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Introduction
To solve the linear equation x′′(t) − 2x′(t) + x(t) = 0, one is told to �rst
solve polynomial λ2 − 2λ+ 1 = 0 (with double root 1) and then write x(t) =
c1e t + x2 te t . Why?

A partial answer is of course that:

1. by theCauchy-Lipschitz (also known as Picard-Lindelöf) theorem, the set of solu-
tions is a vector space of dimension 2; and

2. one can check that functions e t and te t are solutions, and linearly independent.

While 1. is satisfactory but begs for more linear algebra, 2. remains somehow magical,
and simply begs for more linear algebra. We therefore reformulate question ‘Why?’ as
follows.

Question. Is there a way to combine the exponential map with linear algebra, and apply
it to linear di�erential equations?

¿is class provides a positive answer. In § 1 we recast the tools necessary for § 2,
where we de�ne and give the �rst properties of the matrix exponential. In § 3 we in-
troduce the important Chevalley decomposition, which helps compute the matrix expo-
nential; its interest goes beyond that course. Sections 4 and 5 are more advanced: § 4
studies further analytic properties and requires some familiarity withmulti-variable cal-
culus; § 5 shows how the matrix exponential allows one to study certain matrix groups.
Fortunately both are optional reads. Finally we turn to linear ode’s in § 6.

¿is class should be accessible to a third year student; it is not completely self-
contained, as described below.

Prerequisites
Analysis and topology: We need only basic notions from analysis: distances, continu-

ity, convergence, Cauchy sequences, completeness, series. (Fortunately, one does
not need to be skilled in the art of computing series.) Topologically one is ex-
pected to know compactness and the ‘extreme value theorem’ that a real-valued,
continuous map on a compact set is bounded and attains its bound.

Functional analysis: ¿enotion of a normed vector space will be re-introduced in § 1.2
but some preliminar familiarity helps: over a real or complex, �nite-dimensional
vector space, all norms are equivalent.

Linear algebra: We must borrow a little more from linear algebra: eigenvalues and ei-
genvectors, the Cayley-Hamilton theorem, diagonalisation, trigonalisation. Poly-
nomials of matrices play a constant role.

It is good to be trained in thinking ‘up to conjugacy’. We put emphasis on abstract
properties, not on computing base changes.

Di�erential geometry (optional): At some point there is a little (optional) di�erential
geometry; in order to read § 4, onemust be familiar with the di�erential (in many
variables), di�eomorphisms, and the inverse function theorem.
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Quadratic algebra (optional): For § 5, one needs decent training in scalar products
and Hermite/complex scalar products; hermitian and unitary matrices, and their
diagonalisation properties; or at least, their real analogues.

Di�erential equations: If you could read the introduction, you know enough.

1 Trying to generalise the complex case
In this section we review the formalisation of the exponential of complex numbers in
order to carry it to matrices. In § 1.1 we inspect the classical construction in the complex
case. In order to generalise, one needs a vector analogue of the modulus ∣ ⋅ ∣, the so-
called norms (§ 1.2), and then see how norms on matrix spaces interact with matrix
multiplication (§ 1.3).

1.1 ¿e complex exponential
As one expects, the �eld of real numbers is denoted by R. For the set of non-negative
real numbers, we use R≥0; for positive real numbers, we write R>0. Notation such as
R∗, R+, R++ are strongly discouraged; in general, an analyst’s notation tend to obscure
algebraic structures. ¿e �eld of complex numbers is denoted byC; there is no ordering
on C compatible with its algebraic structure, so ‘C>0’ is completely meaningless. Most
of what we do takes place over R or C indi�erently; so throughout, K denotes R or C.
As algebraic structures the �elds R and C are well-understood, and we add more data,
a notion of distance (and hence a topology).

Recall that R and C are equipped with

∣ ⋅ ∣∶ C → R≥0
z ↦ ∣z∣ ,

a map called the modulus, or the absolute value when the focus is on real numbers. It
enjoys familiar properties.

1.1.1. Properties.

• (∀z ∈ C)(∣z∣ = 0↔ z = 0).

• (∀z1 , z2 ∈ C)(∣z1 + z2∣ ≤ ∣z1∣ + ∣z2∣) (‘triangle inequality’).

• (∀z1 , z2 ∈ C)(∣z1 ⋅ z2∣ = ∣z1∣ ⋅ ∣z2∣).

In particular, ∣ ⋅ ∣ is a distance in the sense of metric topology, thus giving rise to a
notion of convergence.

1.1.2. De�nition. Let (zn) ∈ CN be a sequence of complex numbers.

• ¿e sequence converges to ℓ ∈ C if:

(∀ε ∈ R>0)(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 → ∣zn − ℓ∣ < ε),

in which case ℓ is called the limit of the sequence; indeed, if it exists, ‘the’ limit is
unique. As usual this is indicated by zn ÐÐÐ→n→∞

ℓ or simply zn Ð→ ℓ.
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• ¿e sequence is a Cauchy sequence if:

(∀ε ∈ R>0)(∃n0 ∈ N)(∀p, q ∈ N)(p ≥ q ≥ n0 → ∣zp − zq ∣ < ε).

It is easily seen by the triangle inequality that every convergent sequence is a Cauchy
sequence. ¿e converse actually holds.

1.1.3. ¿eorem (admitted from analysis). ¿e metric space C is metrically complete,
viz. every Cauchy sequence is convergent. Since R is a closed subset of C, the same holds
of R.

We apply this to series. A series is just the sequence of partial sums of an ‘in�nite
sum’; due to their historical and technical signi�cance, they are sometimes taught in
speci�c classes by analysts. Suppose we are trying to sum an in�nite amount of complex
numbers, say the numbers zn . We then write:

• ∑ zn for the series itself;

• Sn = ∑n
k=0 zk for the partial sum up to n; hence (Sn) is another notation for∑ zn ;

• ∑∞n=0 zn for the limit of Sn , if it exists.

1.1.4. De�nition. Let ∑ zn be a series of complex numbers. Call the series absolutely
convergent if the real non-negative series∑∣zn ∣ is convergent.

Notice that since∑∣zn ∣ is real and non-negative, it is convergent i� bounded above.

1.1.5. Corollary. Let ∑ zn be a complex series. Suppose it is absolutely convergent. ¿en
it is convergent.

Proof. Let Sn = ∑n
k=0 zk ; we must prove that the sequence (Sn) is convergent. ¿e

proof uses completeness (theorem 1.1.3): we simply prove that (Sn) is a Cauchy se-
quence. Let ε ∈ R>0; we look for suitable n0. By assumption, the series ∑∣zn ∣ is con-
vergent. ¿is means that the sequence Tn = ∑n

k=0 ∣zk ∣ is convergent. We relate (Sn)
and (Tn) as follows.

Notice that when p > q are �xed integers, one has:

∣Sp − Sq ∣ = ∣
p

∑
k=0

zk −
q

∑
k=0

zk∣

=
RRRRRRRRRRRR

p

∑
k=q+1

zk
RRRRRRRRRRRR

≤
p

∑
k=q+1

∣zk ∣

= Tp − Tq .

(¿e same vacuously holds if p = q.) Since (Tn) is convergent, it is a Cauchy sequence.
It also is non-decreasing (being a series of non-negative real numbers). So there is
n0 ∈ N such that for all integers p, q, one has:

p ≥ q ≥ n0 → 0 ≤ Tp − Tq < ε.
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By the above, for p ≥ q ≥ n0 one has ∣Sp − Sq ∣ = Tp − Tq < ε, which means that (Sn)
itself is a Cauchy sequence.

¿is may not look like much but allows us to introduce the complex exponential, a
de�nition we want to generalise to matrices.

1.1.6. ¿eorem. For all z ∈ C, the series∑ zn
n! converges.

Proof. It su�ces to prove that the series is absolutely convergent, so bymultiplicativity
of ∣ ⋅ ∣ we are le with dealing with∑∣ z

n

n! ∣ = ∑
∣z∣n
n! . So we may work with ∣z∣ ∈ R≥0; for

simplicity denote it by t. Of course we may assume t > 0; it is a �xed, positive, real
number. We are studying∑ tn

n! .
Let n0 ∈ N be such that n0 ≥ 2t. ¿en for n ≥ n0, one has:

tn+1

(n + 1)!
= t
n + 1

⋅ t
n

n!
≤ 1
2
⋅ t

n

n!
≤ ⋯ ≤ ( 1

2
)
n−n0

⋅ t
n0

n0!
.

¿is allows us to split the series into two:

∑
tn

n!
= ∑

n<n0

tn

n!
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Σ1

+ ∑
n≥n0

tn

n!
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Σ2

.

¿e �rst sum Σ1 is obtained through �nite summation; the series Σ2 is clearly conver-
gent since:

∑
n≥n0

tn

n!
≤ ∑
n≥n0

( 1
2
)
n−n0

⋅ t
n0

n0!
.

Hence the real series ∑ tn
n! converges, meaning that the complex series ∑

zn
n! is

absolutely convergent, hence convergent by Corollary 1.1.5.

¿is de�nes the complex exponential exp∶C → C×. We admit that it is a group
homomorphism (C,+) → (C× , )̇ as we do not want to manipulate series. (¿is is done
in exercise 1.4.1.)

1.1.7. Remark. Proper study of the complex exponential belongs to complex analysis,
and the theory of holomorphic functions. Indeed exphas fascinating analytic properties,
and is arguably deeper a topic than thematrix exponential. Howeverwe shall not discuss
them. See Rudin’s classical Real and Complex Analysis for more.

1.1.8. Inspection and discussion. In order to adapt the construction of the complex
exponential to the matrix case, we have a couple of tasks:

T1 . �nd a suitable analogue of ∣ ⋅ ∣ for matrices;

T2 . obtain convergence criteria for series in matrix spaces, extending Corollary 1.1.5 ;

T3 . �nd a substitute formultiplicativity of ∣⋅∣, whichmay no longer holdwithmatrices.

Tasks T1 and T2 are treated in § 1.2 and task T3 in § 1.3. ¿en in § 2 we can start
studying the matrix exponential.
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1.2 Normed vector spaces
We handle tasks T1 and T2 given in discussion § 1.1.8, viz.:

T1 . �nd a suitable analogue of ∣ ⋅ ∣ for matrices;

T2 . obtain convergence criteria for series in matrix spaces, extending Corollary 1.1.5.

Recall thatK stands for R or C.

1.2.1. De�nition. Let V be a K-vector space. A norm on V is a map ∥ ⋅ ∥∶V → R≥0
satisfying:

• (∀v ∈ V)(∥v∥ = 0↔ v = 0);

• (∀v1 , v2 ∈ V)(∥v1 + v2∥ ≤ ∥v1 + v2∥);

• (∀λ ∈ K)(∀v ∈ V)(∥λ ⋅ v∥ = ∣λ∣ ⋅ ∥v∥).

Notice that ∣ ⋅ ∣ is actually a norm on C seen as either a R- or a C-vector space. But
there are of course many more examples. We shall focus on �nite-dimensional spaces.

1.2.2. Examples. Let V = Kn . De�ne:

• ∥(x1 , . . . , xn)∥1 = ∑n
k=1 ∣xk ∣;

• ∥(x1 , . . . , xn)∥2 =
√
∑n

k=1 ∣xk ∣2;

• ∥(x1 , . . . , xn)∥∞ = maxk=1. . .n ∣xk ∣.

¿en each is a norm onV . (For ∥ ⋅∥2 there is of course something to understand relating
to scalar products and the Cauchy-Schwarz inequality; the notion is supposed to be
familiar.)

¿is ful�lls task T1 and we turn to T2. A norm, being a distance, gives rise to a to-
pology; the notions of a convergent sequence, of a Cauchy sequence (recalled in de�ni-
tion1.1.2) are obtained replacing ∣⋅∣ by ∥⋅∥; as usual withmetric topologies, a sequence has
at most one limit. We are trying to prove completeness of matrix spaces when equipped
with norms. But we have a situation: there are plenty of norms, so on the face of it there
are many distinct topologies coming from norms. Which to choose?

1.2.3. De�nition. Let V be a K-vector space. Two norms N ,N ′ are equivalent if there
is c ∈ R>0 such that:

(∀v ∈ V)(N(v) ≤ cN ′(v) ∧ N ′(v) ≤ cN(v)).

¿is means that each of the norm bounds the other. One may write the de�nition
in many equivalent ways (with two distinct constants, with 1

c . . . ); our formulation is
symmetric, which is always nice.

1.2.4. Lemma. Suppose N and N ′ are equivalent norms on V. ¿en they de�ne the same
topology (and the same notion of boundedness).

Proof. Let c witness equivalence, viz. (∀v ∈ V)(N(v) ≤ cN ′(v) ∧ N ′(v) ≤ cN(v)).
Clearly ‘N-bounded’ and ‘N ′-bounded’ bear the samemeaning; we turn to topologies.

Here is a proof if you know what an abstract topology is. We prove that N and N ′
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give rise to the same open sets. Let X ⊆ V be any subset; it is enough to supppose that
X is N-open, and prove that it is N ′-open. So let x ∈ X; by assumption there is ε ∈ R>0
such that BN(x , ε) ⊆ X. ¿en clearly BN′(x , 1c ε) ⊆ X. So X is N ′-open. We conclude
symmetrically.

In case you don’t know what a topology is, we prove that the two norms give rise
to the same notion of convergence. So suppose (vn) ∈ VN is a sequence which is
convergentwith respect toN , viz. there is ℓ ∈ V such that vn Ð→ ℓ [N] (sometimes this
is indicated by vn

NÐ→ ℓ). We prove that vn Ð→ ℓ [N ′]. Let ε ∈ R>0. Now vn Ð→ ℓ [N],
so there is n0 such that:

(∀n ∈ N) (n ≥ n0 → N(vn − ℓ) <
1
c
ε) .

Fix such n0; for any n ≥ n0 one then has N ′(vn − ℓ) ≤ c ⋅ N(vn − ℓ) < ε, which proves
vn Ð→ ℓ [N ′]. We conclude symmetrically.

Hence two equivalent norms give rise to the same topology.

1.2.5. ¿eorem. (As always, K = R or C.) Let V be a �nite-dimensional K-vector space.
¿en all norms on V are equivalent.

Proof not covered in class.

Proof. Hopefully this is familiar; the idea is to use as little as possible. Notice that
equivalence of norms is a transitive relation. So it su�ces to prove that every norm
is equivalent to one norm of reference. We shall transfer the problem to (Kn , ∥ ⋅ ∥∞),
which has good topological properties.

LetB = (b1 , . . . , bn) be a basis ofV . By de�nition, for each v ∈ V there is a unique
tuple (λ1 , . . . , λn) ∈ Kn with v = ∑ λkbk . Put ∥v∥B = maxk=1. . .n ∣λk ∣. It is easily seen to
be a norm. Now take any other norm N on V ; we prove it is equivalent to ∥ ⋅ ∥B.

First, in the notation above,

N(v) ≤
n
∑
k=1

N(λkbk) =
n
∑
k=1

∣λk ∣N(bk) ≤ n∥v∥B ⋅ max
k=1. . .n

N(bk).

Notice that c1 = nmaxk=1. . .n N(bk) is a �xed real number, so we have one desired
inequality: N(v) ≤ c1∥v∥B.

