨u × v∣w⟩. Doing w = v and using anti-
symmetry, we deduce ⟨u × v∣v⟩ = 0, viz. algebraic orthogonality. Actually the map
⟨u∣v ×w⟩ is trilinear, and alternative: hence a multiple of the determinant map. We
can compute that ⟨i × j∣k⟩ = ⟨k∣k⟩ = 1, so the multiple is 1.

Leaving SO3(R)-invariance aside, there remains to prove the Lagrange identity.
Return to the associative identity and take its pure quaternion component, getting:

−⟨v∣w⟩u + u × (v ×w) = − ⟨u∣v⟩w + (u × v) ×w .

Introduce f (u, v ,w) = u × (v × w); notice that (u × v) × w = −w × (u × v) =
− f (w , u, v). Our equation becomes:

f (u, v ,w) + f (w , u, v) = ⟨v∣w⟩u − ⟨u∣v⟩w .

¿e other two equations obtained by circular permutation are:

f (v ,w , u) + f (u, v ,w) = ⟨w∣u⟩ v − ⟨v∣w⟩u

and
f (w , u, v) + f (v ,w , u) = ⟨u∣v⟩w − ⟨w∣u⟩ v .
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Summing the �rst two and subtracting the last, there remains:

2 f (u, v ,w) = 2 ⟨u∣w⟩ v − 2 ⟨u∣v⟩w ,

as desired. (Notice that if we take circular permutations and then sum, we �nd another
proof of the Jacobi identity.)

However, we havenot reproved SO3(R)-invariance through quaternions. ¿is needs
more tools, and will be completed in § 10.1.

8.3 Exercises
8.3.1. Exercise. Prove that the rotation

ij

k

is obtained through conjugation by σ = 1+i+ j+k
2 .

8.3.2. Exercise. Give a geometric interpretation of the formula:

1
2
(γ i + γ j + γk − Id)(q) = q∗ .

Solution.¿e equation is trivial on R, so we focus on P ≃ R3. ¿ere, γ i is the half-turn
of the space in i⊥; likewise for the other two. Hence the sum γ i +γ j +γk equals − Id (this
can be seen matricially: our half-turns are diagonal in the canonical basis). But on P,
quaternion conjugation is − Id.

8.3.3. Exercise. Prove that for any two vectors u, v ∈ R3 one has ∥u∥2 ⋅ ∥v∥2 = ∥u × v∥2 +
⟨u∣v⟩2.

Solution. Start with u ⋅ v = u × v − ⟨u∣v⟩. Now the squared norm is ∣u∣2∣v∣2 = ∣u × v∣2 +
⟨u∣v⟩2, but for a pure quaternion one also has ∣q∣2 = ∥q∥2. (Direct proofs are possible.)

9 Orienting and rotating the real plane and space
We continue our investigation of low-dimensional geometry; this lecture is dedicated to
Euclidean spaces of dimension 2 (§ 9.1) and 3 (§ 9.2). It does not build on § 8 and there
are no quaternions. We shall:

• explain the notion of an orientation (de�nition 9.1.5);

• see generation by half-turns (an important phenomenon, corollary 9.2.6);

• describe rotations by their ‘geometric elements’ (corollary 9.2.9).

Recall a general de�nition.

De�nition. LetK be any �eld and n be an integer.
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• ¿e orthogonal group is:

On(K) = {M ∈ GLn(K) ∶ M−t = M} ,

the group of �xed points of the inverse-transpose automorphism (there are more
obscure de�nitions).

• ¿e special orthogonal group is SOn(K) = SLn(K) ∩On(K).

¿e de�nition is actually more intrinsic: if (E , (⋅, ⋅)) is a Euclidean space, one can
de�ne the orthogonal group O(E) as the group of linear bijections preserving the bi-
linear form, viz. with ( f (x), f (y)) = (x , y) holding identically. In notation O(E), the
scalar product remains implicit; there is risk of confusion.

remark. It so happens that if E ≃ Rn is a Euclidean space, then �xing any orthonor-
mal basis of E gives rise to a group isomorphism O(E) ≃ On(R). But of course, there
are many di�erent isomorphisms E ≃ Rn : this is the di�erence between something co-
ordinatised (a coordinate system is given) and something coordinatisable (we still have
the choice).

¿is remark will result in the subtle discussion of orientations.

A commonmisunderstanding

It is generally believed that an element of SO3(R) is described by ● an axis and ● an
angle. ¿is is not correct. Consider the following problem.

Facing the audience, the instructor holds a piece of paper vertically and
rotates it by 90○ clockwise. ¿e students however see a counterclockwise
rotation. Why?

9.1 In planes
Webeginwith the case of Euclidean spaces of dimension 2. All are isomorphic toR2, but
when describing them we have to choose orientations. We explain this, starting from
concrete R2.

Coordinatised plane

We �rst study the plane R2 equipped with the standard scalar product (⋅, ⋅).

9.1.1. Proposition. Every non-trivial element of the orthogonal group O2(R) is either:

• a rotation, with matrix of the form (a −b
b a ) with a2 + b2 = 1;

• an (orthogonal) re�ection, with matrix of the form (a b
b −a) with a

2 + b2 = 1.

Proof. Let f ∈ O2(R). Both columns of its matrix have Euclidean norm 1, and they
are orthogonal. When the �rst column is �xed, there are exactly two choices for the
second.

Consequently :
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• rotations of R2 form the group SO2(R);

• an element in SO2(R) is entirely described by two numbers a and b with a2+b2 =
1.

9.1.2. Corollary. Every rotation of SO2(R) is a product of two re�ections; moreover for
every pair of norm 1 vectors u1 , u2 ∈ S1 (the unit circle insideR2), there is a unique rotation
f with f (u1) = u2. Finally, SO2(R) ≃ S1.

In more algebraic terms, O2(R) = S1 ⋊ Z/2Z (semi-direct product with respect to
inversion action).

