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2 PROJECTIVE GEOMETRY

Lecture 1. Projective spaces

Intuitive definition. Consider a 3-dimensional vector space V and some plane π which does not pass
through the origin (i.e. the zero vector). Lines through the origin (i.e. 1-dimensional subspaces of V ) which
are not parallel to the plane π will intersect π in a point, and planes through the origin (i.e. 2-dimensional
subspaces of V ) which are not parallel to π will meet π in a line. The plane π consisting of these points and
these lines can serve as your first idea of what a projective space (in this case a projective plane) is.

Question 1. Do you see that each two lines of π have at least a point of π in common?

Analytic definition. This definition does not cover all of the projective spaces, as there are many projective
planes which do not satisfy this definition. However, it is the correct definition for projective spaces of higher
dimension (although this is far from trivial), and it serves well for most commonly used projective planes
(the ones which can be coordinatised by (skew-)fields, later more about this).
Consider a vector space V . Define the projective space PV as the set of subspaces of V of dimension and
co-dimension at least one. Subspaces of dimension one of V are called points of PV . If V has dimension two
then PV is called a projective line and it just consists of points. If V has dimension larger than one, then
the subspaces of dimension two of V are called lines of PV .

Question 2. Can you now prove that each two lines of a projective plane meet in a point?

Notation. Not all mathematicians use the same notation for a projective space. If V is of dimension n+ 1
over some field F then instead of PV we also write Pn (or PnF if we want to emphasize which field we are
working over). If the field is finite, i.e. F = Fq for some prime power q, then it is common practice to use
PG(n, q), but we will stick to Pn or use the alternative notation Pnq . Also PG(V ) is frequently used instead
of PV , especially in finite geometry.

Projective lines. A projective line is just a set of points, so there is no ”geometry” to it. So, although
projective lines are important and show up in every other projective space, we will have to exclude it from
the axiomatic definition, which only works for projective spaces of dimension at least two.

Synthetic definition. Forget (for a moment) everything we just talked about. Consider two sets P
and L; call their elements points and lines. In addition to these two sets, consider a symmetric relation
I ⊂ P × L ∪ L × P (which we will call the incidence relation). A point p and a line ` are called incident if
(p, `) ∈ I, and we also say that p lies on `, ` contains p, etc.

Such a triple (P,L, I) is called a projective plane if the following three axioms are satisfied: (pp1) every two
points span a unique line; (pp2) every two lines meet in a unique point; (pp3) there exist 4 points, no three
of them on a line. (Use your intuition to understand what is meant by span and meet.)

Question 3. Can you prove that P2 satisfies these three axioms?

For projective spaces of dimension ≥ 2 we need a slightly different second axiom. A projective space P is a
thick (at least three points on each line) point-line geometry (P,L, I) together with its subspaces, satisfying
the following axioms: (ps1) every two points span a unique line; (ps2) (Veblen) every line intersecting two
sides of a triangle, not through the vertices, intersects also the third side; (ps3) there exists a triangle.

Subspaces and dimension. Continue with the projective space π = (P,L, I) as defined above. A subset
U of π is called a subspace of π if for each two distinct points x, y ∈ U the line spanned by x and y has
all its points in U . It follows that each point and each line of π is a subspace of π. The incidence relation
I is extended to a relation between all subspaces of π, where two subspace are incident if one of them
contains the other. The dimension of a projective space π (or subspace) is the length of the longest chain
of nested subspaces, where as a convention, we define the empty subspace as a subspace of π incident with
every subspace. So a point has dimension zero; a line dimension one; a plane dimension 2; a solid dimension
3; etc.

Question 4. Can you show that each subspace (which is not a point or a line) is itself a projective space?



PROJECTIVE GEOMETRY 3

Exercise 1. Prove that for projective planes, the set of (pp)-axioms and the set of (ps)-axioms are equivalent.

Projective planes. Two famous examples of projective planes are the Fano plane (of order 2) and the
Moulton plane.

Question 5. Can you draw a picture of the projective plane PV where V = F3
3?