A converse inequality, viz. bounding ∥v∥B by a multiple of N(v), requires some
topology. Consider the set:

C = {(λ1 , . . . , λk) ∈ Kn ∶ max
k=1. . .n

∣λk ∣ = 1} ,

which is the unit sphere in (Kn , ∥ ⋅ ∥∞). ¿anks to completeness of K recalled in
theorem 1.1.3, one easily gets that C is compact, for instance through the sequential
characterisation that every sequence has a converging subsequence. So move to:

f ∶ C → R>0
(λ1 , . . . , λn) ↦ N(∑n

k=1 λkbk).

¿is map is continuous and C is compact; by the extreme value theorem, f attains a
minimum on C. Notice that f does not vanish on C. So there is ε ∈ R>0 such that
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(∀(λ1 , . . . , λn) ∈ C)( f (λ1 , . . . , λn) ≥ ε).
We �nish the proof. Let v ∈ V . If v = 0 then ∥v∥B = 0 and there is nothing to do.

Otherwise write v = ∑n
k=1 λkvk and let:

µ = max
k=1. . .n

∣λk ∣ = ∥(λ1 , . . . , λn)∥∞ = ∥v∥B > 0.

Also let λ′k =
λk
µ , so now maxk=1. . .n ∣λ′k ∣ = 1. ¿is means that (λ′1 , . . . , λ′k) ∈ C. ¿ere-

fore:

N ( 1
µ
v) = N (

n
∑
k=1

λk
µ
bk)

= N(
n
∑
k=1

λ′kbk)

= f (λ′1 , . . . , λ′n)
≥ ε,

so that N(v) ≥ εµ = ε∥v∥B and we are done.

Consequently, one may simply write vn Ð→ ℓ without specifying the norm.

1.2.6. Remarks.

• ¿is phenomenon is typical of �nite-dimensional normed spaces. Notice how-
ever that it no longer holds in in�nite dimension, typically in functional analysis;
things are even worse in probability theory. Moreover, it only applies to norms
(not to distances).

• In theory, all norms on a �nite-dimensional real/complex-vector space are there-
fore equivalent. But in practice, one normmay be more useful, more adapted to a
given problem. In the rest of the class we shall o en adopt a norm for a proof, and
use another one for another argument; at times we shall even change norm during
the argument, relying on equivalence to patch paragraphs together. Always pause
and think before opting for a norm.

We �nally ful�ll task T2, viz. extend Corollary 1.1.5 to matrix spaces.

1.2.7. De�nition. Let V be aK-vector space with a norm ∥ ⋅ ∥. A series∑ vn is normally
convergent if the real series∑∥vn∥ is convergent.

Notice that two equivalent norms give rise to the samenotion of normal convergence
(not so in general).

1.2.8. Corollary. Let V be a �nite-dimensional K-vector space with a norm ∥ ⋅ ∥. ¿en
the unit sphere and the closed unit ball {v ∈ V ∶ ∥v∥ ≤ 1} are compact.

It follows of course that any closed ball is compact. (As a side remark, a normed vec-
tor space whose closed unit ball is compact is necessarily �nite-dimensional, as asserted
by a famous theorem by Riesz.) Proof not covered in class.

Proof. ¿e arguments are in the proof of theorem 1.2.5. Two equivalent norms give

8



rise to the same notion of a compact set, so we may actually choose the norm. Fix a
basis B = (b1 , . . . , bk) and decide to work with the norm ∥ ⋅ ∥B. We must prove that
the unit sphere and the closed unit ball with respect to this norm are compact.

¿e map:
φ∶ Kn → V

(λ1 , . . . , λn) ↦ ∑n
k=1 λkbk

is a vector space isomorphism, and actuallymore: it is an isometry between (Kn , ∥⋅∥∞)
and (V , ∥ ⋅ ∥B). In particular it is a homeomorphism; of course the image of the unit
sphere is the unit sphere, and likewise for the closed unit ball.

So we have reduced to the case of (Kn , ∥ ⋅ ∥∞); there compact is easily equivalent
to closed and bounded, and both the unit sphere and the closed unit ball enjoy these
properties.

¿e desired analogue of Corollary 1.1.5, viz. solution to Task T2, is as follows.

1.2.9. Corollary. Let V be a �nite-dimensional K-vector space with a norm ∥ ⋅ ∥. ¿en
(V , ∥ ⋅ ∥) is complete, meaning that all Cauchy sequences converge. In particular, if ∑ vn
is a normally convergent series, then∑ vn is convergent.

Proof. Let (vn) be a Cauchy sequence (with respect to ∥ ⋅ ∥); we must prove it con-
verges. Every Cauchy sequence is bounded: return to the de�nition, with ε = 1. So
there is C > 0 such that each vn is in the closed ball with radius C, which is compact.
Hence (vn) has a converging subsequence. It is an exercise to prove that a Cauchy
sequence with a converging subsequence is actually convergent.

¿e implication ‘normally convergent⇒ convergent’ follows the proof of Corol-
lary 1.1.5.

1.2.10. Remark. ¿eproper study of norms in in�nite-dimensional vector spaces is car-
ried in functional analysis, a fascinating topic. One usually recommends Rudin’s Func-
tional analysis; as a student I immensely liked Brezis’ book.

1.3 Matrix norms
Matrix spaces, being �nite-dimensional, have only one normed topology. But depend-
ing on the topic some norms come handier than others. We �nally handle the last task
on our list from § 1.1.8:

T3 . �nd a substitute formultiplicativity of ∣⋅∣, whichmay no longer holdwithmatrices.

Suppose that a normedK-vector space V bears a bilinear multiplication ⋅∶V ×V →
V ; it is then called a K-algebra, and this is typically the case with matrix spaces. ¿en
onemay ask about the relationship betweenmultiplication and the norm. ¿is gives rise
to an important notion.

1.3.1. De�nition. SupposeV is aK-algebra. A norm ∥⋅∥ is submultiplicative if it satis�es:

(∀v1 , v2 ∈ V)(∥v1 ⋅ v2∥ ≤ ∥v1∥ ⋅ ∥v2∥).

We shall prove that on matrix algebras there always exist submultiplicative norms.
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1.3.2. De�nition. Let ∥ ⋅ ∥ be a norm onKn . For A ∈ Mn(K) let:

~A~ = max
∥X∥=1

∥AX∥,

which is well-de�ned by compactness of the unit sphere in (Kn , ∥ ⋅ ∥) obtained in Co-
rollary 1.2.8. It is easily seen to be a norm, called the operator norm associated to ∥ ⋅ ∥.

1.3.3. Properties. Let ∥ ⋅ ∥ be a norm on Kn and ~ ⋅ ~ be the associated operator norm.
¿en:

(i) (∀A ∈ Mn(K))(∀X ∈ Kn)(∥AX∥ ≤ ~A~ ⋅ ∥X∥);

(ii) (∀A, B ∈ Mn(K))(~A ⋅ B~ ≤ ~A~ ⋅ ~B~), viz. ~ ⋅ ~ is submultiplicative.

Proof.

(i) If X = 0 there is nothing to prove. Otherwise let Y = 1
∥X∥X, so that ∥Y∥ = 1.

¿en by de�nition ∥AY∥ ≤ ~A~, so multiplying, ∥AX∥ ≤ ~A~∥X∥.

(ii) Let X have norm 1 and put X′ = BX. By the above, we �nd:

∥ABX∥ = ∥AX′∥ ≤ ~A~ ⋅ ∥X′∥ ≤ ~A~ ⋅ ~B~ ⋅ ∥X∥ = ~A~ ⋅ ~B~.

Taking themaximumover the sphere, we get~AB~ ≤ ~A~⋅~B~, as desired.

1.3.4. Remark. ¿ere exist of course matrix norms which are not submultiplicative; and
they can be useful as well. For instance, ∥A∥∞ = maxi , j=1. . .n ∣a i , j ∣ is o en very handy;
you may check it is not submultiplicative.

1.4 Exercises
1.4.1. Exercise.

1. Prove (∀a, b ∈ R≥0)(exp(a+b) = exp(a) ⋅ exp(b)). Deduce the same for complex
numbers. Hint: write partial sums up to n; see a square and a triangle as indexing
sets.

2. Prove (∀a ∈ R≥0)(limn→∞(1 + a
n )

n = exp(a)). Deduce the same for a complex
number. Hint: have you tried logarithms? (In the complex case, one needs to know
that there is a partial log function de�ned on a small neighbourhood of 1 ∈ C.)

Solution.

1. Consider partial sums En(x) = ∑n
k=0

x k
k! .

On the one hand,

En(a) ⋅ En(b) = (
n
∑
i=0

a i

i!
) ⋅

⎛
⎝

n
∑
j=0

b j

j!
⎞
⎠
= ∑
0≤i , j≤n

a ib j

i! j!
;

10



on the other hand,

En(a + b) =
n
∑
k=0

(a + b)k

k!
=

n
∑
k=0

k
∑
i=0

1
k!

(ki) a
ibk−i

= ∑
0≤i , j≤n∶
i+ j≤n

a ib j

i! j!
.

We are summing the same terms, but one index set is bigger than the other. Let
us give them names. Let:

• Sn = {(i , j) ∈ {0, . . . , n}2}, which is a square;
• Tn = {(i , j) ∈ {0, . . . , n}2 ∶ i + j ≤ n}, which is a triangle.

Hence En(A) ⋅ En(B) = ∑(i , j)∈Sn C i , j while En(A + B) = ∑(i , j)∈Tn C i , j . Now
clearly Sn ⊆ T2n ⊆ S2n .
First suppose a, b ∈b R≥0. Since all terms are non-negative, we get:

En(a) ⋅ En(b) ≤ E2n(a + b) ≤ E2n(a) ⋅ E2n(b).

Both the le most and rightmost members go to exp(a)⋅exp(b), while themiddle
one goes to exp(a + b): we are done.
Now to the complex case. By the triangle inequality,

∣En(a) ⋅ En(b) − En(a + b)∣ =
RRRRRRRRRRRR
∑

(i , j)∈Sn∖Tn

a ib j

i! j!

RRRRRRRRRRRR

≤ ∑
(i , j)∈Sn∖Tn

∣a∣i ∣b∣ j

i! j!

= En(∣a∣) ⋅ En(∣b∣) − En(∣a∣ + ∣b∣),

which goes to 0 by the �rst case. ¿erefore ∣En(a) ⋅ En(b) − En(a + b)∣ Ð→ 0; by
continuity of �eld operations, this gives exp(a) ⋅ exp(b) = exp(a + b).

2. Suppose a ∈ R≥0. Recalling something about the log function, we have 1 + a
n =

exp(log(1 + a
n ) and therefore:

(1 + a
n
)
n
= exp(n log(1 + a

n
)) = exp(n ( a

n
+ o ( 1

n
))) = exp(a + o(1)).

By de�nition, a+o(1) ÐÐÐ→
n→∞

a. By continuity of exp (something we did not prove
but enough analysis!), the sequence goes to exp(a).
Oddly enough, one can still use the logarithm trick in the complexe case. ¿is
is because 1 + a

n Ð→ 1, and therefore remains in a small neighbourhood of 1.
In complex analysis one can de�ne a partial log on such a neighbourhood; what
matters is to avoid R≤0.

1.4.2. Exercise. Let V be a �nite-dimensional K-vector space equipped with a norm. An
accumulation point of a sequence (vn) is some ℓ ∈ V such that there is a subsequence
converging to ℓ, viz. there exists an increasing map φ∶N→ N with vφ(n) Ð→ ℓ.

11



1. Prove that a Cauchy sequence with an accumulation point is convergent.

2. Prove that a bounded sequence with at most one accumulation point is convergent.

Solution.

1. Let (vn) be a Cauchy sequence; suppose vφ(n) Ð→ ℓ for some extraction function
φ∶N→ N. Let ε ∈ R>0. Since the sequence is Cauchy, there is n1 ∈ N such that for
all integers p, q one has: p ≥ q ≥ n1 → ∥v − p − vq∥ < ε

2 . Also, there is n2 ∈ N such
that for any integer n, one has: n ≥ n2 → ∥vn − ℓ∥ < ε

2 . Let n0 = max(n1 , n2).
¿en for any n ≥ n0, one has φ(n) ≥ n ≥ n0, so:

∥vn − ℓ∥ ≤ ∥vn − vφ(n)∥ + ∥vφ(n) − ℓ∥ <
ε
2
+ ε
2
= ε,

proving convergence to ℓ.

2. ¿is is more interesting. Let (vn) be bounded. ¿en the sequence remains in
some closed ball, which is compact; hence (vn) has at least one accumulation
point, say ℓ. We claim that vn Ð→ ℓ. Indeed, suppose that it is not the case. ¿en
there is ε ∈ R>0 such that:

(∀n0 ∈ N)(∃n ∈ N)(n ≥ n0 ∧ ∥vn − ℓ∥ ≥ ε).

For each n0 we let φ(n0) be the least integer n > φ(n0 − 1) with the property.
¿is de�nes an extraction function φ such that the norm ∥vφ(n) − ℓ∣ remains ≥ ε.
But the subsequence (vφ(n)) remains bounded, so it has an accumulation point
µ. But µ is then also an accumulation point of (vn), hence µ = ℓ. Taking limits in
∥vφ(n) − ℓ∥ ≥ ε we �nd 0 = ∥µ − ℓ∥ ≥ ε, a contradiction.

Notice that 2. no longer holds if closed balls cease to be compact, viz. in an in�nite-
dimensional space; as a matter of fact, in functional analysis there are bounded se-
quences with no accumulation points at all.

1.4.3. Exercise. Let ∥ ⋅ ∥ be any matrix norm. Prove that there is c ∈ R>0 such that for all
matrices A, B one has ∥A ⋅ B∥ ≤ c ⋅ ∥A∥ ⋅ ∥B∥.

Solution. Fix one submultiplicative norm N ; by equivalence, there is c ∈ R>0 such that
for all matrices, N(A) ≤ c ⋅ ∥A∥ and ∥A∥ ≤ N(A). ¿en for any pair of matrices:

∥A ⋅ B∥ ≤ cN(AB) = cN(A)N(B) ≤ c3 ⋅ ∥A∥ ⋅ ∥B∥,

so constant c3 does the job.

1.4.4. Exercise. Prove that if n > 1 there are no multiplicative norms on Mn(K) (viz. sat-
isfying N(AB) = N(A)N(B) for all matrices).

Solution. ¿is is because Mn(K) has zero divisors: there exist A, B ≠ 0 with AB = 0,

e.g.A = B = (0 0
1 0). If a normweremultiplicative it would have ∥A∥2 = ∥A2∥ = ∥0∥ = 0,

whence ∥A∥ = 0 and A = 0: a contradiction.
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2 ¿ematrix exponential and �rst properties
Last reminder: throughout, K stands for R or C. We de�ne the matrix exponential as
expected in § 2.1; this results in more question. First algebraic properties (exp(A) is a
polynomial in A, invariance under conjugacy, the sum property) are discussed in § 2.2.
¿e derivative of t ↦ exp(tA) is computed in § 2.3, but will not play a role before § 6.