Proof. Clearly,

(a b
b −a) ⋅ (

0 1
1 0) = ( b a

−a b) ,

so the latter is a product of two re�ections. Now if u is a norm 1 vector, say u = (ab)

with a2 + b2 = 1, we can always see it as the �rst column of a (unique) rotation matrix.
Algebraically, there is a unique rotation doing f (e1) = u. ¿is carries to a pair of
vectors: do u1 ↦ e1 ↦ u2.

So �xing say e1, the map g ↦ g ⋅ e1 is a group isomorphism SO2(R) ≃ S1.

9.1.3. Remark (angle measurement is dubious methodology). An orthogonal re�ection
is entirely determined by its axis, itself determined by a non-zero vector. In high school
it is customary to describe a rotation by its angle, and write:

Rθ = (cos θ − sin θ
sin θ cos θ ) .

We shall not do this.
What is an angle? It is a bit less clear than you may think; in particular, the claim

that one measures angles using the same real numbers as the ones on the line is quite
ill-phrased. ¿ey are not the same numbers; a simple argument is that one must count
modulo 2π.

One should keep in mind that there are linear numbers, and circular numbers. ¿e
real miracle is that linear numbers can be used to cover circular numbers, viz. that there
is a surjective homomorphism (R,+) → (S1 , ⋅). (¿ismay look obviouswhenonewrites
it as R → R/2πZ, but try to explain π in purely algebraic terms to understand the sub-
tlety of the question.) ¿is involves some form of exponential function and will fail over
other �elds, such as the seemingly harmless R ∩Q.

As a conclusion: in order to generalise to real-closed �elds, one should avoid talking
about angle measurement, and entirely decribe angles in terms of elements of SO2(R).
Not to mention the computational cost of trigonometric functions. . .

Abstract planes

We move to abstract planes (as opposed to the reference plane R2). ¿is is surprisingly
subtle. If P is a Euclidean plane, then P ≃ R2 though non-canonically. ¿erefore if
(v1 , v2) is an orthonormal basis, then so is (v2 , v1); but there is no canonical way to
prefer one over the other. ¿is gives rise to the notion of an orientation of a plane.
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9.1.4. Lemma. Let P be a Euclidean plane, viz. P ≃ R2 with Euclidean structure.
¿en the action of O(P) on the set of orthonormal bases has exactly one orbit; the

action of SO(P) has exactly two.

Proof. First understand the statement. Let β be the set of orthonormal bases of P.
Suppose that B = (v1 , v2) ∈ β and f ∈ O(P); then by de�nition of an isometry,
( f (v1), f (v2)) is another orthonormal basis, so f (B) ∈ β. Hence O(P) acts natur-
ally on β; so does the subgroup SO(P) ≤ O(P).

We now work in coordinates, in the orthonormal basis B = (v1 , v2). Suppose
(w1 ,w2) is another basis in β. ¿en in B, w1 has coordinates a norm 1 column; up to
using an element of SO2(R) ≃ SO(P), we may assume w1 = v1. ¿en in B, w2 has

coordinates either (01), in which case w2 = v2, or coordinates (
0
−1). Under the action

of O(P) we may exchange v2 and −v2 �xing v1 (this is a re�ection); under the action
of SO(P) we cannot, because the determinant is 1.

9.1.5. De�nition. An orientation of a Euclidean plane is the choice of an orbit of or-
thonormal bases under the action of SO(P) (there are two such choices by lemma 9.1.4).

A basis in the chosen orbit is direct; indirect if in the other orbit.

9.1.6. Corollary. An element of SO(P) is entirely described by an orientation of P and an
element of SO2(R).

Proof. Let f ∈ SO(P). A priori we only �x the orbit under SO(P) of one basis, not
the basis itself. We must show that MatB f ∈ SO2(R) does not depend on B, provided
B is a direct basis.

But by de�nition, ifB,B′ are direct bases, there is g ∈ SO(P) such that g(B) = B′.
¿erefore, MatB f and MatB′ f are conjugate (by g) inside SO(P). Since SO(P) ≃
SO2(R) is commutative, we �nd MatB f =MatB′ f , as desired.

9.1.7. Remarks (on orientations).

• By lemma 9.1.4, a re�ection reverts the orientation; you may have seen a mirror
already.

• Another convenient way to understand the concept of change of orientation of a
plane is to embed it ‘as a piece of paper’ in the space; looking at it from above or
from below will change the orientation. (Which takes us to the space.)

9.2 In the space
We will work mostly with coordinatised R3, viz. study the concrete group SO3(R).

9.2.1. Remarks (orientations, continued).

• An abstract 3-dimensional Euclidean space has exactly two orientations (see ex-
ercise 9.3.1).

• ¿e physical space we live in is oriented by convention following the right-hand
orientation:

48



bending your right hand describes a direct basis.

Since you can rotate your hand freely but bend it only in one direction, your right
hand can describe exactly the orbit of all direct bases. (You need the le hand for
the indirect bases.)

¿e group of rotations

9.2.2. Remark. As opposed to SO2(R), the group SO3(R) is not commutative. ¿is
explains why when Hamilton was looking for a structure coding rotations ofR3, he had
to drop commutativity.

9.2.3. Example. Hold a stick of chalk in your hand, pointing it to the audience. Rotate
your wrist to the le by a quarter of a turn; this is rotation ρ1, which takes place in the
vertical plane separating you from the audience, which we call V . A er performing ρ1,
the chalk globally looks just the same. ¿en rotate your elbow to the le by a quarter of
a turn; this is rotation ρ2, which takes place in the horizontal plane H. ¿e chalk arrives
in horizontal position in H ∩ V .

Now start again from the initial position. First perform ρ2, i.e. rotate the elbow: the
chalk is horizontal, in H. Of course your wrist has rotated with the rest of the arm, so
you must return to the original de�nition of ρ1: rotating in V . ¿e stick of chalk now
points downwards, illustrating ρ2ρ1 ≠ ρ1ρ2.