Affine spaces. An affine space is obtained from a projective space by removing a hyperplane. An affine
space can also be defined by an analytic definition, as the space consisting of all translates of all subspaces
of a given vector space V , where the translates of a subspace U ≤ V are the sets v + U = {v + u : u ∈ U},
v ∈ V . We denote the affine space obtained from a projective space π by removing a hyperplane H of π by
A(π,H), and the affine space obtained from a vector space V by AV (or An etc.).

Projective completion. Given an affine space An, one can define a projective space as the space consisting
of all subspaces of An (the affine subspaces) together with a new subspace for each parallel class of subspaces
of An. Natural incidence makes this into a projective space, called the projective completion of An, which
we denote by An.

It is not so difficult to see that the projective completion is unique. However, the answer to the question
whether any two affine spaces obtained from a given projective space are isomorphic is more complicated.
For projective spaces PV the answer is affirmative, but for non-classical projective planes the answer depends
on the properties of the plane.

Synthetic definition. Similarly, as for a projective planes, an affine plane can be defined by the properties
(ap1) every two lines span a unique line; (ap2) for every anti-flag (p, L) there exists a unique line through p
not meeting L; (ap3) there exists a triangle.

Erlangen. The Erlangen program proposes projective geometry as the main type of geometry of which other
well-known geometries are special cases. As we will explain in this lecture, affine geometry, for example, is
less general and can be seen as part of projective geometry. The name of this program refers to the Erlangen
University in Germany where the mathematician Felix Klein proposed this unification of the different kind
of geometries in 1872.

Exercise 2. Show that every line of a projective plane has the same cardinality.

This cardinality is equal to 1 + |F|, i.e. one plus the size of the field F, in the case that the projective plane
is PV for V = F3. In the case of a finite projective plane this cardinality minus one is called the order of the
projective plane. So the Fano plane is a projective plane of order 2.

Exercise 3. Show that there is a unique projective plane of order 2, and a unique projective plane of order
3.
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Lecture 2. Collineations

Morphisms. We have defined projective spaces, which will be our object of study. The next thing math-
ematicians do is to try and understand the morphisms between these objects. This is crucial if one ever
wants to obtain sensible classification results. Compare this to group theory. A group whose elements are
matrices and another group whose elements are permutations might be ”isomorphic”, i.e. they might be
different ways of representing the same ”abstract group”. The morphisms between projective spaces that we
are interested in are called collineations.

Collineations. A collineation between two projective spaces π and π′ of dimension ≥ 2 is a bijection
between the set of subspaces of P and the set of subspaces of P ′ which preserves dimension and incidence.

Projectivities. Any element A ∈ GL(V ) defines a collineation α of PV , where V = Fn+1. Such a
collineation is called a projectivity. The action of α on PV is completely determined by its action on the points
of PV , which we define as follows. The image of a point 〈x〉 under α is the point 〈y〉 where yT = AxT . The
projectivity group of PV is denoted by PGL(V ) or PGLn+1(F). Fixed points of α correspond to eigenvectors
of A.

Question 6. Can you find a collineation which is not a projectivity?

Frames. An arc in a projective space of dimension n is a set of points no n+ 1 of which are contained in a
hyperplane (i.e. the points are in general position). A frame is an ordered arc of size n+ 2.

Theorem 7. The group PGL(V ) acts sharply transitively on the set of frames of PV .

Proof. Consider two frames Γ and Γ′ in PV and choose bases B and B′ for V , each corresponding to the
first dimV points of Γ and Γ′. The matrix A ∈ GL(V ) mapping B to B′ induces a projectivity mapping the
first n + 1 points of Γ to the first n + 1 points of Γ′. So w.l.o.g. we may assume the first n + 1 points of
both Γ and Γ′ correspond to the standard basis of V . Any projectivity fixing these points is induced by a
diagonal matrix with nonzero elements on the diagonal. Also, for any point p of PV which does not have any
zero coordinate, there exists a unique projectivity α of that form (with the coordinates of p on the diagonal)
which maps the point pn+1 with coordinates (1, 1, . . . , 1) (the all one vector) to p. Since the (n+ 2)-nd point
of Γ (and of Γ′) cannot have any zero coordinates, the action of PGL(V ) is sharply transitive. �

Canonical forms. We know from linear algebra that a change of basis in V changes the matrix of the
linear transformation A into C−1AC for some C ∈ GL(V ). This gives a limited number of canonical forms
for projecitivities of PV . If we work over the complex numbers F = C then we obtain three Jordan canonical
forms for projectivities in P1:

A1 =

[
a 0
0 a

]
, A2 =

[
a 0
0 b

]
, and A3 =

[
a 1
0 a

]
.

If αi denotes the projectivity induced by Ai (i = 1, 2, 3) then α1 is the identity in PGL2(C), α2 has two
fixed points, and α3 has one fixed point. The same exercise for P2 gives six different types of projectivities
in PGL3(C).

Dual action. The projectivity α induced by A ∈ GL(V ) maps the hyperplane with equation axT = 0 to
the hyperplane bxT = 0 where b = aA−1.

Principle of duality. Analogous to the notion of a dual vector space we have a dual projective space P∨.
The points of the dual space P∨ are the hyperplanes of P, etc.

The dual of the simple statement that “two points in a projective plane are on a unique common line” is
“two lines in a projective plane intersect in a unique point”, which implies that there are no parallel lines
in a projective plane. This “dualising” turns out to be very useful in general, and it became know as the
“principle of duality”:
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Each statement, configuration or theorem in a projective space (in terms of points, lines, ...) has a dual
statement or configuration (in terms of hyperplanes, subspaces of co-dimension two, ...)

For example, recalling that an arc in P2 is a set of points in a projective plane P2, no three of which are
collinear, we obtain the notion of a dual arc in P2: a set of lines, no three of which are concurrent.

Semilinear transformations. If the field F allows non-trivial automorphisms, then the existence of
collineations which are not projectivities follows by considering the induced action of a semilinear trans-
formation vT 7→ A(vT )σ on the projective space. The semilinear group is denoted by ΓL(V ) and the projec-
tive semilinear group by PΓL(V ). The following theorem is one of the fundamental theorems of projective
geometry.

Theorem 8. The collineation group of PV with dimV ≥ 3 is PΓL(V ).

Proof. (i) First assume that α ∈ Aut(PV ) fixes the standard frame (p0, . . . , pn+1) pointwise.
(1) The point r0 with coordinates (0, 1, . . . , 1) is the intersection of the line 〈p0, pn+1〉 with the hyperplane
〈p1, . . . , pn〉, and hence rα0 = r0. The point r1 with coordinates (0, 0, 1, . . . , 1) is the intersection of the line
〈p1, r0〉 with the subspace 〈p2, . . . , pn〉, and hence rα1 = r1. Continuing in this way, one obtains that each
point with coordinates belonging to {0, 1} is fixed by α.

(2) Now consider the point p with coordinates

(ε0, ε1, . . . , εn) = (

a︷ ︸︸ ︷
0, 0, . . . , 0,

b︷ ︸︸ ︷
1, 1, . . . , 1,

c︷ ︸︸ ︷
−1,−1, . . . ,−1).

The point p is the intersection of the line

` := 〈(
a+b︷ ︸︸ ︷

1, 1, . . . , 1,

c︷ ︸︸ ︷
0, 0, . . . , 0), (

a︷ ︸︸ ︷
1, 1, . . . , 1,

b︷ ︸︸ ︷
0, 0, . . . , 0,

c︷ ︸︸ ︷
1, 1, . . . , 1)〉

with the subspace U := 〈pa, . . . , pn〉. It follows that also p is fixed by α. Similar arguments can be used to
conclude that each point with coordinates belonging to {0, 1,−1} is fixed by α.