¿roughout there will be some notational ambiguity: we shall work with sequences
or series of matrices. Of course we want to index our sequences by n; of course we
also want our matrices to have size n × n. We shall o en write ‘let (An) ∈ (Mn(K))N
be a sequence of matrices’, and leave it to the reader to decide with n stands for the
(�xed) dimension, and which n for the (varying) sequence index. Despite our e�orts,
this results in no confusion at all.

Certainly the notion of a diagonalisable matrix is familiar. ¿e spectrum of a matrix
M (viz. the set of its eigenvalues) is denoted by Sp(M).

2.1 ¿e de�nition
Having ful�lled tasks T1–T3 of 1.1.8 we are now ready to adapt the formalisation of the
complex exponential (theorem 1.1.6 of § 1.1) to the matrix case.

2.1.1. Lemma (and de�nition). Let A ∈ Mn(K). ¿en the series ∑ An

n! converges to a
matrix denoted by expA and called the exponential of A.

Proof. By § 1.2, more speci�cally Corollary 1.2.9, it su�ces to prove that the series
is normally convergent for any norm (since all are equivalent by theorem 1.2.5). We
�x a submultiplicative norm; these exist by § 1.3. ¿en ∥ A

n

n! ∥ ≤ ∥A∥n
n! . But ∑

∥A∥n
n! is

convergent as we saw when proving theorem 1.1.6, so∑ An

n! is normally convergent: we
are done.

2.1.2. Questions. ¿e de�nition raises a number of questions.

Q1 . What are the properties of the matrix exponential?

Q2 . How to compute exp(A) in practice?

Q3 . What are applications of exp(A) to di�erential equations?

2.1.3. Remarks.

• On Q1—it is not hard (exercise 2.4.5) to see that the matrix exponential is not
injective, unless n = 1 andK = R.
In particular, there can only be partially de�ned ‘matrix logarithms’. We shall see
three natural subsetsS ⊆ Mn(K) such that exp restricts to a bijectionS ≃ exp(S):

– S is the set of nilpotent matrices and exp(S) the set of ‘unipotent’ matrices
(§ 3.3);

– S is some small neighbourhood of 0 and exp(S) some small neighbourhood
of In (§ 4.2);

– S is the space of hermitianmatrices and exp(S) the set of hermitian de�nite
positive matrices (§ 5.2).
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In each case, one could technically de�ne a (partial) logarithm.

• Q2 is addressed in § 3. So far, only the exponential of a diagonalmatrix is easy to
compute:

exp
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
=
⎛
⎜
⎝

eλ1
⋱

eλn

⎞
⎟
⎠
.

• Q3 is returned to in § 6.

¿e rest of the section is devoted to attacking questions Q1 and Q2; only with more
tools shall we later solve some more di�cult aspects. Before we start we introduce a
general notation.

2.1.4. Notation. Let En(A) = ∑n
k=0

Ak

k! be the partial sum up to n, so that En(A) Ð→
exp(A).

2.2 Algebraic properties
Nilpotent matrices; local polynomials

Recall the de�nition of a nilpotent matrix.

2.2.1. De�nition. A matrix N ∈ Mn(K) is nilpotent if there is k ≥ 0 with N k = 0.

2.2.2. Lemma. ¿e following are equivalent:

(i) N is nilpotent;

(ii) Nn = 0;

(iii) SpN = {0}.

Proof. One must remember that if a matrix T is strictly upper-triangular, viz. has the
form:

T =
⎛
⎜
⎝

0 ∗
⋱

0

⎞
⎟
⎠
,

then Tn = 0. ¿is is easily seen by computing successive powers of T (and better seen
by trials than by induction): in T k , the diagonal, super-diagonal, . . . kth super-diagonal,
are all 0.

In particular, if SpN = {0}, then conjugating N in triangular form, one get Nn =
0, which implies nilpotence. It remains to show that nilpotence implies Sp = {0}.
Suppose N is nilpotent, and take k ∈ N with N k = 0. Let λ ∈ Sp(N) and X ∈ Kn ∖ {0}
witness it. ¿en N k ⋅ X = λkX = 0, so λk = 0, which implies λ = 0.

2.2.3. Remark. Let N be nilpotent. ¿en exp(N) = ∑n−1
k=0

N k

k! is a �nite sum, hence a
polynomial in N .

We can therefore compute the exponential of nilpotent matrices. Surprisingly, al-
though we cannot compute exp(A) in general, it always is a polynomial in A. We do not
assume A to be nilpotent.
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2.2.4. Lemma (exp(A) is a polynomial in A). For every A ∈ Mn(K), there is a polyno-
mial PA(X) ∈ K[X] such that expA = PA(A).

Of course PA(X) depends on A.

Proof. Let K[A] = ⟨In ,A,A2 , . . . ⟩ be the subspace generated by powers of A. (Par-
enthetically, by the Cayley-Hamilton theorem, one may stop before power An ∈
⟨In , . . . ,An−1⟩.) Notice thatK[A] is exactly the set of matrices which are polynomials
in A.

SinceK[A] is a linear subspace of �nite-dimensionalMn(K), it is a closed subset.
Now for all n ∈ N one has En(A) ∈ K[A]. Taking the limit and by closedness, we �nd
exp(A) ∈ K[A], as desired.

Lemma 2.2.4 implies that A ⋅ exp(A) = exp(A) ⋅ A; however since the polynomial
depends on A, it o�ers no practical way to compute exp(A).

Invariance under conjugacy; diagonalisable matrices

¿e following is the key of many arguments.

2.2.5. Lemma (invariance under conjugacy). Suppose P is invertible. ¿en:

exp(PAP−1) = P ⋅ exp(A) ⋅ P−1 .

Proof. Let n be �xed. ¿en:

En(PAP−1) =
n
∑
k=0

(PAP−1)k

k!
=

n
∑
k=0

PAkP−1

k!
= P ⋅ En(A) ⋅ P−1 .

Now let n → ∞. ¿e le -hand goes to exp(PAP−1). By continuity of multiplication,
the right-hand goes to P ⋅ exp(A) ⋅ P−1.

2.2.6. Remark. We already knew how to compute the exponential of a diagonal matrix
(take the exponential of the diagonal); by conjugacy we can now compute exp(A) for
any diagonalisable A. Indeed, write A = PDP−1 with invertible P and diagonal D; then
exp(A) = P exp(D)P−1.

2.2.7. Example. Let A = (1 1
0 2); we compute exp(A). ¿e matrix has obvious eigen-

vectors. Let P = (1 1
0 1), for which A = P (1 2) P

−1. ¿erefore:

exp(A) = exp(P (1 2) P
−1) = (1 1

0 1) ⋅ (
e

e2)(1 −1
0 1 )

= (1 1
0 1) ⋅ (

e −e
0 e2 ) = (e e − e2

0 e2 ) .
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¿e sum property

Lured by the complex case one could hope that exp realises a group morphism from
(Mn(K),+) to (GLn(K), ⋅). ¿is is however not the case. In general, exp(A + B) ≠
exp(A) ⋅ exp(B).

2.2.8. Example. Let A = (0 1
0 0) and B = (1 0

0 0).

• One sees: (∀n ∈ N)(n ≥ 2→ An = 0), so it is trivial to check exp(A) = (1 1
0 1).

• One also sees: (∀n ∈ N)(n ≥ 1 → Bn = B). So the series is easily computed, and

we �nd exp(B) = (e 0
0 0).

• Turn to A + B; see that (∀n ∈ N)(n ≥ 1 → (A + B)n = A + B). ¿erefore

exp(A+ B) = (e e
0 0).

• However, exp(A) ⋅ exp(B) = (e 0
0 0) ≠ exp(A+ B).

2.2.9. Proposition (the sumproperty). If Aand B commute (viz. AB = BA) then exp(A+
B) = exp(A) ⋅ exp(B) = exp(B) ⋅ exp(A). In particular, exp takes values in GLn(K).

Proof. ¿is is a special case of a general phenomenon which is worth returning to. In
the following computations the subscripts (index sets) are more important than what
we are actually summing. We �x a submultiplicative norm.

Bear in mind notation En(A) = ∑n
k=0

Ak

k! . So typically,

En(A) ⋅ En(B) = (
n
∑
i=0

Ai

i!
) ⋅

⎛
⎝

n
∑
j=0

B j

j!
⎞
⎠
= ∑
0≤i , j≤n

1
i! j!

AiB j .

On the other hand A and B commute, so by Newton’s expansion one has for any
k ≥ 0:

(A+ B)k =
k
∑
i=0

(ki)A
iBk−i = ∑

0,≤i , j≤k∶
i+ j=k

k!
i! j!

AiB j ,

and therefore:

En(A+ B) =
n
∑
k=0

(A+ B)k

k!
=

n
∑
k=0

∑
0,≤i , j≤k∶
i+ j=k

1
i! j!

AiB j = ∑
i , j=0.. .n∶
i+ j≤n

1
i! j!

AiB j .

We are summing the same terms C i , j = 1
i ! j!A

iB j , though over di�erent index sets.
We shall denote these by:

• Sn = {(i , j) ∈ {0, . . . , n}2}, which is a square;

• Tn = {(i , j) ∈ {0, . . . , n}2 ∶ i + j ≤ n}, which is a triangle.
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Hence En(A) ⋅ En(B) = ∑(i , j)∈Sn C i , j while En(A+ B) = ∑(i , j)∈Tn C i , j .
¿us:

∥En(A) ⋅ En(B) − En(A+ B)∥ =
XXXXXXXXXXXX
∑

(i , j)∈Sn∖Tn
C i , j

XXXXXXXXXXXX
≤ ∑
(i , j)∈Sn∖Tn

∥C i , j∥

≤ ∑
(i , j)∈Sn∖Tn

∥A∥i∥B∥ j

i! j!

= ∑
(i , j)∈Sn

∥A∥i∥B∥ j

i! j!
− ∑
(i , j)∈Tn

∥A∥i∥B∥ j

i! j!

= En(∥A∥) ⋅ En(∥B∥) − En(∥A∥ + ∥B∥)
Ð→ exp(∥A∥) ⋅ exp(∥B∥) − exp(∥A∥ + ∥B∥).

¿e latter is 0 since exp∶ (R,+) → (R>0 , ⋅) is a group morphism.
In particular, since A and −A always commute, one �nds exp(A) ⋅ exp(−A) =

exp(−A) ⋅ exp(A) = exp(0) = In , so exp(A) is invertible, with inverse exp(−A).

2.3 Analytic properties
2.3.1. Lemma. Let A ∈ Mn(C). ¿en the map

f ∶ R → GLn(C)
t ↦ exp(tA)

is di�erentiable onR, satisfying f ′(t) = A⋅ f (t) = f (t)⋅A. (In particular, it is continuous.)

Proof. We hope the reader is familiar with Hardy’s notation o(⋅). Notice that one
may use o(⋅) for vector (or even matrix) functions: a norm ∥ ⋅ ∥ being �xed, write
X(h) = o(h) if ∥X(h)∥ = o(h) in the real sense. Notice that this does not depend on
the norm as soon as all are equivalent.

Fix t0 ∈ R; letter h will denote a small real number. Observe that the matrices t0A
and hA commute, so by the sum property (proposition 2.2.9):

f (t0 + h) = exp(t0A+ hA) = exp(t0A) ⋅ exp(hA) = f (t0) ⋅ exp(hA).

Now exp(hA) = In +hA+R(h)where R(h) = ∑n≥2
hnAn

n! . In particular, for ∣h∣ ≤ 1 and
choosing a submultiplicative norm, one has ∥R(h)∥ ≤ h2 exp(∥A∥), so R(h) ∈ o(h).

¿erefore f (t0 + h) = f (t0)(In + hA+ o(h)) = f (t0)+ h f (t0)A+ o(h), which is
a Taylor expansion of order 1. ¿is proves that f is di�erentiable at t0, with derivative
f (t0) ⋅ A.

¿is formula is generalised in § 4.1, where we treat exp as a multi-variable function.

2.4 Exercises
2.4.1. Exercise. Let ∥ ⋅ ∥ be a submultiplicative norm on Mn(K). Prove that ∥ exp(A)∥ ≤
exp(∥A∥).
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Solution.¿is is easy. For �xed n one has:

∥En(A)∥ = ∥
n
∑
k=0

Ak

k!
∥ ≤

n
∑
k=0

∥A∥k

k!
= En(∥A∥).

By continuity of the norm function, the le -hand goes to ∥ exp(A)∥; by de�nition, the
right-hand goes to exp(∥A∥).

2.4.2. Exercise. Suppose that exp(A) = In ; prove that Sp(A) ⊆ 2iπZ. Does the converse
hold?

Solution. If exp(A) = In then trigonalising A, we see that every eigenvalue λ of Amust
satisfy eλ = 1, so λ ∈ 2iπZ.

¿e converse is not true: consider matrix (0 1
0 0), with spectrum {0} ⊆ 2iπZ. ¿en

A2 = 0 so exp(A) = I2 + A = (1 1
0 1) ≠ I2.

2.4.3. Exercise. Prove that N is nilpotent i� for all k = 0 . . . n one has tr(N k) = 0.

Solution. I would presumably use an ill-named ‘Vandermonde’ determinant (Vander-
monde never discussed them).

2.4.4. Exercise. Prove that (I + A
n )

n ÐÐÐ→
n→∞

exp(A). (You may use the analogue property
holding in real numbers.)

Solution. Fix a submultiplicative norm and compute:

∥En(A) − (I + A
n
)
n
∥ ≤

n
∑
k=0

∥A
k

k!
− (nk)

Ak

nk
∥

≤
n
∑
k=0

∣ 1
k!
− (nk)

1
nk

∣ ∥A∥k .

Let rn ,k = 1
k! − (nk)

1
nk be the real number appearing in the modulus. Notice how:

(nk) = n!
k!(n − k)!

= n(n − 1)⋯(n − k + 1)
k!

≤ nk

k!
,

so rn ,k ≥ 0. Hence actually:

∥En(A) − (I + A
n
)
n
∥ ≤

n
∑
k=0

rn ,k∥A∥k

= En(∥A∥) − (I + ∥A∥
n

)
n

.

But the latter goes to 0 as n →∞, since we know (1 + x
n )

n ÐÐÐ→
n→∞

ex for real x.
One can almost retrieve the sum property from this formula, since for commuting

matrices:
[(I + A

n
)(I + B

n
)] = (I + A+ B

n
+ AB
n2

)
n
.

However in order to prove convergence of the latter to exp(A + B) one needs a little
more.
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2.4.5. Exercise. Prove that if n ≥ 2 then exp∶Mn(R) → GLn(R) is not injective. (Sur-
jectivity will be dealt with in § 3.3; the answer depends on whetherK = R or C.)

Solution. It is enough to treat the case n = 2. Consider the map:

φ∶ C → M2(R)

a + ib ↦ (a −b
b a ) .

It clearly is injective; it also preserves both the additive and multiplicative structures: it
is an embedding of R-algebras. Consequently, for any a + ib ∈ C and n ∈ N:

φ(En(a + ib)) = En(φ(a + ib)).

One needs to know that φ is continuous (which is obvious); therefore taking limits, one
obtains φ(exp(a + ib)) = exp(φ(a + ib)), or more accurately.