It so happens that every element of SO3(R) is a rotation (in the intuitive sense). ¿is
is made precise by the following. Recall that L⊥ = {x ∈ R3 ∶ (∀y ∈ L)((x , y) = 0)}.

9.2.4. Proposition. Every rotation ρ ≠ Id is uniquely described by a well-de�ned axis
L = ker(ρ − Id), and an element of SO(L⊥).

Proof.
Step 1. 1 is an eigenvalue with multiplicity (both algebraic and geometric) equal to 1.

Veri�cation. Let χ be the characteristic polynomial of ρ; it has degree 3 and coe�-
cients in R. Since R is real closed, there is a real root (eigenvalue) λ; moreover, the
set of eigenvalues is invariant under c ↦ c∗. Finally the product of eigenvalues is
det ρ = 1.

It is easy to see that λ = ±1: if x is an eigenvector, then ∥x∥2 = (x , x) =
( f (x), f (x)) = λ2∥x∥2 ≠ 0. Suppose that λ = −1. ¿en by the condition on the
determinant, the other two roots (computed inC) have −1 as a product, so they can-
not be conjugate elements of C ∖ R; they are in R and equal to −1 and 1, so 1 was a
root a er all.

¿is proves that ker(ρ − Id) ≠ 0. If dimker(ρ − Id) = 3 then ρ = Id: a con-
tradiction. If dimker(ρ − Id) = 2 then the orthogonal space (ker(ρ − Id))⊥ has
dimension 1. But is is ρ-invariant again, so it is an eigenline: the eigenvalue is ±1,
but by the determinant condition it must be 1, a contradiction. All this shows that
dimker(ρ − Id) = 1. ◇

Let L = ker(ρ − Id), a line called the axis, and P = L⊥, the rotation plane.
Step 2. Geometric conclusion.
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Veri�cation. Every isometry has the orthogonal invariance property: if F ≤ E is an f -
invariant subspace (meaning f (F) ≤ F), then F⊥ = {y ∈ E ∶ (∀x ∈ F)((x , y) = 0)}
is f -invariant as well.

Since L is ρ-invariant, so is P. Now the restriction ρ∣P ∶ P → P is a linear isometry
again, so ρ∣P ∈ O(P). Since ρ acts as 1 on L one has:

det ρ∣P = 1 ⋅ det ρ∣P = det ρ∣L ⋅ det ρ∣P = det ρ = 1,

so ρ∣P ∈ SO(P).
Conversely, given an axis L and a linear isometry ρ̌ of P = L⊥, there is a unique

element in SO3(R) acting as IdL and extending ρ̌ on P. ◇

¿is completes the proof.

Half-turns of the space

We derive an important corollary (which will also be used in the next lecture).

9.2.5. De�nition. A half-turn of the space is a rotation of order exactly 2 (viz. with ρ2 =
Id ≠ ρ).

It is easily seen that every half-turn of the space is O3(R)-conjugate to
⎛
⎜
⎝

1
−1

−1

⎞
⎟
⎠
.

9.2.6. Corollary. Half-turns of the space generate SO3(R).

Proof. Let f ∈ SO3(R); we may suppose f ≠ Id. By proposition 9.2.4, f has axis say L
and plane P = L⊥; using an orientation (hence isomorphism P ≃ R2), f corresponds
to ρ ∈ SO2(R). Now in the plane P ≃ R2, ρ is a product of two re�ections ρ = σ2 ○ σ1
with axes say L1 and L2.

Let rℓ be the half-turn of the full space with axis Lℓ . We claim that f = r2 ○ r1.
Let g = r2 ○ r1. ¿is reverses L twice, so g acts like Id on L. Moreover in P, g acts like
σ2 ○ σ1 = ρ. Hence g = f .

Further description

We return to the general problem of describing rotations, building on proposition 9.2.4.
For a further description we also wish to use the isomorphism SO(P) ≃ SO2(R); but
for this, we need an orientation of P as seen in corollary 9.1.6. Recall that L ↔ L⊥ is a
canonical correspondence between lines and planes in R3. Actually there is more.

9.2.7. Lemma (orthogonal orientation). Let S be any three-dimensional, Euclidean space
with an orientation. ¿en there is a canonical correspondence between oriented lines and
oriented planes.

Proof. Fix an orientation, viz. a notion of a direct basis, in S. Given a line L and its
orthogonal plane P = L⊥, an orientation of L corresponds to an orientation of P: just
see whether concatenation results in a direct global basis of S or not.
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9.2.8. Remark. Notice that neither the orientation of the space nor the orientation of
the line gives one of the plane: one really needs both.

In terms of the right-hand rule, one needs both ● the choice of the right hand (as
opposed to the le hand), and ●which vectors on the line are ‘upwards’ (to tell us which
side of the plane, seen as a sheet of paper, is top and which is bottom).

9.2.9. Corollary (geometric elements). Every rotation ρ ∈ SO3(R) ∖ Id is uniquely de-
scribed by a well-de�ned axis L = ker(ρ − Id), an orientation of the axis, and an element
of SO2(R).

¿ese are called the ‘geometric elements’ of ρ. For an abstract Euclidean space S, one
also needs ● an orientation of S.

Proof. ¿e space R3 is oriented by the standard basis. Fix an orientation of L; by
lemma 9.2.7 this naturally gives rise to an orientation of P = L⊥. ¿en in the isomorph-
ism P ≃ SO2(R) of corollary 9.1.6, the restriction ρ∣P ismerely a circular element, some
φ ∈ SO2(R) ≃ S1.

Notice that when describing a half-turn of the space like in corollary 9.2.9, it is use-
less to specify the orientation of the axis: the direct and indirect half-turns are equal.

9.2.10. Remark (angle measurement, continued). In R3 we are used to thinking of a
rotation as described by its axis and ‘angle θ’; here again the latter actually means ‘angle
measurement’. As we said in remark 9.1.3, one should avoid angle measurements as they
are speci�c to R and do not carry to other relevant �elds.