(3) Next consider all points on the line p0p1 but different from p1, i.e. all points with coordinates belonging
to the set {(1, z, 0, . . . , 0) : z ∈ F}. Since α fixes the line 〈p0, p1〉 and the points with coordinates from
{0, 1,−1} it follows that the image under α of a point (1, z, 0, . . . , 0) is (1, zθ, 0, . . . , 0) for some bijection θ
of F with 0θ = 0, 1θ = 1, and −1θ = −1. The point with coordinates (1, 0, z, 0, . . . , 0) is the intersection of
the line

〈(1, z, 0, . . . , 0), (0,−1, 1, 0 . . . , 0)〉
with the line 〈p0, p2〉, and is therefore mapped onto the point (1, 0, zθ, 0, . . . , 0) by α. Similarly, one obtains
that each point with coordinates e0 + ziei is mapped onto the point with coordinates e0 + zθei by α.

(4) Now consider the hyperplanes Πi with equations ziX0 − Xi = 0. Each such hyperplane Πi is spanned
by the point with coordinates e0 + ziei together with all but one of the points p1, . . . , pn, and hence is
mapped onto the hyperplane with equation zθiX0−Xi = 0. The point with coordinates (1, z1, . . . , zn) is the
intersection of all these hyperplanes and is therefore mapped onto the point with coordinates (1, zθ1 , . . . , z

θ
n).

Using the same arguments one shows that each point with normalised coordinates (0, . . . , 0, 1, zi, . . . , zn)
satisfies

〈(0, . . . , 0, 1, zi, . . . , zn)〉α = 〈(0, . . . , 0, 1, zθi , . . . , zθn)〉.

(5) Now we show that θ is an automorphism of F. Recall that we already proved that 0θ = 0, 1θ = 1, and
−1θ = −1. Consider the fact that the line

〈(1, x, y, 0, . . . , 0), (0,−1, 1, 0, . . . , 0)〉

meets p0p2 in the point with coordinates (1, 0, y + x, 0, . . . , 0) and the line

〈(1, y, 0, 0, . . . , 0), (0,−1, x, 0, . . . , 0)〉
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meets p0p2 in the point with coordinates (1, 0, yx, 0, . . . , 0). The above paragraphs imply that (x + y)θ =
xθ + yθ and (xy)θ = xθyθ, for all x, y ∈ F, i.e. θ ∈ Aut(F).

We conclude that α ∈ PΓL(n + 1,F), in particular α is the collineation induced by the seminlinear map
(In+1, θ).

(ii) Now consider any collineation β of PV . Then there exists a φ ∈ PΓL(n + 1,F) which maps the frame

(pβ0 , . . . , p
β
n+1) onto the standard frame (p0, . . . , pn+1). Therefore βφ fixes the standard frame pointwise.

Applying part (i) we obtain βφ ∈ PΓL(n+ 1,F), and hence β ∈ PΓL(n+ 1,F). �
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Lecture 3. Desargues and Pappus

The following two theorems are classical results and are of particular historical interest in the study of
projective planes. Their proofs serve as exercises to get familiar with analytic projective geometry. The
study of projective planes became very popular in the 20th century, with the discovery of many so-called
non-desarguesian projective planes. These are projective planes in which Desargues’ Theorem does not hold.

Theorem 9 (Desargues). Consider three concurrent lines `1, `2 and `3 in Pn = P(V ), n ≥ 2, and two
triangles ∆abc and ∆a′b′c′ whose vertices a, b, c and a′, b′, c′ lie on the lines `1, `2 and `3, respectively. Then
the points aa′ ∩ bb′, aa′ ∩ cc′ and bb′ ∩ cc′ are collinear.

`1

`2

`3

p

a
b

c

a′

b′

c′

Proof. If the lines `1, `2 and `3 are not coplanar, then the theorem follows from the fact that the points
aa′ ∩ bb′, aa′ ∩ cc′ and bb′ ∩ cc′ are contained in both of the planes 〈a, b, c〉 and 〈a′, b′, c′〉. These two planes
are contained in the three-dimensional space 〈`1, `2, `3〉 and hence intersect in a line.