So considermatrix A = ( 0 −2π
2π 0 ) = φ(2iπ). We just saw exp(A) = exp ○φ(2iπ) =

φ ○ exp(2iπ) = φ(1) = I2, while A ≠ 0: injectivity is lost.

2.4.6. Exercise. Compute exp(0 −x
x 0 ) and exp(0 x

x 0) for real x.

Solution. Let Ax = (0 −x
x 0 ). We can use the above isomorphism φ∶C ≃ M2(R) as

real algebras to see that expAx = φ(e ix) = (cos x − sin x
sin x cos x ). Now let Bx = exp(

0 x
x 0).

¿e complex trick no longer works. But B2x = x2I2, then B3x = Bx 3 , and so on. So we can
actually compute the series and �nd:

expBx =
⎛
⎝
1 + x2

2 +
x4
4! + . . . x + x 3

3! + . . .
x + x 3

3! + . . . 1 + x2
2 +

x4
4! + . . .

⎞
⎠
= (cosh x sinh x

sinh x cosh x) .

2.4.7. Exercise. Let B = ( 1/2 1/2
−1/2 3/2). Find exp(B).

Solution.¿e determinant is 1 and trace is 2; clearly B has eigenvalue 1 with multiplicity
2. ¿e eigenspace is:

E1(B) = ker(B − I) = ker(
−1/2 1/2
−1/2 1/2) = ker (1 −1) = Span(11) .

So let Q = (1 1
1 0); it can be checked that Q

−1BQ = (1 −1/2
1 ). Of course:

exp(1 −1/2
1 ) = exp((1 1) + (0 −1/2

0 )) = exp(1 1) ⋅ exp(
0 −1/2

0 )

= (e e) ⋅ (
1 −1/2

1 ) = (e −1/2e
e ) ,
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and therefore:

exp(B) = exp(Q (1 −1/2
1 )Q−1) = (1 1

1 0) ⋅ (
e −1/2e

e ) ⋅ (0 1
1 −1)

= (1 1
1 0) ⋅ (

−1/2e 3/2e
e −e ) = ( e/2 e/2

−e/2 3/2e) .

2.4.8. Exercise. Prove that det expA = exp trA.
Solution. Trigonalise.

2.4.9. Exercise. Suppose (∀ ∈ R)(exp(tA) = exp(tB)). Prove that A = B.
Solution. Di�erentiate at t = 0.
2.4.10. Exercise. ¿ere are direct analytic proofs that exp(tA)′ = A ⋅ exp(tA) not using
the sum property, proposition 2.2.9 (using normal convergence of function series instead).

¿e Cauchy-Lipschitz theorem, also known as the Picard-Lindelöf theorem, implies
that an a�ne di�erential equation of order 1 with given initial condition has exactly one
(global) solution.

Use this to prove the sum property: if AB = BA then exp(A+ B) = exp(A) ⋅ exp(B).
Solution. Let f (t) = exp(t(A+ B)) and g(t) = exp(tA) ⋅ exp(tB). Both are di�erenti-
able by usual arguments; let us compute derivatives:

f ′(t) = (A+ B) exp(t(A+ B)) = (A+ B) f (t)

and, bearing in mind that B and exp(tA) ∈ K[A] commute,

g′(t) = Aexp(tA) ⋅ exp(tB) + exp(tA) ⋅ B exp(tB)
= (A+ B) ⋅ exp(tA) exp(tB)
= (A+ B)g(t)

So both f and g are solutions to the same di�erential equation M′(t) = (A + B)M(t).
Now f (0) = g(0) = In , so the Cauchy-Lipschitz theorem implies f (t) = g(t). In
particular t = 1 gives the desired formula.

3 ¿e Chevalley ‘D + N ’ decomposition
We return to the second question from 2.1.2.

Q2 . How to compute exp(A) in practice?
We already know what to do if A is nilpotent, or presented as PDP−1 with diagonal D.

¿e Chevalley decomposition A = D + N is a useful additive decomposition of a
matrix into a sum of two commuting parts, one diagonalisable and one nilpotent; it
is unique. ¿is is of course used in conjunction with the sum property, so exp(A) =
exp(D) ⋅ exp(N). But the interest of the Chevalley decomposition goes beyond the
matrix exponential.

We give a key tool in § 3.1; the decomposition itself is in § 3.2 and can be used to prove
surjectivity in the complex case (§ 3.3). Last, § 3.4 deals with practical computation of the
decomposition; it is harder and optional to read.

Before reading this section make sure you understand that ‘diagonalisable’ merely
means ‘conjugate to a diagonal matrix by an invertible matrix’, and that you have some
training in eigenspaces and invariant subspaces.
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3.1 Coprime kernel lemma
¿e following is one of the most useful lemmas in linear algebra.

3.1.1. Lemma (coprime kernel lemma). Let P,Q ∈ K[X] be coprime polynomials and
A ∈ Mn(K) be a matrix with (PQ)(A) = 0. ¿enKn = ker P(A)⊕kerQ(A). Moreover,
the projectors onto ker P(A) parallel to kerQ(A), and vice-versa, are polynomials in A.

Proof. By Bézout’s theorem on coprime polynomials, there exist polynomials U ,V ∈
K[X]with PU+QV = 1. Apply the identity to A, getting P(A)⋅U(A)+Q(A)⋅V(A) =
In .

Let X ∈ ker P(A) ∩ kerQ(A). ¿en in particular,

X = In ⋅ X
= (P(A) ⋅U(A) + Q(A) ⋅ V(A)) ⋅ X
= U(A) ⋅ (P(A) ⋅ X) + V(A) ⋅ (Q(A) ⋅ X)
= 0,

proving that the sum is direct.
Now let X ∈ Kn . Put XQ = (P(A)U(A)) ⋅ X and XP = (Q(A)V(A)) ⋅ X; we just

noted X = XP+XQ . MoreoverQ(A)⋅XQ = Q(A)P(A)⋅U(A)X = 0 so XQ ∈ kerQ(A),
and XP ∈ ker P(A) likewise. So Kn = ker P(A) + kerQ(A) = ker P(A) ⊕ kerQ(A).
Finally, XP is the projection onto ker P(A) parallel to Q(A); the associated projector
is Q(A)V(A) = (QV)(A), a polynomial in A. Likewise on the other space.

3.1.2. Remark. ¿ere is a straightforward generalisation to �nitely many polynomials,
provided they are pairwise coprime.

3.2 ¿e Chevalley decomposition
Science o en re�ects chauvinisms—the French call ‘triangle de Pascal’ what the Italians
call ‘triangolo di Tartaglia’. But here is amusingly di�erent: the French give credit of the
Chevalley decomposition to the American mathematician Dunford.

3.2.1. ¿eorem (Chevalley decomposition). Let A ∈ Mn(K) be a matrix. ¿en there is
a unique pair (D,N) of matrices with:

• D is diagonalisable overK;

• N is nilpotent;

• D and N commute;

• A = D + N.

Moreover, D and N are polynomials in A.

3.2.2. Remarks.

• Do not forget the commutation clause DN = ND.
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• ¿e matrix (0 −1
1 0 ) is diagonalisable over C but not over R. So whenK = R the

matrix D must be taken diagonalisable over the algebraic closureK.
However, D and N are polynomials in Awith coe�cients inK.

• ¿e theorem even holds over any �eld of characteristic 0 as its proof will show.

• ¿is is an algebraic tool not requiring topology. And if there is some topology
(sayK = R or C), the Chevalley decomposition need not be continuous: let Aε =

(1 − ε 1
1 + ε). ¿en Dε = Aε and Nε = 0; however N0 = (0 1

0).

3.2.3. Remarks (on the relations with and the advantages over Jordan decompositions).
Some more remarks if you know the so-called ‘Jordan decomposition’ of a matrix. ¿e
Chevalley decomposition is not the same.

• A Jordan decomposition is extrinsic. First, the very de�nition of what a Jordan
normal form is somehow arbitrary. Second, presenting a matrix as A = PJP−1
requires �nding a change of basis matrix: this is non-canonical.

¿e Chevalley decomposition instead is intrinsic as D and N depend only on A.

• Suppose A = PJP−1 is a Jordan decomposition; write J = C + M, with C =
⎛
⎜
⎝

λ1Id1
⋱

λk Idk

⎞
⎟
⎠
a block-scalar matrix andM a matrix of Jordan blocks. ¿en

A = PCP−1 + PMP−1 is the Chevalley decomposition.
¿ough neither of P,C ,M is canonical (for instances the blocks of C can always
be permuted), D and N are.

• Do however not compute a Jordan decomposition in order to �nd the Chevalley
decomposition. It is a waste of time.

As a matter of fact, the Chevalley decomposition can be computed e�ectively
and exactly (§ 3.4, while the Jordan decomposition is theoretically impossible by
Galois theory.

Proof. It is the kind of argument where existence must be treated �rst, as we actually
prove a little more.
Step 1. Existence as polynomials in A (forK = C).

Veri�cation. Start with characteristic polynomial of A, which splits into monomials
over C, with roots the eigenvalues, say:

χA(X) = ∏
λ∈Sp(A)

(X − λ)αλ ,

where αλ is known as the algebraic multiplicity of λ in χA.
By the Cayley-Hamilton theorem, χA(A) = 0. Notice that the factors (X − λ)αλ

aremutually copime. ¿is suggest to let Fλ(A) = ker(A−λIn)αλ . Nowby the coprime
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kernel lemma 3.1.1, we �nd:

Kn = ⊕
λ∈Sp(A)

Fλ(A).

Moreover, the projectors involved in the decomposition, say πλ , are polynomials in
A. Let:

D = ∑
Sp A

λπλ and N = A− D.

Both are polynomials in A; in particular, D and N commute. It remains to prove that
D is diagonalisable and N is nilpotent.

On each Fλ(A), matrix D acts as scalar λ, while matrix N has spectrum {0};
this is because A has only eigenvalue λ on Fλ(A). Since Kn is the direct sum of the
various Fλ(A), we �nd that D has a global basis of eigenvectors, and N has global
spectrum {0}: so D is diagonalisable and N is nilpotent. ◇

Step 2. Existence as polynomials in A (forK = R).

Veri�cation. Suppose A ∈ Mn(R). We want to show that in the notation above,
∑Sp(A) λπλ is a real polynomial. Being careful with Bézout identities in the coprime
kernel lemma, real eigenvalues do have real projectors πλ ∈ R[X]. But non-real
eigenvalues λ ∈ Sp(A) ∖R give rise to non-real projectors πλ .

So return to step 1, still diagonalising overC. Since A is a real matrix, χA ∈ R[X].
¿erefore non-real eigenvalues come in pairs (λ, λ), and complex-conjugate eigen-
values have equal multiplicities. We treat one such pair.

De�ne Fλ(A) as a subspace of Cn ; our arguments still give Cn = ⊕Sp(A) Fλ(A).
Projectors πλ are polynomials in A with complex coe�cients. However, letting α =
αλ = αλ , one �nds:

Fλ(A) = {X ∈ Cn ∶ (A− λIn)α ⋅ X = 0}

= {X ∈ Cn ∶ (A− λIn)α ⋅ X = 0}
= {X ∈ Cn ∶ (A− λIn)α ⋅ X = 0}
= {X ∶ X ∈ Fλ(A)}.

In particular, πλ = πλ . ¿erefore λπλ + λπλ = 2Re(λπλ) is a real polynomial. As
we said, real eigenvalues create no problems. ¿erefore D = ∑Sp(A) λπλ ∈ R[X], as
desired. ◇

Step 3. Uniqueness.

Veri�cation. In either case we work over C. Suppose A = D′ + N ′ is another de-
composition. ¿en D′ commutes with D′ and N ′, so D′ commutes with A. But D
is a polynomial in A, so D′ commutes with D as well. And so on: all matrices in
the picture commute. Now D and D′ are commuting, diagonalisable matrices: they
are simultaneously diagonalisable, so D − D′ is diagonalisable. Also, N and N ′ are
commuting, nilpotent matrices: so N − N ′ is nilpotent. Hence D − D′ = N ′ − N is
both diagonalisable and nilpotent. It can be diagonalised to its spectrum, which is 0:
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it can be diagonalised to the 0 matrix, so D − D′ = N ′ − N = 0, as desired. ◇

¿is completes the proof.

3.2.4. Remarks.

• ¿us, if one knows the Chevalley decomposition of a matrix A = D +N , comput-
ing exp(A) reduces to computing exp(D) and exp(N), and multiplying them.

• It so happens that there is a general algorithmic method to compute Chevalley
decompositions (§ 3.4, which is optional and harder).

• One should however not be too enthusiastic: in order to compute exp(A), one
still needs to diagonalise D. ¿e latter cannot be done exactly since general, exact
determination of Sp(D) = Sp(A) amounts to general, exact resolution of polyno-
mials: something proved impossible in Galois theory.

3.3 ¿e complexmatrix exponential is onto
3.3.1. ¿eorem. ¿e map exp∶Mn(C) → GLn(C) is onto. Moreover, for B ∈ GLn(C)
there is PB(X) ∈ C[X] with exp(PB(B)) = B.

¿e following de�nition is important when studying matrix groups.

3.3.2. De�nition. A matrix B is unipotent if Sp(B) = {1}.

(We will tend to avoid letterU for unipotent matrices, in order to prevent confusion
with unitarymatrices studied in § 5.) We also need a classical result from algebra.

3.3.3. Lemma (Lagrange interpolation). Let F be any �eld and a0 , . . . , ak ∈ F be k + 1
distinct elements. Let b0 , . . . , bk ∈ F be any elements. ¿en there is P ∈ F[X] of degree
≤ k such that for all i one has P(a i) = b i .

Proof of¿eorem 3.3.1. Let B ∈ GLn(C); we prove that B ∈ exp(C[B]).
Step 1. ¿e diagonalisable case.

Veri�cation. Suppose that B is diagonalisable. By conjugacy (lemma 2.2.5), we may
suppose that B is diagonal, say

B =
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
.

¿e complex numbers λ i are not 0 since B is invertible. By surjectivity of the complex
exponential exp∶C→ C×, there are µ i ∈ C with exp(µ i) = λ i .

¿e µ i are not uniquely de�ned since the complex exponential has a non-trivial
kernel. But if we consistently choose them such that (∀i , j = 1 . . . n)(λ i = λ j → µ i =
µ j), we can apply Lagrange interpolation. So there is a polynomial Pwith P(λ i) = µ i .
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It depends on B. ¿en clearly:

exp(P(B)) = exp
⎛
⎜
⎝

µ1
⋱

µn

⎞
⎟
⎠
=
⎛
⎜
⎝

eµ1
⋱

eµn

⎞
⎟
⎠
= B.◇

Step 2. ¿e unipotent case.

Veri�cation. Suppose that Sp(B) = {1}. By conjugacy again, we may suppose that
B is upper-triangular with 1’s on the diagonal. Consider the following two sets of
matrices:

N =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 ∗
⋱

0

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and Y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 ∗
⋱

1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Clearly, exp(N) ⊆ Y . We claim that equality holds, and a preimage of Y ∈ Y can be
taken as a polynomial in Y , which will prove the claim.