In other words, the description given in corollary 9.2.9 may be less usual than the
one involving angle measurement θ ∈ R, but it has the advantage of carefully avoiding
the ‘linear-to-circular’ exponentiel e iθ , and therefore of generalising to real closed �elds.

As a conclusion, and returning to the introduction:

It is generally believed that an element of SO3(R) is described by ● an axis
and ● an angle. ¿is is not correct.

Here is the correct statement:

An element of SO3(R) is described by ● an oriented axis and ● a circular
term ρ̌ ∈ SO2(R).

¿e circular term in SO2(R) ≃ S1 need not be represented by an element ofR/2πZ;
actually, it is better not to if you want to avoid unnecessary trigonometry for a problem
in linear algebra.

9.3 Exercises
9.3.1. Exercise. Let E be a Euclidean space, viz. E ≃ Rn with Euclidean structure. Prove
that the action of O(E) on the set of orthonormal bases has exactly one orbit while the
action of SO(E) has exactly two.

9.3.2. Exercise. Let ρ1 , ρ2 be two rotations of R3 with axes L1 , L2. Show that ρ1ρ2 = ρ2ρ1
i� (L1 = L2 or (L1 ⊥ L2 and ρ21 = ρ22 = Id)).

9.3.3. Exercise. Prove thatO3(R) is generated by its re�ections, viz. the elements of order 2
in O3(R) ∖ SO3(R).
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9.3.4. Exercise (classi�cation of linear isometries ofR3). Let f ∈ O(R3). Prove that f is
one of the following:

• Id or − Id ;

• a rotation, with dimker( f − Id) = 1 ;

• a re�ection, with dimker( f − Id) = 2 ;

• an improper rotation (also known as a rotary re�ection), that is the composition of
a rotation and re�ection in the same plane; then dimker( f − Id) = 0.

Solution. ¿e case of rotations is well-understood; we may suppose det f = −1, so the
product of eigenvalues is 1. Recall that f has at least one real eigenvalue.

If f has 3 real eigenvalues, then they must be −1,−1,−1 (so f = − Id) or −1, 1, 1 (re-
�ection). If f has exactly 2 real eigenvalues, the last must be real as well: a contradiction.
If f has exactly 1 real eigenvalue, the other two are complex conjugate with product 1: so
the real one is −1. Let L = ker( f + Id), which has dimension 1, and P = L⊥. Let s be the
re�ection through P. ¿en f s is a rotation but �xes L: it is a rotation in P. We are done.

10 Quaternions and rotations of the space
¿is lecture builds on §§ 8–9 and explains the relations between quaternions and rota-
tions. Quaternions code for rotations of R3; the statement is made precise in § 10.1; we
explicitly compute the geometric elements attached to γq in § 10.2.

10.1 ¿e theory: an orthogonal isomorphism
Recall two earlier notations:

• P = Vect(i , j, k) = {q ∈ H ∶ q∗ = −q} = {q ∈ H ∶ q2 ∈ R≤0} is the space of pure
quaternions;

• S = {q ∈ H ∶ ∣q∣ = 1} is the quaternion sphere.

Also recall that S ≤ H× is a subgroup, and P ≤ H is a hyperplane. Actually the linear
isometry of normed spaces (H, ∣ ⋅ ∣) ≃ (R4 , ∥ ⋅ ∥) restricts to (P, ∣ ⋅ ∣) ≃ (R3 , ∥ ⋅ ∥). ¿is
gives P the structure of a Euclidean vector space.

10.1.1. ¿eorem. As groups, one hasH×/Z(H×) = H×/R× ≃ S/{±1} ≃ SO3(R).

(¿ese are even isomorphisms of topological groups but we do not insist.)

10.1.2. Remark. H×/R×may be seen as the 3-dimensional projective space overR, with
formal de�nition:

Λ1(R4) = {vector lines in R4}.
As a corollary, the 3-dimensional projective space can be equipped with an algebraic
group structure, which is non-trivial.
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Proof.
Step 1. A continuous group homomorphism Γ∶H× → AutR(P).

Veri�cation. ¿emultiplicative groupH× acts on the R-vector space H by conjuga-
tion, i.e. for q ∈ H× one may introduce:

γq ∶ H → H
x ↦ qxq−1 ,

which is R-linear. Of course R ⋅ 1 = Z(H) is �xed pointwise. Moreover the pure
hyperplane P = Vect(i , j, k) = {x ∈ H ∶ x2 ∈ R≤0} is �xed setwise since γq(x)2 =
γq(x)2. In particular we consider the legitimate restriction:

γq ∶ P → P
x ↦ qxq−1 ,

and clearly γq ∈ AutR(P) ≃ GL3(R).
Hence we have a group homomorphism:

Γ∶ H× → AutR(P).
q ↦ γq

Notice that it is continuous (as one could work in coordinates). ◇

Let us determine its kernel and image.
Step 2. ker Γ = Z(H×) = R×.

Veri�cation. As we know, R = Z(H). ¿is implies not only Z(H×) = R× ≤ ker Γ,
but also that if q ∈ ker Γ, then q centralises both P and R, hence all of H = R ⊕ P:
thus q ∈ H× ∩ Z(H) = R×, and we are done. ◇

Step 3. im Γ = SO(P) for the quadratic structure induced by the quaternion norm.

Veri�cation. First im Γ ≤ O(P). Indeed notice how ∣γq(x)∣ = ∣qxq−1∣ = ∣q∣ ⋅ ∣x∣ ⋅ ∣q∣−1 =
∣x∣, so γq preserves the quaternion norm, which is equal to the Euclidean norm. So
one already has im Γ ≤ O(P), the orthogonal group.