If the lines `1, `2 and `3 are coplanar, then we may restrict ourselves to that plane, i.e. assume that n = 2.
Then the ordered 4-tuple (a, b, c, p) forms a frame, and we may assume that a(1, 0, 0), b(0, 1, 0), c(0, 0, 1) and
p(1, 1, 1). Since a′ lies on `1 = pa, b′ on `2 = pb, and c′ on `3 = pc, there exist α, β, γ ∈ F 6= {0} such that
a′(1 + α, 1, 1), b′(1, 1 + β, 1) and c′(1, 1, 1 + γ). Calculating the intersection aa′ ∩ bb′ gives the point with
coordinates (α,−β, 0). Similarly we obtain the points with coordinates (0, β,−γ) and (α, 0,−γ). Since

det

α −β 0
0 β −γ
α 0 −γ

 = 0,

these three points are collinear. �

Theorem 10 (Pappus). Consider two lines `1 and `2 in Pn = P(V ), n ≥ 2, and two triples (a, b, c) and
(a′, b′, c′) of points on the lines `1 and `2, respectively, but different from the intersection `1 ∩ `2. Then the
points ac′ ∩ ca′, ab′ ∩ ba′ and bc′ ∩ cb′ are collinear.

`2

`1a

a′

b

b′

c

c′

Proof. We may assume w.l.o.g. that the points of the frame (a, b, a′, b′) have coordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1) and (1, 1, 1), respectively. Then the points c and c′ must have coordinates (1, α, 0) and (β, β, 1) for
some α, β ∈ F\{0}. Calculating the points of intersection we obtain (0, 1, 1), (β, αβ, α) and (β, 1−α+αβ, 1).
Since

det

0 1 1
β αβ α
β 1− α+ αβ 1

 = det

0 1 1
β αβ α
0 1− α 1− α

 = 0

these points are collinear. �
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It can be shown that Pappus implies Desargues, see [Seidenberg 1976] for a proof and historical comments.
The configurations of Desargues and Pappus are of fundamental importance in the study of projective planes.
We mention without proof that a projective plane in which Pappus’ theorem holds true is isomorphic to
some P2

F, F a field, and a projective plane in which Desargues’ theorem holds true is isomorphic to some P2
K

where K is a skewfield (a possibly non-commutative field).

André/Bruck-Bose. There is a beautiful geometric construction for projective planes. The construction
starts with a partition S of P2n−1 by subspaces of dimension n − 1, which is called an (n − 1)-spread (or
spread for short). Embed P2n−1 as a hyperplane in P2n and consider the following incidence structure
π(S) = (P,L, I). The ”points” P of π(S) are the points in P2n \ P2n−1, and the ”lines” L of π(S) are the
n-dimensional subspaces of P2n intersecting P2n−1 in an element of S.

Theorem 11. The incidence structure π(S) is an affine plane.

Proof. One easily verifies the three axioms (ap1), (ap2), and (ap3). �

Spreads. Here is a simple construction of an (n− 1)-spread. Consider an n-dimensional field extension K
of a field F. The projective line P1

K becomes a P2n−1
F . The points of P1

K are 1-dimensional vector subspaces

over K and therefore n-dimensional over F. Projectively this gives us the desired (n− 1)-spread of P2n−1
F .

Derived planes. Non-desarguesian projective planes can be obtained as the so-called derived planes from
PV with V = F3. It uses the André-Bruck-Bose constuction, and is obtained by replacing a regulus in the
spread associated with PV by its opposite regulus.

Translation planes. The André/Bruck-Bose construction gives a particularly nice type of projective plane
known as a translation plane: a projective plane π which contains a line L such that for each point p on L
and each line M 6= L through p the group of automorphisms of π fixing p and M acts transitively on the set
of points on M distinct from p.
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Lecture 4. The projective line

Although one could argue that the projective line is not all that interesting from a geometric point of view,
since it merely consists of points, it is a subspace of every other projective space, and as such, it plays a
fundamental role.