Let lo(1+ X) = X − X
2 + ⋅ ⋅ ⋅ + (−1)n X

n−1

n−1 , which is the truncation of logarithm to
order n. For N ∈ N our series are �nite sums and exp(lo(I + N)) = I + N .

In particular, if B is upper-triangular with 1’s on the diagonal, apply this to N =
B − In . We get exp(lo(B)) = B, as desired. ◇

Step 3. ¿e general case.

Veri�cation. Let B ∈ GLn(R) with no assumptions; we want to prove it is in the
image of exp. Write the Chevalley decomposition of B, say B = D +N . Bear in mind
that D,N ∈ C[B].

By inversibility, 0 ∉ Sp(B) = Sp(D), so D is invertible and diagonalisable; in
particular there is C ∈ C[D] with exp(C) = D. Since D ∈ C[B], one has C ∈ C[B].
Also notice that:

B = D(In + D−1N),

and sinceD andN commute,D−1N is nilpotent. So In+D−1N is unipotent. ¿erefore
there is M ∈ C[D−1N] with exp(M) = In + D−1N . Since D−1N ∈ C[B], one has
M ∈ C[B].

¿erefore C +M ∈ C[B] so they commute, and by the sum property:

exp(C +M) = exp(C) ⋅ exp(M) = D ⋅ (In + D−1N) = D + N = B.◇

¿is proves surjectivity in the complex case.

3.4 E�ectiveness of the Chevalley decomposition (optional)
Not covered in class.

¿is subsection is a harder read, but also a more interesting one. One must be comfort-
able with advanced algebra: ideals in rings, polynomial rings, coprimality.

One should also have seen at least once theNewtonmethod. Contrary towidespread
belief, the Newton method is not a mere tool in numerical analysis. ¿e p-adic �elds in
number theory were discovered by Hensel thanks to the Newton method.

Last, we need an easy lemma.
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3.4.1. Lemma. Let P(X) ∈ K[X]. ¿en there is Q(X ,Y) such that:

P(X + Y) = P(X) + YP′(X) + Y 2Q(X ,Y).

Proof. ¿e property is linear in P, so it is enough to treat the case of monomials.
Expanding (X + Y)k following Newton’s binomial, the claim is now obvious.

3.4.2.¿eorem. ¿ere is an exact algorithm in at most ∼ log2 n steps giving the Chevalley
decomposition of a matrix in Mn(K).

Proof. ¿e algorithm is contained in the proof.
Let A ∈ Mn(K) and A = K[A] be the subspace of matrices which can be written

as polynomials in A. It turns out that A is not only a vector subspace of Mn(K) but
also a subalgebra, meaning In ∈ A and A is closed under matrix product.

As always in algebra, A× denotes the group of invertible elements, viz.:

A× = {x ∈ A ∶ (∃y ∈ A)(xy = yx = In)}.

Be very careful that inversion is relative to A (it so happens, as proved in § 4.3, that
here this is more harmless than seems.)
Step 1. ¿ere is a polynomial with leading coe�cient 1 denoted µA such that A ≃
K[X]/(µA) asK-algebras.

Veri�cation. Consider the evaluation map:

evA∶ K[X] → A
P ↦ P(A).

It is a morphism of K-algebras, and is onto by construction (which is the correct
explanation for commutativity of A).

Let I = ker evA be the kernel, which is a ideal ofK[X], so thatA ≃ K[X]/I asK-
algebras. Since the polynomial ring K[X] is principal, there is a unique polynomial
with leading coe�cient 1 such that I = (µA). ◇

Re�ecting on the proof of the Chevalley decomposition, we see that another poly-
nomial should play a role. Let:

P = ∏
λ∈Sp(A)

(X − λ).

Step 2. P′(A) ∈ A× and P(A) is nilpotent.

Veri�cation. Since P has only simple roots, it has no common factor with its deriv-
ative P′; in gcd-notation, P ∧ P′ = 1. Now µA and P have the same roots, so again
µA ∧ P′ = 1. By a Bézout relation there are U ,V ∈ K[X] such that µAU + P′V = 1.
Applying in Awe �nd P′(A) ⋅ V(A) = 1 in A, as desired.

Now by the Cayley-Hamilton theorem, µA∣χA∣Pn , so (P(A))n = 0 in A. ◇
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We de�ne a sequence of elements of A as follows:

• x0 = A;

• xn+1 = xn − P(xn)[P′(xn)]−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tn

.

¿is de�nition requires P′(xn) to be invertible, which is a consequence of our next
step. Keep the de�nition of tn in mind.
Step 3. For all integers n ∈ N:

• P′(xn) is invertible in A;

• P(xn) ∈ (P(x0)2
n
). (¿is is notation for ‘the ideal generated by P(x0)2

n
’.)

Veri�cation. By induction on n. ¿e case n = 0 was dealt with in step 2. By
lemma 3.4.1 there is a polynomial Q(X ,Y) with P′(X + Y) = P′(X) + YP′′(X) +
Q(X ,Y). In particular since xn+1 = xn − tn one gets:

P′(xn+1) = P′(xn) − tnP′′(xn) + t2nQ(xn , tn).

By induction, P′(xn) ∈ A×. Now tn is a multiple of P(xn), hence a multiple of
P(x0), which is nilpotent: so tn is nilpotent. Since A is commutative, P′(xn) + tn is
invertible. ¿is is the �rst claim.

Always by lemma 3.4.1 there is a polynomial R(X ,Y) with P(X + Y) = P(X) +
YP′(X) + Y 2R(X ,Y). In particular one has (keeping the de�nition of tn in mind):

P(xn+1) = P(xn) − tnP′(xn) + t2nR(xn , tn) = t2nR(xn , tn).

But this is (t2n) ≤ (P(xn))2 ≤ (P(x0)2
n
)2 ≤ (P(x0)2

n+1
). ¿is is the second claim. ◇

Step 4. ¿e sequence (xn) is stationary at some n0; letting D = xn0 and N = A−D we
are done.

Veri�cation. Let n0 be such that 2n0 is greater than the nilpotence order of P(x0) in
A (the latter is at most the size of the matrix, so certainly n0 ≤ n). ¿en for all n ≥ n0
one has P(xn) = 0, so tn = 0, implying xn+1 = xn : the sequence is stationary. By
construction, D and N are in A, viz. polynomials in A; they commute. It remains to
prove that D is diagonalisable and N is nilpotent.

By construction, P(xn0) = 0, so matrix D = xn0 is killed by a polynomial with
simple roots: it is therefore diagonalisable as a simple application of the coprime
kernel lemma 3.1.1.

Finally observe:

N = A− D = x0 − xn0 = x0 − x1´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=t0

+ x1 − x2
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

=t1

+ ⋅ ⋅ ⋅ + xn0−1 − xn0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=tn0−1

.

But each tk is in (P(xk)), hence nilpotent; and therefore so is N . ◇

¿is completes the (e�ective) proof.
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3.4.3. Remark. As one sees, the phenomenon takes place in a larger setting than linear
algebra. All one needs is:

• a �eldK of characteristic 0;

• a proper quotient A = K[X]/I by a non-trivial ideal.

¿e algorithm then produces a decomposition of x = X mod I as x = s + n where
the minimal polynomial of s in any algebraic closure has only simple roots, and n is
nilpotent.

As amatter of fact, the characteristic 0 assumption can be weakened into: all irredu-
cible factors of µ (the minimal polynomial of x, viz. ‘the’ generator of I) have non-zero
derivative.

3.5 Exercises
3.5.1. Exercise. Find where we usedK = C in the proof of surjectivity (theorem 3.3.1) and
spot the failure in the real case. Give a matrix in GLn(R) ∖ exp(Mn(R)).

3.5.2. Exercise. Prove that exp is a homeomorphism between the set of nilpotent matrices
and the set of unipotent matrices.

Solution. Continuity is clear. Return to § 3.3; since lo is continuous, if we prove bijectiv-
ity we also have continuity of the inverse. But we already proved surjectivity so only
injectivity remains.

So let N be a nilpotent matrix with exp(N) = In ; we must prove N = 0; we may
suppose that N ∈ N is upper-triangular with 0’s on the diagonal.

Let k ∈ N be minimal with N k = 0 (this exists, by nilpotence). ¿en:

exp(N) = ∑
ℓ<k

N ℓ

ℓ!
= In + ∑

0<ℓ<k

N ℓ

ℓ!
= In ,

so ∑0<ℓ<k
N ℓ

ℓ! = 0. Now this has the form N ⋅ Q(N) = 0, where Q is a polynomial
with constant term 1. In particular, Q(N) is an upper-triangular matrix with 1’s on the
diagonal, hence invertible. So N = 0, as wanted.

3.5.3. Exercise.

1. Compute the Chevalley decomposition of exp(A) based on that of A.

2. Deduce that A is diagonalisable i� exp(A) is.

Solution.

1. One has expA = exp(D)+exp(D)⋅(exp(N)−In). All terms commute since all are
polynomials in A. Clearly exp(D) is diagonalisable, in any eigenbasis for D. Now
exp(N)− In is nilpotent. Indeed, one may trigonalise N to see it: up to conjugacy,
N is upper-triangular with 0’s on the diagonal. So exp(N) is upper-triangular
with 1’s on the diagonal, and Sp(exp(N) − In) = {0} again.

2. If A is diagonalisable then so is exp(A) since it is a polynomial in A. Suppose
exp(A) is diagonalisable; let A = D + N be the Chevalley decomposition of A.
¿en since exp(A) has no nilpotent part, exp(D) ⋅ (exp(N) − In) = 0; since
exp(D) is invertible, we get exp(N) = In , and N is nilpotent. But this implies
N = 0 as exp induces a bijection between nilpotent and unipotent matrices.
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3.5.4. Exercise (image of exp: the real case). Prove that:

exp(Mn(R)) = {A ∈ GLn(R) ∶ (∃B ∈ GLn(R))(A = B2)}.

Hint: if A = B2 ∈ GLn(R), then there is Q ∈ C[X] with exp(Q(B)) = B.

Solution. One inclusion is not hard. If A = exp(M) with M ∈ Mn(R), then using the
sum property one sees that (exp( 1

2M))2 = exp(M) = A is a square.
For the converse, let A ∈ GLn(R) be a square, say A = B2. Treat B as a complex

matrix: there is Q(X) ∈ C[X] with exp(Q(B)) = B. Now B is actually a real matrix, so:

B = B = Q(B) = Q(B),

and therefore exp(Q(B)) = B. Since Q(B) and Q(B) are polynomials in B, they com-
mute; we �nd:

exp(Q(B) + Q(B)) = B2 = A,

but Q(B) + Q(B) is a real matrix, so A ∈ exp(Mn(R)).

3.5.5. Exercise. Prove that the abstract form of the Chevalley decomposition (remark 3.4.3)
fails if there are no assumptions on the characteristic or the factors of µ.

Hint: over the �eldK = Fp(T), consider A = K[X]/(X p − T).

Solution. Using Eisenstein’s criterion, see that A is actually a �eld: hence has no nilpo-
tent elements. But x = X mod I has minimal polynomial X p − T , which has a unique
root of mulitplicity p > 1.

4 Advanced analytic properties
¿is section is an optional read though it greatly helps clarify matters. It requires know-
ledge of advanced calculus, that is elementary di�erential geometry. One must know
what the di�erential of a function of a vector variable/several real variables is. We give
the de�nition in § 4.1 but it takes time to understand. ¿en comes the notion of a Ck-
di�eomorphism; using the inverse function theorem, we prove in § 4.2 that the expo-
nential is a local di�eomorphism from a neighbourhood of 0 to one of In . ¿is gives
another proof of the surjectivity of exp∶Mn(C) → GLn(C) in § 4.3.

4.1 ¿e exponential as a multi-variable map
In order to distinguish points from vectors (technically, points live in the manifold and
vectors on the tangent bundle) I usually denote the former by a and the latter by h.

4.1.1. De�nition. A map f ∶Rn → Rk is di�erentiable at a ∈ Rn if there is a linear map
L∶Rn → Rk such that:

(∀h ∈ Rn)( f (a + h) = f (a) + L(h) + o(h)).

¿e linear map is then unique and called the di�erential of f at a, denoted by Da f .

With di�erentiability come of course the notions ofCk andC∞maps. With a couple
of results from analysis on normally convergent function series, one can easily show that
the matrix exponential is C∞; we do not follow this line.
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4.1.2. Proposition. ¿ematrix exponential is di�erentiable at 0, and D0 exp is the iden-
tity map Id∶Mn(K) → Mn(K).

Proof. A consequence of the de�nition, reproducing the proof of lemma 2.3.1. Indeed
let H be a ‘small’ matrix. ¿en �xing as always a submultiplicative norm:

exp(0 +H) = exp(H)

= In +H + ∑
n≥2

Hn

n!
= exp(0) + Id(H) + R(H).

Now ∥R(H)∥ ≤ ∥H∥2 exp(∥H∥) = o(H), as desired.

4.1.3. Remark. One can explicitly compute the di�erential of exp everywhere. For
matrices A, B let adA(B) = AB − BA. ¿en exp is di�erentiable at any A and:

DA exp = exp(A) ∑
n≥0

(−1)n

(n + 1)!
adnA .

¿is is either advanced or technical (there exist elementary proofs through di�erential
equations), and would take us straight to classical Lie theory.

4.2 ¿e exponential is a local di�eomorphism
In what follows we tend to be heavy-handed distinguishing local, viz. on neighbour-
hoods, from global, viz. on all of the ambient space. Since exp is not globally injective,
there is no hope it will be a global di�eomorphism.

4.2.1. De�nition. A (local) Ck-di�eomorphism between open subsets U ,V ⊆ Rn is a
Ck bijection f ∶ U ≃ V whose reciprocal mapping is also Ck .

4.2.2.¿eorem (‘inverse function theorem’, admitted from elementary di�erential geo-
metry). Suppose f ∶Rn → Rn is Ck on a neighbourhood of a, and Da f is invertible as a
linear map Rn → Rn . ¿en there are neighbourhood U of a and V of f (a) such that f
induces a (local) Ck-di�eomorphism U ≃ V .

4.2.3. Corollary. ¿e exponential map induces a (local) di�eomorphism from a neigh-
bourhood of0 to one of In . In particular, there exist ε ∈ R>0 and aC1map logV(In)∶B(In , ε) →
Mn(K)which is a (local) reciprocalmapping of exp. In particular, logV(In) is di�erentiable
at In and logV(In)(In +H) = H + o(H).

4.2.4. Remark. More explicitly, one can �x a submultiplicative norm ∥ ⋅ ∥ and see that
on B(0, 1) the logarithm series converges normally; this gives a series expansion for
logV(In).

One may thus de�ne the matrix logarithm locally, with good analytic properties.
However it is not de�ned everywhere; there is no global matrix logarithm (see complex
case, as opposed to real case).
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4.3 Application to surjectivity
4.3.1. ¿eorem. ¿e map exp∶Mn(C) → GLn(C) is surjective.