Next SO(P) ≤ im Γ. Indeed, recall that SO(P) ≃ SO3(R) is generated by its
half-turns by corollary 9.2.6. Let ρ be any half-turn of P; we contend that ρ ∈ im Γ.
Let L ≤ P be the axis of ρ; there is q ∈ S such that L = Rq. Recalling the behaviour
of squares in P, one has q2 ∈ S ∩ R≤0 = {−1}. Since Γ is a morphism, one �nds
Γ(q)2 = Γ(−1) = IdP ≠ Γ(q), so Γ(q) is a half-turn, but each half-turn is determined
by its axis. Since Γ(q)(q) = qqq−1 = q, the axis of Γ(q) is Rq. ¿is proves that
ρ = Γ(q) ∈ im Γ. We use corollary 9.2.6 to deduce SO(P) ≤ im Γ.

We �nish by a simple connectedness argument: S is connected and Γ is continu-
ous, so Γ(S) ≤ O(P) is connected. But O(P) is not connected (the determinant takes
two values), so im Γ < O(P). Since [O(P) ∶ SO(P)] = 2, we �nd im Γ = SO(P). ◇
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¿is proves the theorem.

10.1.3. Remarks.

• We have seen in theorem 4.3.4 the isomorphism S ≃ SU2(C, ∗). As a corollary,
SU2(C, ∗)/{±1} ≃ SO3(R); there are direct proofs without quaternions.

• ¿e quaternion sphere S is therefore a double cover of SO3(R); in order to de-
termine which, one needs either more algebra (like in theorem 4.3.4) or more
geometry/Lie theory, as follows.

¿e group SU2(C, ∗) is simply connected; so is S, like any hypersphere of dimen-
sion ≥ 2. ¿ese are therefore two connected, simply connected Lie groups with
the same Lie algebra so3(R); by uniqueness of the simply connected form, they
are Lie-isomorphic.

• ¿e most interesting aspect here is that SO3(R), though connected, is not simply
connected. ¿is is well illustrated by Dirac’s ‘cup trick’. Hold a cup, then circle
your hand: once under your shoulder, then above your shoulder.

¿e �rst turn brings the cup back to its initial position, but not your arm: the
successive positions of the cup describe a closed path γ in SO3(R) from Id to Id.
But your arm is twisted: the path is not homotopic to the constant path 1. ¿e
second turn will free your arm: γ2 is homotopic to 1; there is an element of order
2 in the fundamental group π1(SO3(R)), which actually generates it (something
the cup trick does not give).

• How come you did not already know the ‘spinor group’ SU2(C, ∗)? It is because
it has no representation which is both faithful and irreducible. For instance, re-
turning to the faithful real representation of proposition 4.3.2:

{(c1 −c2
c∗2 c∗1

) ∶ (c1 , c2) ∈ C2} ,

one sees that {( z
−z∗) ∶ z ∈ C} is a (real) invariant subspace.

¿e theorem also gives an explanation of SO3(R)-invariance of ×.

10.1.4. Corollary. If f ∈ SO3(R), then f (u × v) = f (u) × f (v).

Quaternion proof of SO3(R)-invariance of ×. We embed the problem in the algebra
of quaternions (formula 8.2.3) and use theorem 10.1.1. Being a rotation, f is the con-
jugation γq by some q ∈ S. So using that R is central inH:

f (u) × f (v) = f (u) ⋅ f (v) + ⟨ f (u)∣ f (v)⟩
= γq(u) ⋅ γq(v) + ⟨u∣v⟩
= γq(u ⋅ v) + γq(⟨u∣v⟩)
= γq(u ⋅ v + ⟨u∣v⟩)
= f (u × v).
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10.2 Geometric elements
By theorem 10.1.1, quaternions code for elements of SO3(R), because they act by conjug-
ation on Vect(i , j, k) = P. Now according to corollary 9.2.9, every rotation of R3 is de-
scribed by its ‘geometric elements’, viz. an oriented axis L and an element of SO2(R) ≃ S1.
Given a quaternion q, we shall give the ‘geometric elements’ of γq explicitly. ¿e space
P is oriented by taking (i , j, k) to be direct.

10.2.1. Proposition. Let q ∈ H ∖R and ρq = (γq)∣P be the associated rotation of P ≃ R3

(mapping z to qzq−1). Write q = a + y with a ∈ R, y ∈ P ∖ {0}.
¿en ρq is the rotation of P ≃ R3 with:

• axis Ry, oriented by y;

• circular term (c −s
s c ) with c = a2−∣y∣2

a2+∣y∣2 , s =
2a∣y∣
a2+∣y∣2 , following the orientation of

(Ry)⊥ induced by that of Ry.

Proof. First, ρq is a non-trivial rotation since q ∉ Z(H×) = R×. So it has awell-de�ned
axis. As we know, q commutes with y, soRy ≤ P is �xed by γq : it is the axis of ρq , and
we naturally orient it by choosing y. ¿e space P is oriented by deciding that (i , j, k)
is a direct basis.

Recall that a rotation matrix is conjugate to:

⎛
⎜
⎝

c −s
s c

1

⎞
⎟
⎠
,

so its trace is 1 + 2c. Let us compute Tr ρq .
First notice that:

q−1 = q∗

∣q∣2 =
a − y

a2 + ∣y∣2 ,

so writing y = bi + c j + dk in coordinates, and projecting back onto Ri one �nds:

π i [ρq(i)] = π i [qiq−1]

= 1
a2 + ∣y∣2 π i [(a + bi + c j + dk)i(a − bi − c j − dk)]

= 1
a2 + ∣y∣2 π i [(ai − b − ck + d j)(a − bi − c j − dk)]

= 1
a2 + ∣y∣2 (a

2 + b2 − c2 − d2)i .

From there it is easy to deduce that:

Tr ρq =
1

a2 + ∣y∣2 (3a
2 − b2 − c2 − d2)

= 1
a2 + ∣y∣2 (3a

2 − ∣y∣2)

= 1 + 2 a
2 − ∣y∣2
a2 + ∣y∣2 .
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¿erefore c = a2−∣y∣2

a2+∣y∣2 , but we still have to �nd s. A quick estimate gives:

s2 = 1 − c2 = ( 2a∣y∣
a2 + ∣y∣2 )

2

,

but determining s requires a sign information. In general this is achieved through
estimating the sign of det(y, x , ρ(x)), where y orients the rotation axis and x ∉ Ry. If
the sign is positive, the angle is < π (in the chosen orientation).