Collineations. (Recall that P1 was excluded in our previous definition of a collineation.) Collineations of
P1 are defined as elements of PΓL(V ). Labelling the points of P1 by the elements of F∪ {∞}, a collineation
of P1 gives a permutation of F ∪ {∞}. The point (1, 0) corresponds to ∞ and the point (y, 1) corresponds

to y ∈ F. The collineation induced by the pair (A, θ) with A =

[
a b
c d

]
is the map

y 7→ ayθ + b

cyθ + d
.(1)

Cross ratio. The cross ratio is a ”number” defined from a quadruple (p1, p2, p3, p4) of collinear points. If
the first three points are distinct, then the cross ratio is equal to the affine coordinate of p4 w.r.t. the frame
(p1, p2, p3). In order to find a formula for the cross ratio we will make use of Theorem 7. Suppose pi has
coordinates (xi, yi), and define dij as the determinant of the matrix whose rows are (xi, yi) and (xj , yj). The

projectivity mapping the standard frame to (p1, p2, p3) has matrix A =

[
λx1 µx2
λy1 µy2

]
where λ = d32/d12 and

µ = d13/d12, which has determinant λµd12. So in order to obtain the affine coordinate of p4 with respect
(p1, p2, p3) we need to apply the inverse of A to the coordinates of p4 and then divide the first by the second
coordinate. This gives the following formula for the cross ratio of the quadruple (p1, p2, p3, p4)

d31d42
d32d41

.(2)

In order to make this definition somewhat more general, we let it apply to quadruples with two of its first
three points equal, obtaining cross ratios 1 (if the first two points are the same), 0 (if the first point equals
the third), and ∞ (if the last two points are equal). The following theorem comes for free.

Theorem 12. Two (ordered) quadruples are projectively equivalent iff they have the same cross ratio.

In other words, the cross ratio provides a complete system of projective invariants for collinear quadruples.

Theorem 13. If (p1, p2, p3, p4) has cross ratio λ and α = ϕ with ϕ = (A, θ), then the quadruple (pα1 , p
α
2 , p

α
3 , p

α
4 )

has cross ration λθ.

Proof. Suppose that the cross ratio of the quadruple (p1, p2, p3, p4) is y.

First assume (p1, p2, p3) is a frame. Let β ∈ PGL(V ) be such that it maps the frame (pα1 , p
α
2 , p

α
3 ) to the

(p1, p2, p3). Then αβ fixes the frame (p1, p2, p3) and is therefore of the form ϕ where ϕ = (I2, θ). Applying

αβ to the point (y, 1) gives (yθ, 1). So the cross ratio of the quadruple (pαβ1 , pαβ2 , pαβ3 , pαβ4 ) is yθ. This
concludes the proof since β leaves the cross ratio invariant.

If (p1, p2, p3) is not a frame, then the cross ration is either 0, 1 or ∞ in which case there is nothing to
prove. �

Action of S4. Permutating the points of a quadruple (by an element of S4) gives an action of S4 on the set
of cross ratios which is obtained from a set of 4 points in P1.

Theorem 14. The 24 quadruples obtained from the quadruple (p1, p2, p3, p4) by the action of the symmetric
group S4, produces six different values for the cross ratio{

λ,
1

λ
, 1− λ, 1

1− λ
,
λ− 1

λ
,

λ

1− λ

}
.
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Proof. It is clear from the formula (2) that interchanging the first (or last) two points gives 1/λ. This implies
that the permutations (12) and (34) map the cross ratio to its inverse. It also implies that the orbit of λ
under S4 has size at most six. Changing the second and third point can be obtained by the element of

PGL(V ) induced by the matrix

[
−1 1
0 1

]
which maps the point (y, 1) to (1 − y, 1). This shows that the

permutation (23) ∈ S4 maps the cross ratio λ to 1− λ. Since these permutations generate S4 we obtain the
6 values which are listed. �

A quadruple having cross ratio equal to -1 is called harmonic. They are characterised by the fact that their
cross ratio is invariant under the permutation (12) ∈ S4.