Proof. Let A ∈ Mn(C). LetA = C[A] be the subspace of polynomials in A; it actually
is a subalgebra, viz. contains In and is stable under matrix product. Recall that A×

denotes the group of invertible elements, viz.:

A× = {x ∈ A ∶ (∃y ∈ A)(xy = yx = In)};

it is indeed a subgroup of GLn(C) with respect to multiplication, but it need not be
commutative. Bear in mind that exp(A) ∈ A by lemma 2.2.4. We equip A ≤ Mn(C)
with its subspace topology.
Step 1. One has A× = A ∩GLn(C), viz. a matrix in A is invertible relatively to A i� it
is invertible.

Veri�cation. One implication is obvious. For the converse, suppose that M ∈ A ∩
GLn(C). ¿en 0 ∉ Sp(M), so the characteristic polynomial has a non-trivial con-
stant term; it has the form Mn + ⋅ ⋅ ⋅ + λ where λ ≠ 0. Now Mn + ⋅ ⋅ ⋅ + λ = 0 by the
Cayley-Hamilton theorem. Multiplying (on either side) by M−1, we �nd that M−1 is
a polynomial inM, hence in A. ◇

Step 2. ¿e restriction exp∶ (A,+) → (A× , ⋅) is a group morphism. Moreover, it is
enough to prove that it is onto, viz. exp(A) = A×.

Veri�cation. Notice that the inclusion exp(A) ⊆ A× holds: if B ∈ A then B is a poly-
nomial in A. But exp(B) is a polynomial in B, so again a polynomial in A. Moreover,
exp(B) is invertible. Hence exp(A) ⊆ A ∩ GLn(K) = A×. So the restriction does
take A to A×. Since elements in A commute pairwise, it is a morphism by the sum
property, proposition 2.2.9.

Suppose that the equality exp(A) = A× is known and let us prove that exp is onto.
Let B ∈ GLn(C). ¿en applying the result to B = C[B], since B ∈ B ∩GLn(C) = B×
there is A ∈ B with exp(A) = B: as desired. ◇

We have reduced the problem to showing that a group homomorphism is surject-
ive: this should be simpler. ¿e proof is a connectedness argument using di�eomorph-
isms.
Step 3. ¿e space A× is connected.

Veri�cation. To prove connectedness we prove path-connectedness. Let M ∈ A×;
we �nd a continuous path to In inside A×. Indeed consider Γ(z) = (1 − z)In + zM,
a map from C to A. Also consider ∆(z) = det Γ(z), which is a polynomial in z.
Notice that Γ(0) = In and Γ(1) = M so δ vanishes at neither 0 nor 1. In particular ∆
is not the zero polynomial; it has �nitely many roots. So there is a continuous path
ζ ∶ [0, 1] → C taking 0 to 0, 1 to 1, and avoiding the roots of δ. ¿en γ = Γ○ζ ∶ [0, 1] → A
does γ(0) = In , γ(1) = M, and det γ(t) ≠ 0, so γ(t) ∈ A ∩ GLn(C) = (A×: we are
done. ◇
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Step 4. ¿e subset exp(A) is open and closed in A×.

Veri�cation. To avoid confusion, we shall denote by ˇexp the restriction of the expo-
nential map from A to itself, viz. ˇexp∶A → A. Since A is a subspace of Mn(C), we
can treat it as someRk (the dimension depends on properties ofA) and do calculus.

Since exp∶Mn(R) → Mn(R) was, ˇexp remains C1 (even, C∞); moreover the
di�erential at 0 remains D0 ˇexp = Id∶A → A. By the inverse function theorem, there
are small neighbourhoods U of 0 ∈ A and V of In ∈ A such that ˇexp induces a (local)
homeomorphism U ≃ V . In particular, exp(A) ⊇ exp(U) = V contains a neighbour-
hood of In ∈ A. So exp(A) contains a neighbourhood of In ∈ A×. We completely
forget about A and focus on A× as a topological group.

A subgroup containing In as an interior pointmust be open, because translations
are homeomorphisms. Hence exp(A) ≤ A× is an open subgroup. Now every open
subgroup of a topological group is actually closed, because whenever H ≤ G is open
we have:

G = ⊔
g∈S

gH

for some index set S ⊆ G. ¿en removing H itself, one has G ∖ H = ⊔g∈S′ gH, a
union of open subsets of G: so G ∖H is open in G, meaning that H is closed in G. ◇

By step 4, exp(A) is both open and closed in A×, which is connected by step 3.
¿erefore exp(A) = A× and we are done as seen in step 2.

4.3.2. Corollary. For every B ∈ GLn(C) there is QB ∈ C[X] with exp(QB(B)) = B.

Proof. In step 2 of the proof of theorem 4.3.1 we found a preimage of B ∈ GLn(C)
inside C[B], that is a preimage of the form QB(B).

Analytic properties can be taken much further. ¿e study of (analytic) Lie groups is
based on the following result.

4.3.3. ¿eorem (Cartan, von Neumann). Let G ≤ GLn(K) be a closed subgroup. ¿en
its tangent space at In is equal to:

{M ∈ Mn(K) ∶ (∀t ∈ R)(exp(tM) ∈ G)}.

¿is is out of the scope of this class.

4.4 Exercises
4.4.1. Exercise. Prove that there exists a neighbourhood of In in GLn(K) containing no
non-trivial subgroup, or equivalently that GLn(K) has no arbitrarily small subgroups.
(Hint: letU be a neighbourhood of 0 onwhich exp is a C1-di�eomorphism. Do not consider
exp(U) but exp( 12U).)

Solution. Let ε ∈ R>0 and U = B(0, ε) be such that exp∶ U → exp(U) is a (local) C1-
di�eomorphism; in particular V = exp(U) is a neighbourhood of In . We try to prove
that V has no other subgroup than {In}. . . and fail.

First attempt: let H ⊆ V be a subgroup of GLn(K); let h ∈ H and x ∈ U with
h = exp(x). One gets hn = exp(nx) ∈ H = expU , so one hopes that nx remains in U
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while n → ∞ which is a contradiction. However, the argument ‘(exp(nx) ∈ expH) ⇒
(nx ∈ H)’ is faulty, as exp is not globally injective.

Second attempt: take the least n with nx ∉ U . Still won’t work.
¿ird and successful attempt: letW = exp ( 1

2 (U)), yet another neighbourhood of
In . We claim thatW has no other subgroup than {In}. Indeed, letH ⊆ W be a subgroup
of GLn(K); let h ∈ H ∖ {In}. By assumption there is x ∈ 1

2U with h = exp(x). Let n be
the least integer with nx ∉ 1

2U ; notice however that (n−1)x ∈
1
2U , and nx = (n−1)x+x ∈

1
2U +

1
2U = U . ¿en exp(nx) = hn ∈ H ⊆ exp( 12U) and nx ∈ U (hence in a domain of

injectivity of exp) force nx ∈ 1
2U , a contradiction.

4.4.2. Exercise.

1. Let (An) be a sequence ofmatrices converging to A. Prove (I + An
n )n ÐÐÐ→

n→∞
exp(A).

(Hint: have you tried logarithms?)

2. Application. Do not suppose that A and B commute. Prove:

(exp(A
n
) exp(B

n
))

n
ÐÐÐ→
n→∞

exp(A+ B).

3. Second application. Prove:

(exp(A
n
) exp(B

n
) exp(−A

n
) exp(−B

n
))

n2

ÐÐÐ→
n→∞

exp(AB − BA).

Solution.

1. Since An Ð→ A, one has I + An
n Ð→ I; so for n large enough, the matrix is in the

domain of the logarithm. As the latter function is C1, there is a Taylor expansion
logV(In)(I +H) = H + o(H). So bearing in mind that (An) is bounded,

I + An

n
= exp(logV(In) (I +

An

n
)) = exp(An

n
) + o ( 1

n
)

and
(I + An

n
)
n
= exp(An + o(1)).

By continuity, we �nd exp(An + o(1)) → exp(A), as desired.

2. Let An = n (exp( An ) exp(
B
n ) − I). Notice that exp(

A
n ) = I+

A
n +o(

1
n ) and likewise

for B. Hence:

An = n [(I + A
n
+ o ( 1

n
))(I + B

n
+ o ( 1

n
)) − I] = A+ B + o(1).

¿erefore An ÐÐÐ→n→∞
A+ B, and by the �rst question we have the result.

3. Similar argument with:

exp(A
n
) exp(B

n
) exp(−A

n
) exp(−B

n
) = I + AB − BA

n2
+ O ( 1

n3
) .
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5 Exponential and hermitian matrices
¿is section is optional again. We explore further properties of the matrix exponen-
tial, in relation with hermitian matrices. ¿e relevant de�nitions and a conjugacy result
are in § 5.1. We prove in § 5.2 that exp induces a homeomorphism between hermitian
matrices and hermitian, de�nite positive matrices. ¿is �nds applications to the study
of the unitary group in § 5.3.

5.1 Unitary conjugacy and norms
First recall the de�nition of a hermitian and of a unitary matrix.

5.1.1. De�nition. Let A ∈ Mn(C).

• ¿eHermite-conjugate ofA isA∗ = At = (a j , i)(i , j), which is obtained by complex-
conjugating all coe�cients, and transposing the matrix (in any order as these two
operations commute).

Observe at once that (AB)∗ = B∗ ⋅ A∗.

• A is Hermite-symmetric, or hermitian, if A∗ = A.

• A is unitary if AA∗ = A∗A = In .

We denote by Hn the real vector space of n × n hermitian matrices; Hn is not a
complex subspace of Mn(R). Let HDPn be the subset of so-called ‘hermitian de�nite
positive matrices’, viz. hermitian matrices A with Sp(A) ⊆ R>0. Be careful that it is not
a linear subspace. Finally, Un denotes the unitary group; being closed and bounded, it
is compact.

5.1.2.¿eorem (admitted from linear algebra). Let A be a hermitian matrix. ¿en there
exist a unitary matrix U such that U−1AU is diagonal. Moreover, Sp(A) ⊆ R.

We shall refer to theorem 5.1.2 as ‘unitary conjugacy’.

5.1.3. Lemma. ¿ere exist matrix norms which are invariant under conjugacy by unitary
matrices, viz. with:

(∀A ∈ Mn(K))(∀U ∈ Un(K))(N(UAU−1) = N(A)).

Proof. One needs to think. Let ⟨A∣B⟩ = tr(A∗B), where tr is the trace. ¿is is a
Hermite-linear form, actually a complex scalar product. So N(A) =

√
tr(A∗A) is a

norm on Mn(C), o en called the Schur norm. We claim that it is invariant under
conjugacy by the unitary group.

Indeed let U ∈ Un(C). By de�nition, U∗ = U−1, so:

N(U−1AU)2 = tr((U−1AU)∗(U−1AU))
= tr(U∗A∗U−∗U−1AU)
= tr(U−1A∗AU),

and since tr is conjugacy-invariant it also equals tr(A∗A) = N(A)2.
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5.1.4. Corollary. Un is compact.

Proof. It is closed as given by continuous equations in the coe�cients. For the norm√
tr(A∗A) it is easily seen bounded.

5.2 A homeomorphism
5.2.1. ¿eorem. ¿e restriction exp∶Hn → HDPn is a homeomorphism.

Proof. For the moment only continuity is clear; so we have three things to prove.
Step 1. Injectivity.

Veri�cation. Suppose A, B ∈ Hn have exp(A) = exp(B); we must prove A = B.
Notice that E = exp(A) = exp(B) commutes with both A and B, but we don’t know
whether A and B commute.

By unitary conjugacy (theorem 5.1.2), there is a unitary matrix U with A =

UDU−1 with D a real diagonal matrix, say D =
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
. As we know,

expD =
⎛
⎜
⎝

eλ1
⋱

eλn

⎞
⎟
⎠
. Of course U exp(D)U−1 = exp(A) = E.

Recall that the real exponential is injective; so whenever eλ i = eλ j , one has λ i =
λ j . By Lagrange interpolation (lemma 3.3.3), there is P ∈ R[X] such that P(eλ i ) = λ i .

¿en P(expD) = D, so P(E) = P(U exp(D)U−1) = UDU−1 = A is a polynomial
in E. But E = exp(B) also is a polynomial in B; hence A ∈ C[B], implying that A and
B commute. Now exp(A− B) = E ⋅ E−1 = In .

Of course there are non-zero matrices whose exponential is In , but here A− B ∈

Hn . By unitary conjugacy, say A − B = V
⎛
⎜
⎝

µ1
⋱

µn

⎞
⎟
⎠
V−1, with real eigenvalues

µk . ¿en exp(A − B) = V
⎛
⎜
⎝

eµ1
⋱

eµn

⎞
⎟
⎠
V−1 = In implies

⎛
⎜
⎝

eµ1
⋱

eµn

⎞
⎟
⎠
= In ,

which can happen only for µ1 = ⋅ ⋅ ⋅ = µn = 0. So A = B; we proved injectivity. ◇

A more geometric argument, avoiding Lagrange interpolation. It is enough to show
that A and B commute. Since they are diagonalisable, it is enough to show that they
have the same eigenspaces. Since A and E commute, it is the case that A stabilises
(=leaves invariant) the eigenspaces of E, and vice-versa.

ForM1 to stabilise the eigenspaces ofM2 and vice-versa does not generally imply
thatM1 andM2 have the same eigenspaces: for instance,M1 = In commutes to every
matrix, but has only one eigenspace. ¿e argument is however valid here since A
and E have the same multiplicities for their eigenvalues, by injectivity of the real
exponential.

So A and E have the same eigenspaces, and B and E have the same eigenspaces.
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¿erefore A and B have the same eigenspaces: hence they commute. ◇

Step 2. Surjectivity.

Veri�cation. Let B ∈ HDPn ; we �nd A ∈ Hn with exp(A) = B. ¿is is easy: by
unitary diagonalisation, there is a unitary matrix U such that UBU−1 = D, say D =
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
. By de�nition, we have λ i ∈ R>0. So there are µ i ∈ R with eµ i = λ i .

¿en let A = U−1
⎛
⎜
⎝

µ1
⋱

µn

⎞
⎟
⎠
U ; one �nds:

exp(A) = U−1 exp
⎛
⎜
⎝

µ1
⋱

µn

⎞
⎟
⎠
U = U−1

⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
U = U−1DU = B,

which proves surjectivity. ◇

Step 3. Continuity of the reciprocal mapping.

Veri�cation. We use sequential continuity. Suppose (Bn) is a sequence in HDPn
converging to B ∈ HDPn . Let An ∈ Hn be such that exp(An) = Bn ; also let A ∈ H
with exp(A) = B. We must show An ÐÐÐ→n→∞

A.
In general, to have at most one accumulation point is no su�cient condition

for convergence. But it is a basic exercise in topology (exercise 1.4.2) that in �nite-
dimensional, normed vector spaces, a bounded sequence with at most one accumu-
lation point is indeed convergent to that point. So it su�ces to prove:

(i) that (An) has at most one accumulation point, which is A;

(ii) that (An) is bounded.

Item (i) is easy. Indeed, suppose Aφ(n) ÐÐÐ→n→∞
C. Since Hn is a real vector sub-

space ofMn(C), it is closed; hence C ∈ Hn . But exp is continuous at C, so:

exp(C) = lim exp(Aφ(n)) = limBφ(n) = B = expA.

since exp∶Hn → HDPn is injective on Hn , we get C = A. ¿is shows that A is the
only possible accumulation point for (An). Item (ii) (boundedness) will take the rest
of the argument. Interestingly, we shall use two distinct norms.