Return to our earlier computation of ρq(i); one �nds:

ρq(i) =
1

a2 + ∣y∣2 [(a2 + b2 − c2 − d2)i + 2(bc + ad) j + 2(bd − ac)k] .

In particular,

det(y, i , ρy(i)) =
1

a2 + ∣y∣2

RRRRRRRRRRRRR

b 1 a2 + b2 − c2 − d2
c 0 2(bc + ad)
d 0 2(bd − ac)

RRRRRRRRRRRRR

= −2
a2 + ∣y∣2 ∣c bc + ad

d bd − ac∣

= 2a(c2 + d2)
a2 + ∣y∣2 ,

which has the sign of a and of 2a∣y∣
a2+∣y∣2 . But returning to the standard form of a rotation

matrix, this should also be the sign of s: hence s = 2a∣y∣
a2+∣y∣2 .

10.2.2. Remark. ¿ere are three traditional ways of describing rotations of R3: Euler
angles, orthogonal matrices, and quaternions.

• Euler angles, though famous, have many disadvantages. ¿ey rely on trigono-
metry and lead to horrible computations. (¿e reason they were used and remain
popular is that angle measurement is seemingly intuitive; in the real life, angles
seem to be the most natural parameters to measure.) In short, Euler angles are
decent for physical measurements, but hard to manipulate both for a human and
a machine.

• Orthogonal matrices have the advantage of belonging to linear algebra; every hu-
man and machine knows about them. However, an element in SO3(R) is then
described by a 3×3-array: this is greedy in space, and leads to computations which
are longer than really needed. Last, any approximation error in one of the entries
of the matrix will result in progressive loss of orthogonality.

• Quaternions havemostly advantages: they use only 4 parameters (3 if one restricts
to the sphere) and exhibit numerical stability. Of course, they are ‘hidden’: there
is nothing immediately measurable in them.

10.3 Exercises
10.3.1. Exercise.

1. Let q ≠ 0; write the matrix of γq in the standard basis (i , j, k).
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2. Conversely let M ∈ SO3(R). Give explicitly R×q0, the family of quaternions such
that γq has matrix M in (i , j, k).

10.3.2. Exercise. Using the classi�cation of isometries in O3(R) (exercise 9.3.4), give an
alternative proof of in the end of theorem 10.1.1 that im Γ ≤ SO3(R).

Solution. Notice thatH has no subalgebras of dimension 3 (see theorem 3.3.1), and that
every subalgebra containsR. As a result, for any subalgebraA ≤ H, one has dim(A∩P) =
1 or 3.

Now take q ∈ S. ¿en ker(γq − Id) = CP(q) = CH(q) ∩ P is one such intersection,
so it has dimension 1 or 3. In the latter case, γq = Id; in the former, it is a rotation. But
in either case, γq ∈ SO(P) and we are done.

10.3.3. Exercise. Prove that (S3 × S3)/{(1, 1), (−1,−1)} ≃ SO4(R). Hint: for (q1 , q2) ∈
S3 × S3, consider the map x ↦ q1xq−12 . Prove that this de�nes a continuous morphism
S3 ×S3 → O(H,N) ≃ O4(R). Compute its kernel, show that SO4(R) is in the image, and
�nish using connectedness.

Solution. For simplicity of notation, let S = S3. We consider the suggested action,
viz. (q1 , q2) ∈ S × S acts on the vector space R4 ≃ H by:

βq1 ,q2 ∶ R4 → R4 .
x ↦ q1xq−12

¿is map is linear, so is in EndR(R4). It also preserves the quaternion norm since
q1 , q2 have norm 1; but the quaternion norm on H is the canonical Euclidean norm on
R4. ¿erefore βq1 ,q2 ∈ O(R4) for the usual Euclidean structure. However, we are not
quite sure about its determinant for the moment so it is unclear whether it is in SO(R4);
this will require a �nal connectedness argument.

Now consider:
Φ∶ S × S → O(R4),

(q1 , q2) ↦ βq1 ,q2
clearly a group homomorphism. Notice that its kernel is the set of pairs (q1 , q2) such
that identically q1x = xq2; then q1 = q2 ∈ Z(H) = R, but also q1 ∈ S. ¿ere remains
kerΦ = {±(1, 1)} (not {(±1,±1)}, be careful).

It remains to compute the image. We write B = (1, i , j, k) for the usual basis of
R4 ≃ H as a real vector space. Let ρ ∈ SO(R4), so B′ = (ρ(1), ρ(i), ρ( j), ρ(k)) is
a direct orthonormal basis of R4. First suppose ρ(1) = 1. ¿en ρ(i), ρ( j), ρ(k) are in
1⊥ = P, and form a direct orthonormal basis ofP. But recall that S/{±1} ≃ SO3(R)when
acting by conjugation onP; in particular, it is transitive. ¿erefore, in case ρ(1) = 1, there
is q ∈ S which conjugates B to B′, viz. qxq−1 = ρ(x) everywhere. For the general case,
consider the basis B′′ = (1, ρ(1)−1ρ(i), ρ(1)−1ρ( j), ρ(1)−1ρ(k)), which is orthonormal
and direct again (one needs to compute or see something). ¿ere is q ∈ S such that
conjugation by q performs B → B′′; now the map x ↦ ρ(1)qxq−1 takes B to B′. ¿is
shows ρ ∈ imΦ, or SO4(R) ≤ imΦ ≤ O4(R).

We �nish using a connectedness argument. ¿e group morphism Φ is continu-
ous and S × S is clearly path-connected. So imΦ ≤ O(R4) is connected and contains
SO(R4). Since O(R4) itself is not connected, we �nd imΦ = SO(R4).

10.3.4. Exercise. ¿e goal of this exercise is to show that every automorphism of the ring
H is inner, viz. a conjugation automorphism γq .
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1. Prove that Autring(R) = {Id}. Hint: a ring automorphism must preserve the order-
ing, hence the topology: it is continuous. ¿en use density of the rationals.
(Remark: this does not generalise to non-Archimedean real closed �elds.)

2. Digression: there are only two continuous automorphisms of the topological ringC.

(Shocking remark: Autring(C) has cardinality is 22ℵ0 .)

3. Now let φ ∈ Autring(H). Prove that φ is inner as follows.

a. Show that φ �xes R ≤ H setwise, hence pointwise.
b. Show that φ �xes P setwise, and actually acts as an isometry φ∣P ∈ O(P).
c. If det (φ∣P) = 1, show that φ is some conjugation automorphism.

d. If det (φ∣P) = −1, contradict the fact that −φ∣P is multiplicative.

Solution.

1. Let φ ∈ Autring(R), which is the same as Autfield(R). ¿en φ preserves the set
of squares, which is exactly R≥0, hence also the order relation. Now φ being a
�eld automorphism must �x the rationals pointwise; by Archimedeanity, these
are dense in R. If there is x ∈ R with φ(x) ≠ x, then we may assume φ(x) > x
and take a rational q with x < q < φ(x); then φ(x) < φ(q) = q, a contradiction.
Remark. Generalising to other �elds, one needs a couple of properties from R:
to be formally real, to be so-called Euclidean (every element is either a sum of
squares, or the opposite of such a sum), to be Archimedan (the natural numbers
are co�nal, equivalently the rational numbers are dense).

2. Same ideas. A continuous φ ∈ Autring(C) will �x the rationals pointwise, so by
continuity it will also �xR pointwise. ¿en φ(i) = ±i gives rise to the two distinct
possibilities: identity and conjugation.

Without continuity, one can always permute a transcendence basis of C, very
much like in a vector space one can always permute a linear basis. Since any tran-
scendence basis has cardinal 2ℵ0 , it admits 22

ℵ0 distinct permutations, which give
rise to that many distinct �eld automorphisms. ¿is is clearly the maximal pos-
sible cardinal for Autring(C) ⊆ CC.

3. Let φ ∈ Autring(H) be a ring automorphism.

(a) Being a ring automorphism, φ stabilises Z(H) = R, so φ∣R = IdR. In par-
ticular one now has φ ∈ AutR(H), viz. φ is an automorphism of H as an
R-algebra.

(b) Recall that the pure quaternionic hyperplane P = Vect(i , j, k) is also P =
{q ∈ H ∶ q2 ∈ R≤0}. So φ must stabilise P, and we focus on the restriction
φ∣P; it is enough to �nd q with φ∣P = γq∣P since they have the same (trivial)
action on R. Slightly abusing notation we write φ for this restriction; this is
harmless.
OnP, themap q ↦ ∣q∣2 is simply q ↦ −q2, which is preserved by φ; it follows
that φ ∈ O(P).
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(c) If detφ = 1 then φ ∈ SO(P). But when proving the isomorphism S/{±1} ≃
SO3(R) we showed that maps in SO(P) are obtained through quaternion
conjugation: in this case, there is q with φ = γq (a priori on P, but then as
we said, onH = R⊕ P as well).

(d) If detφ = −1 then −φ ∈ SO(P); so there is q with −φ = γq . ¿en by multi-
plicativity:

φ(k) = φ(i j)
= −γq(i j)
= −γq(i)γq( j)
= −φ(i)φ( j)
= −φ(k),

which is a contradiction.

Remarks.

• In general, over an arbitrary real closed �eld, one can only factor φ into
an inner automorphism of H (or the R-analogue) and an automorphism
induced by one ofR.

• Returning over R, one therefore has:

Autring(H) ≃ H×/Z(H×) ≃ SO3(R).

More surprisingly, Autring(O) ≃ G2 (see § 5.3).

10.3.5. Exercise (Rodrigues’ formula). Let ρ be the rotation of R3 with oriented axis Ru
for ∥u∥ = 1, and circular term ρ ∈ SO(u⊥) (with respect to the orientation). In any direct

orthonormal basis of u⊥ let (cs) be the �rst column of the matrix of ρ. ¿en for x ∈ R3:

ρ(x) = (1 − c) ⟨u∣x⟩u + cx + su × x .

1. Give a direct proof. Hint: take x ∉ Ru, let y be the orthogonal projection of x onto
Ru, and let z = x − y. Work in the basis (u, 1

∥z∥ z,
1
∥z∥u × z).

2. Give a proof using quaternions and the relationships between ⋅, ×, ⟨⋅∣⋅⟩.

Solution.

1. Wemay assume x ∉ Ru, or there is notmuch to prove. Let y ≠ x be the orthogonal
projection of x onto the rotation axis: since ∥u∥ = 1, we know that y = ⟨u∣x⟩u. Of
course ρ(y) = y.
Now z = x − y is the orthogonal projection of x onto the rotation plane P. ¿en
B = (u, z

∥z∥ ,
1
∥z∥u × z) is a direct, orthonormal basis of R

3 in which the matrix of
ρ is obvious:

MatB ρ =
⎛
⎜
⎝

1 0 0
0 c −s
0 s c

⎞
⎟
⎠
.
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In particular,

ρ(z) = ∥z∥ρ ( z
∥z∥) = ∥z∥(c z

∥z∥ + s
1

∥z∥u × z) = cz + su × z.

Finally:

ρ(x) = ρ(y) + ρ(z)
= y + c(x − y) + su × (x − y)
= (1 − c)y + cx + su × x − su × y
= (1 − c) ⟨u∣x⟩u + cx + su × x − s ⟨u∣x⟩u × u
= (1 − c) ⟨u∣x⟩u + cx + su × x

2. Let q = a + y, with a ∈ R and y ∈ P. We suppose y ≠ 0. As in the proof of
proposition 10.2.1, ρq denotes conjugation by q restricted to P, that is: ρq(x) =
qxq−1 = 1

∣q∣2 qxq
∗. It will be simpler to compute ∣q∣2ρq(x).