Let ∥ ⋅ ∥ be a norm invariant under unitary conjugation, viz. for U ∈ Un and
M ∈ Mn(C) one has ∥UMU−1∥ = ∥M∥. Since all matrices involved are hermitian,
every An is unitary-conjugate to a real, diagonal matrix Dn ; say An = UnDnU−1

n . By
the choice of our norm, ∥An∥ = ∥Dn∥ and ∥Bn∥ = ∥ exp(Dn)∥. It su�ces to prove
that (Dn) is bounded; but since (Bn) is convergent, (exp(Dn)) is bounded.

Now change norm and consider ∥⋅∥∞, for which the normofDn is themaximum
of the absolute values of the diagonal entries. We shall prove that (Dn) is bounded.

Since (exp(Dn)) remains bounded, the sets Sp(exp(Dn)) remain bounded
above in R>0. Since the real exponential is increasing, the latter implies that the sets
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Sp(Dn) remain bounded above in R. ¿is argument does not bound them below,
since the limit of the exponential at −∞ is 0.

In order to also bound them below, notice that B−1n Ð→ B−1. So our argument
also applies to inverses: therefore the sets Sp(exp(Dn)−1) = Sp(exp(−Dn)) remain
bounded above inR>0, the sets Sp(−Dn) remain bounded above inR, and therefore
the sets Sp(Dn) remain bounded below inR. So (∥Dn∥∞) remains bounded, and so
does ∥Dn∥ = ∥An∥.

We have thus proved that the sequence under study (i) can only have A as an
accumulation point and (ii) is bounded. ¿is shows An ÐÐÐ→n→∞

A, �nally proving
continuity of the reciprocal mapping. ◇

¿is completes the proof.

5.2.2. Corollary. HDPn is connected.

Proof. It is homeomorphic to a real vector space.

We shall prove connectedness of Un by introducing more valuable tools.

5.3 ¿e polar map and unitary group
5.3.1. ¿eorem. Un is connected.

¿e proof requires two lemmas.

5.3.2. Lemma (square root in HDPn). If H ∈ HDPn then there is a unique K ∈ HDPn
with K2 = H; we denote it by

√
H. ¿e map√⋅∶HDPn → HDPn is continuous.

We give a quick proof building on¿eorem 5.2.1; for direct proofs see the exercises.

Proof. ¿emap exp∶Hn → HDPn is a homeomorphism; let logHDP be the reciprocal
bijection, which is continuous. ¿e idea is to put:

√
H = exp( 1

2
logHDP(H)).

Let H ∈ HDPn . Let L = logHDP(H). ¿en 1
2L ∈ Hn so exp( 12L) ∈ HDPn and by

the sum property, exp( 1
2L)

2 = exp(L) = H. Moreover, if K ∈ HDPn satis�es K2 = H
then 2 logHDP(K) = logHDP(H) = L. ¿is proves not only existence and uniqueness,
but also continuity as all functions involved are continuous.

¿e second lemma is a key tool when studying real and complex Lie groups. It builds
on the simple observation that every complex number z ≠ 0 can be written uniquely as
z = ρe iθ , with ρ ∈ R>0 = HDP1 and e iθ ∈ S1 = U1.

5.3.3. Lemma (polar decomposition). Let P ∈ GLn(C). ¿en there is a unique pair
(U ,H) ∈ Un ×HDPn such that P = UH (they need not commute). Moreover, multiplica-
tion ⋅∶Un ×HDPn → GLn(C) is a homeomorphism.
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However, there is no reason for U and H to commute.

Proof. Matrix P∗P is hermitian, de�nite and positive: Hermite-symmetry is obvious.
Now suppose λ ∈ Sp(P∗P) and let X ∈ Cn ∖{0} be an eigenvector. ¿en P∗PX = λX;
multiplying on the le by X∗ we get:

λX∗X = X∗P∗PX = (PX)∗(PX).

However ⟨Y ∣Z⟩ = Y∗Z de�nes a complex scalar product on Cn , so X∗X and
(PX)∗(PX) are in R>0 (the latter, since P is invertible). ¿ere remains λ > 0.

Let H =
√
P∗P ∈ HDPn be its square root; also letU = P ⋅H−1. It remains to show

that U is unitary, but indeed, using Hermite-symmetry of H:

U∗U = H−∗P∗PH−1 = H−1H2H−1 = In ,

as desired.
It remains to prove uniqueness. Suppose UH = U1H1 in obvious notation. ¿en

H∗
1 H1 = H∗

1 U∗
1 U1H1 = H∗U∗UH = H∗H, so by uniqueness of the square root in

HDPn , we have H1 = H; then U1 = U follows.
We move to the second claim. Multiplication certainly is continuous. We just

proved it is bijective. As a matter of fact, we constructed the reciprocal mapping: P ↦
(P ⋅

√
P∗P

−1
,
√
P∗P). Its continuity comes from that of

√⋅.

Proof of theorem 5.3.1. We even prove that Un is path-connected. Let U ∈ Un ⊆
GLn(C); since the latter space is path-connected, there is γ∶ [0, 1] → GLn(C) with
γ(0) = In and γ(1) = U . Now write the polar decomposition γ(t) = υ(t)η(t) with
υ(t) ∈ Un and η(t) ∈ Hn(t). ¿en both υ and η are continuous maps. Now υ∶ [0, 1] →
Un satis�es υ(0) = In and υ(1) = U : it is a continuous path in Un , as desired.

5.4 Exercises
5.4.1. Exercise. Prove that if n > 1 there are no conjugacy-invariant norms (viz. satisfying
N(PAP−1) = N(A) for all matrices A and P with P invertible).

Solution. Matrices A1 = (0 1
0 0) and Aε (

0 ε
0 0) are conjugate for all ε ∈ R>0. But

Aε ÐÐ→ε→0
A0; by continuity, a conjugacy-invariant norm would have ∥A1∥ = lim ∥Aε∥ =

∥A0∥ = 0, a contradiction.

5.4.2. Exercise. Give an algebraic proof of the existence and uniqueness of √⋅, not using
that exp∶Hn → HDPn is a homeomorphism. (Use unitary trigonalisation and Lagrange
interpolation.)

Prove that
√
H ∈ C[H] and that uniqueness holds among hermitian matrices with

spectrum in R≥0.

Solution. Let H ∈ HDPn . We �rst prove existence of
√
H as a polynomial in H. By

unitary trigonalisation, there is a unitary matrix U with UHU−1 =
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
; by

38



de�nition, all λ i are in R>0. So each is a square in R>0, say λ i = µ2i . Moreover, using
Lagrange interpolation (lemma 3.3.3), there is a polynomial P such that P(µ i) = λ i . So

let K = P(H) = U−1
⎛
⎜
⎝

µ1
⋱

µn

⎞
⎟
⎠
U , which is clearly hermitian de�nite positive, and

squares to H. Clearly K2 = H; notice that K ∈ C[H].
We turn to uniqueness. Let K′ be another candidate; notice that K′ and K′2 = H

must commute. SinceK ∈ C[H] andH ∈ C[K′], we haveK ∈ C[K′]. In particular, when
we diagonalise K′ we also diagonalise K. Let us do it: we �nd two diagonal matrices
D,D′ with spectrum ⊆ R>0 which have the same square. ¿erefore D = D′ and K = K′.

5.4.3. Exercise. Give a topological proof of the continuity of√⋅, not using that exp∶Hn →
HDPn is a homeomorphism. (Follow step 3 of the proof of theorem 5.2.1, viz. use exer-
cise 1.4.2.)

Solution. First notice that the argument for uniqueness of
√⋅ in exercise 5.4.2 proves

slightly more: if K′ ∈ Hn has spectrum in R≥0 and satis�es K′2 = H, then K′ = K. We
call this property ‘strong uniqueness’.

We use a sequential characterisation. Suppose Hn Ð→ H in HDPn ; let Kn =
√
Hn

and K =
√
H; we want to show that Kn Ð→ K. Using exercise 1.4.2, it is enough to prove

that (Kn) is bounded and has at most one accumulation point inMn(C), namely K.
We prove boundedness. By unitary diagonalisation, say Kn = UnDnU−1

n with Un ∈
Un and Dn is diagonal with spectrum in R>0. Take a norm ∥ ⋅ ∥ invariant under unitary
conjugation, and also norm ∥ ⋅ ∥∞ which is the maximum of moduli of coe�cients.
Notice that for diagonal D, one has ∥D∥∞ = maxSp(D) ∣λ∣ and therefore ∥D2∥∞ = ∥D∥2∞.
By equivalence of norms there is c ∈ R>0 such that for any matrix M one has ∥M∥ ≤
c∥M∥∞ and ∥M∥∞ ≤ c∥M∥. Now:

∥Kn∥ = ∥UnDnU−1
n ∥

= ∥Dn∥
≤ c ⋅ ∥Dn∥∞
= c

√
∥D2

n∥∞
≤ c

√
c
√

∥D2
n∥

= c
√
c
√

∥Hn∥,

which is bounded since (Hn) converges.
We prove uniqueness of the accumulation point. Suppose Kφ(n) Ð→ L for some

matrix L ∈ Mn(C). We must prove L = K. By strong uniqueness it su�ces to show that
L2 = H and L ∈ Hn has spectrum inR≥0. ¿e former is clear by continuity of multiplica-
tion; we prove the latter. As a limit of hermitianmatrices, L itself is hermitian; it remains
to show that its spectrum is in R≥0. We refrain from using continuity of eigenvalues as
a multiset. Instead, return to Kn = UnDnU−1

n . Since Un is compact, the sequence (Un),
and even its subsequence (Uφ(n)), has a converging subsequence Uχ(n) Ð→ V ∈ Un ;
one still has Kχ(n) Ð→ L. ¿en by continuity Dχ(n) = Uχ(n)Kχ(n)U−1

χ(n) Ð→ VLV−1 is a
limit of diagonal matrices with diagonal entries in R>0; therefore it is a diagonal matrix
with entries in R≥0; this is what we claimed on Sp(L).

5.4.4. Exercise (a brutal analyst’s proof of the continuity of
√⋅). ¿ere are many other

proofs that√⋅∶HDPn → HDPn is continuous. Here is an elementary one, which however
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requires some computations. Here, ∥ ⋅ ∥2 on Cn denotes the usual norm ∥X∥2 =
√
X∗X =

∑n
i=1 ∣x i ∣2; and ~⋅~2 is the associated operator norm.

1. Let (Hn) be a sequence of matrices inHn satisfying:

max
λ∈Sp(Hn)

∣λ∣ ÐÐÐ→
n→∞

0.

Prove that Hn Ð→ 0.

2. Let A ∈ HDPn be a hermitian, de�nite positive matrix and λ ∈ Sp(A) ⊆ R be its
least eigenvalue. Prove that:

min
∥X∥2=1

X∗AX ≥ λ.

3. Let A, B ∈ HDPn and µ be themaximal eigenvalue, in absolute value, of
√
A−

√
B.

Let X be an associated eigenvector with ∥X∥2 = 1. Prove that:

µX∗(
√
A+

√
B)X ≤ ~A− B~2 .

Hint: compute X∗[(
√
A−

√
B)

√
A+

√
B(

√
A−

√
B)]X.

4. Conclude.

Solution.

1. Since all norms are equivalent and there is a norm invariant under conjugation by
Un , we may suppose that our matrices are diagonal with real spectrum. ¿en the
assumption on the spectrum immediately gives that the sequence goes to 0 with
respect to norm ∥ ⋅ ∥∞, hence with respect to any norm.
(¿is is completely false if one just assumes diagonalisability of course.)

2. Since A is hermitian there is an orthonormal basis consisting of eigenvectors,
say X1 , . . . , Xn ∈ Cn with eigenvalues λ i ∈ R>0. Let X have norm 1. ¿en X =
∑n

i=1 z iX i in obvious notation, whence∑n
i=1 ∣z i ∣2 = 1 and using orthonormality:

X∗AX = ∑
i , j=1. . .n

z iX∗i λ jz jX j =
n
∑
i=1

∣z i ∣2λ i ≥ λ
n
∑
i=1

∣z i ∣2 = λ.

3. We have (
√
A −

√
B)X = µX, so X∗(

√
A −

√
B)∗ = µX∗. But

√
A −

√
B is

hermitian and µ is real, so it reduces to X∗(
√
A−

√
B) = µX∗. ¿erefore:

µX∗(
√
A+

√
B)X = X∗µ

√
AX + X∗

√
BµX

= X∗[(
√
A−

√
B)

√
A+

√
B(

√
A−

√
B)]X

= X∗(A− B)X .

¿e latter is the complex scalar product ⟨X∣(A− B)X⟩, which by the Cauchy-
Schwarz inequality is at most ∥X∥2 ⋅ ∥(A− B)X∥2 ≤ ~A− B~2.
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4. Let A ∈ HDPn be �xed and ε ∈ R>0 be given. Let B ∈ HDPn be such that~A− B~2
is very small. Let λ be the least eigenvalue of A. Let µ be the maximal eigenvalue,
in absolute value, of

√
A −

√
B and X of norm 1 witness it (these depend on B).

¿en by question 2 one has X∗
√
AX ≥ λ and X∗

√
BX ≥ 0, so by question 3:

µ ≤
~A− B~2

X∗(
√
A+

√
B)X

≤
~A− B~2

λ

becomes very small. Recall that µ was the largest eigenvalue (in absolute value)
of

√
A−

√
B. By question 1, if B goes to A, then µ goes to 0 and

√
B goes to

√
A:

this is continuity.

5.4.5. Exercise (a review exercise: the three logarithms). • Let logY ∶ Y → N be the
logarithm from the setY of unipotent matrices to the setN of nilpotent matrices, as
implicitly de�ned in § 3.3.

• Let logV(In)∶ V(In) → V(0) be the logarithm from a small neighbourhood of In ∈
GLn(C) to a small neighbourhood of 0 ∈ Mn(C), as de�ned in § 4.2.

• Let logHDP∶HDPn → Hn be the logarithm from hermitian de�nite positive matrices
to hermitian matrices, as de�ned in § 5.2.

Prove that if amatrix is in the domain of any two of them, then the logarithms compute
the same image.

Solution. Let M ∈ Y ∩ V(In); write M = In + h where h is a small matrix (typically
∥h∥ < 1 for some submultiplicative norm). ¿en by the analytic theory, logV(I)(M) =

∑k≥1(−1)k+1 h
k

k . But here h = M − In is nilpotent, so the series is a �nite sum, and
computes exactly logY(In + h) = logY(M).

Second,Y∩HDP = {In}. Indeed, ifM ∈ Y ∩HDP, then by de�nition of a unipotent
matrix, M = In + N for some nilpotent matrix, which must be hermitian. In particular
N is diagonalisable, and nilpotent, so N = 0 andM = In . Clearly both logY and logHDP
map In to 0.

Last, let M ∈ V(In) ∩ HDP; typically M = In + H where H is a small hermitian
matrix. ¿en logV(In)(M) is given by:

logV(In)(In + h) = ∑
k≥1

(−1)k+1 h
k

k
.