Recall the Lagrange identity: u × (v × w) = ⟨u∣w⟩ v − ⟨u∣v⟩w. In particular, one
has y × (y × x) = ⟨y∣x⟩ y − ∣y∣2x. We are ready:

∣q∣2ρq(x) = [(a, y) ⋅ (0, x)] ⋅ (a,−y)
= (− ⟨y∣x⟩ , ax + y × x) ⋅ (a,−y)
= (−a ⟨y∣x⟩ + a ⟨x∣y⟩ + ⟨y × x∣y⟩ ,

⟨y∣x⟩ y + a2x + ay × x − ax × y − (y × x) × y) .

As expected, the real part is trivial. Now letting u = y
∣y∣ , the vector term simpli�es

into:

∣q∣2ρq(x) = ⟨y∣x⟩ y + a2x + 2ay × x + ⟨y∣x⟩ y − ∣y∣2x
= 2∣y∣2 ⟨u∣x⟩u + (a2 − ∣y∣2)x + 2a∣y∣u × x .

Hence:
ρq(x) =

2∣y∣2
a2 + ∣y∣2 ⟨u∣x⟩u + a2 − ∣y∣2

a2 + ∣y∣2 x +
2a∣y∣

a2 + ∣y∣2 u × x ,

and knowing the geometric elements u, c, s of ρq from proposition 10.2.1, we re-
cognise ρq(x) = (1 − c) ⟨u∣x⟩ x + cx + su × x.

10.3.6. Exercise (the quaternion exponential). In this exercise, as opposed to the rest of
the notes, we do need the base �eld to beR (or at least to enjoy good topological properties
which we do not wish to axiomatise), because we do use trigonometric functions.

For q ∈ H, the series∑ 1
n! q

n is absolutely convergent, hence convergent. We let exp(q),
also eq , be its limit.

1. Let ℓ ∈ H be such that ℓ2 = −1. Prove that for any t ∈ R, one has e tℓ = cos t+(sin t)ℓ.
(Hint: R[ℓ] ≃ R[i] naturally.)

2. Conversely prove that any quaternion of norm 1 can be written in the form e tℓ with
t ∈ R and ℓ2 = −1.
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3. Let q = a + bi + c j + dk = a + y with a ∈ R and y ∈ P; prove that:

eq = ea ⋅ (cos ∣y∣ + sin ∣y∣
∣y∣ y) .

(As always one continuously extends the cardinal sine function by sin 0
0 = 1.)

4. Let ℓ ∈ H be such that ℓ2 = −1. Prove that conjugation by e tℓ is the rotation of P
with axis Rℓ, and angle measure 2t mod 2π.

Remark. One should not be too enthusiastic; I believe that there can be no extension to
quaternions of the complex (holomorphic) calculus. For instance, due to lack of com-
mutativity, Taylor expansions are simply unmanageable. In my opinion, attempts have
not proved successful; an expository paper on the topic is not completely convincing.6

Solution.

1. Suppose ℓ2 + 1 = 0. ¿en the map:

φ∶ C → R[ℓ]
a + bi ↦ a + bℓ

is an isomorphism of �nite-dimensional R-algebras, in particular is continuous.
Let En(q) = ∑n

k=0
qk

k! . By de�nition, En(ti) → e t i in C while En(tℓ) → e tℓ in
R[ℓ]. By continuity, we get:

φ(e t i) = φ (lim
n
En(ti)) = limn φ (En(ti)) = limn En(tℓ) = e tℓ .

Computing in C on the other hand, e t i = cos t + (sin t)i by the usual Euler for-
mulas. By linearity, we therefore have:

e tℓ = φ(e t i) = φ(cos t + (sin t)i) = cos t + (sin t)ℓ.

2. Let q have norm 1. If q is real then either q = 1 = e0i or q = −1 = eπi . If q is
not real, then R[q] ≃ C; we work there. And there, q is a complex number with
modulus 1, hence of the desired form.

3. In general eq1+q2 and eq1 ⋅ eq2 are di�erent; however equality holds if q1 and q2
commute. Moreover the quaternion exponential clearly extends the complex ex-
ponential; hence if q = a + y with a ∈ R and y ∈ P, then eq = ea ⋅ e y .
So we are reduced to computing e y for a pure quaternion y. Wemay assume y ≠ 0.
Let y′ = 1

∣y∣ y, which squares to −1. ¿en:

e y = e∣y∣y
′

= cos ∣y∣ + (sin ∣y∣)y′ = cos ∣y∣ + sin ∣y∣
∣y∣ y.

4. We know that conjugation γq by q ∉ Z(H) is a rotation of P. Here, e tℓ and ℓ
commute, so γe tℓ centralises ℓ ≠ 0, therefore the axis isRℓ. It remains to compute
the angle.

6Deavours, C, ‘¿e quaternion calculus’, American Mathematical Monthly, 80 (9), 995-–1008, 1973
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First suppose ℓ = i. ¿en see that:

e t i je−t i = (cos t + sin ti) j(cos t − sin ti) = (cos2 t − sin2 t) j + 2 cos t sin tk,

and e t ike−t i = (cos2 t − sin2 t)k − 2 cos t sin t j likewise. ¿erefore

Mat(i , j ,k) γe t i =
⎛
⎜
⎝

1
cos2 t − sin2 t −2 cos t sin t
2 cos t sin t cos2 t − sin2 t

⎞
⎟
⎠
,

and we recognise the matrix of the rotation with oriented axis Ri and angle 2t.
For the general case, we let S act transitively by conjugation on the quaternion
sphere: there is x ∈ H such that xix−1 = ℓ. But then, γℓ = γx ○ γ i ○ γ−1x is a
conjugate of γ i , so its geometric elements are: oriented axis γx(Ri) = Rℓ, angle
measure 2t mod 2π, as desired.
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