Notice that at each �nite stage, the partial sum is inHn , which being a subspace is closed.
¿erefore logV(In)(M) ∈ Hn . Since exp∶Hn → HDPn is injective, we �nd logV(In)(M) =
logHDP(M).

6 Application to linear systems of di�erential equations
We �nally return to the last qestion of § 2.1.

Q3 . What are the applications of exp(A) to di�erential equations?

§ 6.1 gives a method to reduce scalar equations of order n to vector equations of
order 1. In § 6.2 we see how to use the matrix exponential to solve such equations with
constant coe�cients. Some further aspects are discussed in §§ 6.3.
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6.1 Reducing the order of a linear ode
Recall a fundamental method. A di�erential equation is scalar if the unknown function
x(t) takes values in K; if it takes values in Kn , call it a vector di�erential equation. ¿e
order of a di�erential equation is the largest n such that x(n) appears in it. We assume
its coe�cient to be 1.

6.1.1. Lemma. Every scalar linear di�erential equation of order n can be rewritten as a
vector linear di�erential equation of order 1.

Proof. Never forget this. Consider equation x(n) = a0(t)x(t)+⋅ ⋅ ⋅+an−1(t)x(n−1)(t).
¿en introduce the variable vector:

X(t) =
⎛
⎜
⎝

x(t)
⋮

x(n−1)(t)

⎞
⎟
⎠
∈ Kn .

Notice that if x(t) is Cn , then X(t) is C1; moreover

X′(t) =
⎛
⎜
⎝

x′(t)
⋮

x(n)(t)

⎞
⎟
⎠

now obeys di�erential equation:

X′(t) =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . . . . 0 1

a0(t) a1(t) . . . an−2(t) an−1(t)

⎞
⎟⎟⎟⎟⎟
⎠

⋅ X(t),

viz. X′(t) = A(t) ⋅ X(t).

Be very careful that the matrix exponential works only if coe�cients are constant.

6.2 Using the matrix exponential
¿e fundamental result is now easy to state and prove.

6.2.1. Lemma. If X(t)∶R → Kn is di�erentiable and there is A ∈ Mn(K) with X′(t) =
A ⋅ X(t), then X(t) = exp(tA) ⋅ X(0).

Repeatedwarning: no such thingwith a variablematrixA(t). (Return to the formula
in remark 4.1.3 to convince yourself that di�erentiating exp(∫ A(t)dt) is not pleasant.)

Proof. Let Y(t) = X(t) − exp(tA) ⋅ X(0); using the assumptions, it is di�erentiable
with derivative identically 0. So Y is constant and equals Y(0) = 0, as claimed.

With this at hand we can �nally explain, and generalise, a basic method.

6.2.2. Example. To solve linear equation x′′(t) − 2x′(t) + x(t) = 0, one is told to �rst
solve polynomial λ2 − 2λ+ 1 = 0 (with double root 1) and then write x(t) = c1e t + x2 te t .
We explain why.
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Veri�cation. Let X(t) = ( x(t)x′(t)). ¿en X(t) is governed by the di�erential equation

X′(t) = A ⋅ X(t) where A = ( 0 1
−1 2). In particular, vector solutions are of the form

X(t) = exp(tA) ⋅ X(0). Let us compute exp(tA).
Notice that the characteristic polynomial of A is λ2−2λ+1, with double root 1; the

matrix is not diagonalisable, but (11) is an eigenvector. Any independent vector will

provide a trigonalisation basis; consider (01). ¿e relevant change of basis is coded in

matrix P = (1 0
1 1); notice how:

A = ( 0 1
−1 2) = (1 0

1 1)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
P

⋅ (1 1
0 1)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
T

⋅ ( 1 0
−1 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P−1

.

Now exp(tT) is easily computed since the Chevalley decomposition is obvious here;
in particular, for t ∈ R:

exp(tA) = (1 0
1 1)

P
⋅ (e

t te t
0 e t ) ⋅ (

1 0
−1 1)

= ((1 − t)e
t te t

−te t (1 + t)e t) .

By lemma 6.2.1 one has X(t) = exp(tA) ⋅ X(0). So the �rst coordinate is:

x(t) = x(0)(1 − t)e t + x′(0)te t = x(0)e t + (x′(0) − x(0))te t ,

as predicted by the method. ◇

6.3 A stability lemma
6.3.1. Lemma. Let M ∈ Mn(C). ¿en exp(tM) ÐÐÐ→

t→+∞
0 i� (∀λ ∈ SpM)(Re λ < 0).

Proof. ¿ere are two implications to prove.

⇒. Suppose exp(tM) Ð→ 0 as t → +∞. Let λ ∈ Sp(M); let X ∈ Cn ∖ {0} with
MX = λX. Fix t ∈ R and compute:

En(tM) ⋅ X =
n
∑
k=0

tkMk

k!
X =

n
∑
k=0

tkλk

k!
X ,

so that En(tM) ⋅ X ÐÐÐ→
n→∞

exp(λt) ⋅ X. On the other hand, by de�nition and
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continuity of ⋅, one also has En(tM) ⋅ X ÐÐÐ→
n→∞

exp(tM) ⋅ X. Hence:

exp(tM) ⋅ X = eλtX ,

in words: X is an eigenvector for exp(tM), with eigenvalue exp(λt).
We now let t go to +∞. By assumption exp(tM) Ð→ 0 as t → +∞. So eλtX Ð→
0. But X ≠ 0, and therefore eλt Ð→ 0. We know from complex calculus that this
happens only when Re λ < 0.

⇐. ¿is implication is more subtle. Write M = D + N in Chevalley decomposition.
Of course Sp(M) = Sp(D). Now tM = tD + tN where the terms commute, so:

exp(tM) = exp(tD) ⋅ exp(tN).

We estimate each. ¿e nilpotent contribution is no surprise:

exp(tN) = ∑
k=0

ntk N
k

k!
= o(tn+1).

In order to estimate the diagonal termwe shall work with two di�erent norms in
the argument. Let λ ∈ Sp(M) be the eigenvalue with largest Re λ, say Re λ = −ε
with ε > 0 (by assumption). ¿ere exists an invertible matrix P such that:

D = P
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
P−1 ,

so that for t ∈ R:

exp(tD) = P
⎛
⎜
⎝

eλ1 t
⋱

eλn t

⎞
⎟
⎠
P−1 .

Now P is �xed; �rst �xing any submultiplicative norm ∥ ⋅ ∥ and letting c0 =
∥P∥ ⋅ ∥P−1∥ we get:

∥ exp(tD)∥ ≤ c0

XXXXXXXXXXXXXX

⎛
⎜
⎝

eλ1 t
⋱

eλn t

⎞
⎟
⎠

XXXXXXXXXXXXXX
.

And now we change norm in the middle of a computation: consider ∥A∥∞ =
maxi , j=1. . .n ∣a i , j ∣. Since all norms onMn(C) are equivalent, there is a constant c
such that ∥A∥ ≤ c∥A∥∞. ¿erefore ∥ exp(tD)∥ ≤ c0cmaxk=1. . .n ∣eλk t ∣ = O(e−εt).
Altogether, exp(tM) = o(tn+1e−εt) Ð→ 0 as t → +∞.

Analysts may wish to remember that if ε ∈ R>0 is such that (∀λ ∈ Sp(A))(λ ≤ −ε),
then there is c ∈ R such that ∥ exp(tA)∥ ≤ ce−εt .
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6.4 Exercises
6.4.1. Exercise (radioactive decay). Suppose three elements A, B,C decay with respect to
the transitions:

A→ B → C ,

meaning both A and B are radioactive and transform into the next element, while C is
stable. Say at time t there is a(t) of element A; de�ne b(t) and c(t) likewise. Element A
has a decay rate α > 0; de�ne β likewise. (Element C being stable means γ = 0.)

Decay is rendered by the following equations:

• a′(t) = −αa(t);

• b′(t) = αa(t) − βb(t);

• c′(t) = βb(t).

Suppose α > β. Suppose we started with 1 unit of A, viz. a(0) = 1 while b(0) = c(0) = 0.
Find the time when B reaches its maximal quantity, viz. t0 maximising b(t0).

Solution. We convert the problem to matrix form. Let X(t) be the vector
⎛
⎜
⎝

a(t)
b(t)
c(t)

⎞
⎟
⎠
. By

the equations, one has:

X′(t) =
⎛
⎜
⎝

−α 0 0
α −β 0
0 β 0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

⋅X(t).

We shall �nd the Chevalley decomposition of M. Since the matrix is lower-triangular,
its eigenvalues are −α,−β, 0 which are distinct by assumption, soM is diagonalisable.

Eigenvectors are readily computed:

ker(M + αI3) = ker
⎛
⎜
⎝

0 0 0
α α − β 0
0 β α

⎞
⎟
⎠

= ⟨
⎛
⎜
⎝

α − β
−α
β

⎞
⎟
⎠
⟩ ;

ker(M + βI3) = ker
⎛
⎜
⎝

β − α 0 0
α 0 0
0 β β

⎞
⎟
⎠

= ⟨
⎛
⎜
⎝

0
1
−1

⎞
⎟
⎠
⟩ ;

ker(M − 0I3) = ker
⎛
⎜
⎝

−α 0 0
α −β 0
0 β 0

⎞
⎟
⎠

= ⟨
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
⟩ .

¿is suggests to form matrix P =
⎛
⎜
⎝

α − β 0 0
−α 1 0
β −1 1

⎞
⎟
⎠
. ¿en:

M =
⎛
⎜
⎝

α − β 0 0
−α 1 0
β −1 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

⋅
⎛
⎜
⎝

−α
−β

0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

⋅
⎛
⎜⎜
⎝

1
α−β 0 0
α

α−β 1 0
1 1 1

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P−1

.
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¿erefore for real t:

exp(tM) =
⎛
⎜
⎝

α − β 0 0
−α 1 0
β −1 1

⎞
⎟
⎠
⋅
⎛
⎜
⎝

e−αt
e−βt

1

⎞
⎟
⎠
⋅
⎛
⎜⎜
⎝

1
α−β 0 0
α

α−β 1 0
1 1 1

⎞
⎟⎟
⎠

=
⎛
⎜
⎝

(α − β)e−αt 0 0
−αe−αt e−βt 0
βe−αt −e−βt 1

⎞
⎟
⎠
⋅
⎛
⎜⎜
⎝

1
α−β 0 0
α

α−β 1 0
1 1 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

e−αt 0 0
α

α−β (e
−βt − e−αt) e−βt 0

1 − αe−βt−βe−αt
α−β 1 − e−βt 1

⎞
⎟⎟
⎠

Moreover, X(t) = exp(tM) ⋅ X(0) = exp(tM) ⋅
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
, which is the �rst column of

exp(tM). We are only interested in b(t), viz.:

b(t) = (exp(tM))2,1 =
α

α − β
(e−βt − e−αt).

Now b(t) is maximal when its derivative vanishes, that is when αe−αt = βe−βt . ¿is
happens at:

t0 =
log α − log β

α − β
.

6.4.2. Exercise (one-parameter subgroups). Let f ∶R → GLn(K) be a ‘one-parameter
subgroup’, a geometer’s terminology for a continuous group homomorphism, viz.:

(∀s, t ∈ R)( f (s + t) = f (s) ⋅ f (t)).

We shall prove that there is A ∈ Mn(K) such that (∀t ∈ R)( f (t) = exp(tA)).

1. Suppose in addition that f is di�erentiable. Prove the result.

2. We simply assume that f is continuous. Let F be the primitive of f vanishing at 0.
Prove that for all a > 0 su�ciently small, F(a) ∈ GLn(K). (Hint: bound ∥aIn −
F(a)∥.)

3. Conclude that f is di�erentiable.

Solution.¿e assumptions clearly imply f (0) = f (0)2; since f (0) is invertible, one has
f (0) = In .

1. Fix t and di�erentiate with respect to s, obtaining f ′(s + t) = f ′(s) ⋅ f (t). Now
apply to s = 0, getting f ′(t) = f ′(0) ⋅ f (t); as we know, this solves into f (t) =
exp(tA) ⋅ f (0) = exp(tA).

2. A priori F∶R → Mn(K), and we do not know whether it takes invertible values.
However f (0) = In and f is continuous. Fix any norm onMn(K). By continuity
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at 0 there is a small open interval, say U = (0, δ), such that such that for a ∈ U
one has ∥ f (a) − In∥ < 1. ¿erefore on U :

∥F(a) − aIn∥ = ∥∫
a

t=0
f (t)dt − aIn∥

≤ ∫
a

t=0
∥ f (t) − In∥ dt

≤ a.

In particular for su�ciently small a > 0 one has ∥F(a) − aIn∥ < 1. We contend
that F(a) is then invertible. Indeed, write F(a) = aIn +M where ∥M∥ < 1. ¿en
the series

3. Notice that for �xed a, t ∈ R:

F(a + t) − F(t) = ∫
a

s=0
f (t + s)ds = ∫

a

s=0
f (t) ⋅ f (s)ds = f (t) ⋅ F(a).

By the above, for su�ciently small a > 0, one has f (t) = (F(a+t)−F(t))⋅F(a)−1.
But F is C1, and therefore so is f . We are done.

6.4.3. Exercise. Let S1 be the unit circle; write R(θ) = (cos θ − sin θ
sin θ cos θ ).

Let φ∶S1 → GLn(R) be a continuous group homomorphism. Prove that there are
P ∈ GLn(R), d ∈ N, and k1 , . . . , kd ∈ Z such that for any t ∈ R:

φ(e i t) = P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R(k1 t)
⋱

R(kd t)
1

⋱
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P−1 .

Solution. Let χ(t) = φ(e i t), which is a continuous group homomorphism from R to
GLn(R), that is, a real ‘one-parameter subgroup’. By exercise 6.4.2, there is A ∈ Mn(R)
such that (∀t ∈ R)(χ(t) = exp(tA)).

Notice that:
exp(2πA) = χ(2π) = φ(e2iπ) = φ(1) = In ,

so 2πA is diagonalisable (overC), with spectrum⊆ 2iπZ. (Both claims have been proved
in exercises; if necessary, prove them.) ¿ereforeA is diagonalisablewith spectrum⊆ iZ.
But A is a real matrix, so its non-real eigenvalues come in pairs ±ik j with k j ∈ Z; the
only real eigenvalue is 0.

So far, A is conjugate in GLn(C) to the matrix:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

[ik1 −ik1
]

⋱

[ikd −ikd
]

0
⋱

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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with �rst blocks ±k j and then 0’s. But D itself is GLn(C)-conjugate to:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

[ −k1
k1

]

⋱

[ −kd
kd

]

0
⋱

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with �rst blocks ( −k j
k j

) and then 0’s.

Now A and C are real matrices conjugate in GLn(C), so it is a standard exercise
that there is P ∈ GLn(R) with A = PCP−1. In particular, for any real number t one has
exp(tA) = P exp(tC)P−1, and P ∈ GLn(R) does not depend on t. But for any real θ one
has:

exp( −θ
θ ) = (cos θ − sin θ

sin θ cos θ ) = R(θ).

So �nally, computing blockwise,

φ(e i t) = χ(t) = exp(tA) = P exp(tC)P−1 = P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R(k1 t)
⋱

R(kd t)
1

⋱
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P−1 .
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