A complete invariant. For any quadruple T of distinct points in P1, with cross ratios λ1, . . . , λ6, define

J(T ) =
∑
i<j

λiλj .

Theorem 15. For each λ ∈ {λ1, . . . , λ6}

J(T ) = 6− (λ2 − λ+ 1)3

λ2(λ− 1)2
.

Proof. By definition, J(T ) is the coefficient of X4 in the polynomial
∏6
i=1(X − λi), which means that if the

expression is valid for one of the λi’s, then it holds for all λi’s. (One can also show that the equation holds
true for the other values of λ by observing that both of the substitutions λ 7→ 1/λ and λ 7→ 1−λ leaves J(T )
invariant.) To verify the expression, put λ = λ1 and write the other λi’s in terms of λ. Compute J(T ). �

Let Ω denote the set of quadruples consisting of distinct points for which the six values of the cross ratios
obtained from them by the action of S4 are all distinct.

Theorem 16. Two quadruples T, T ′ ∈ Ω are PGL(V )-equivalent if and only if J(T ) = J(T ′).

Proof. If two quadruples T and T ′ are equivalent then there must be some ordering of their points for which
the cross ratios are equal. This means that the two sets of six cross ratios obtained from both quadruples
by permuting the position of the points must be the same. This implies J(T ) = J(T ′).

Assume that the six cross ratios obtained from T are distinct. It follows from the above that these are the
six distinct roots of the degree six polynomial X2(X2 − 1)(6 − J(T )) + (X2 −X + 1)3. Therefore, the six
values of the cross ratios obtained from the quadruple T are uniquely determined by the value of J(T ). In
other words, if J(T ) = J(T ′), then T and T ′ determine the same set of six distinct values for the cross
ratio, and are thus equivalent under PGL(V ). The case in which not all six cross ratios obtained form T are
distinct is left as an exercise. �

If the six values of the cross ratios obtained from a quadruple T consisting of distinct points are not distinct,
then there are the following possibilities.

If λ = 1/λ then λ = −1 (harmonic quadruple) and the six values are {−1, 2, 1/2}. The same three values
are obtained from the cases λ = 1 − λ and λ = λ/(λ − 1). If λ = (λ − 1)/λ (or λ = 1/(1 − λ)) then

λ2 − λ+ 1 = 0 which has at most two solutions in F. The two solutions over C are λ = 1±
√
−3

2 and in this
case the quadruple is called equinharmonic.

Projection and perspectivities. Consider two distinct lines L and M in P2 and a point p not lying on
either of these lines.

Lemma 17. The projection δ of L to M from p defines a projectivity between the lines L and M .

Proof. To prove the lemma it suffices to show that δ preserves the cross ratio. With respect to a frame
(p0, p1, p2, p3), where p0 = L ∩M , p1 ∈ L, p2 ∈ M and p4 = p, the point r with coordinates (y, 1, 0) on L
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gets projected onto the point s with coordinates (1−y, 0, 1). Consider the points r0 = p0, r1 = p1, r2(1, 1, 0)
and r on L. Ignoring the last coordinate on L (it is zero on L), this 4-tuple has cross ratio y. The images of
these 4 points under the projection from p give the points (this time ignoring the second coordinate, which
is zero on M) q0(1, 0), q1(1, 1), q2(0, 1), and q3(1 − y, 1). By the above the cross ratio of (q0, q1, q2, q3) is
equal to 1− (1− y) (apply the permutation (23) ∈ S4), which is y. It follows that the projective preserves
the cross ratio, and therefore it is a projectivity. �

Complete quadrilateral theorem. A complete quadrilateral ∆ in P2 is obtained from a frame in the dual
projective plane, and consists of 4 lines (the sides of ∆) no three of which are concurrent. The 6 points
obtained by intersecting the sides are called the vertices of ∆. The lines passing through opposite vertices are
called the diagonals (there are 3 of them) of ∆ and the intersection of the diagonals are called the diagonal
points.

Theorem 18. If M is a diagonal of a complete quadrangle Γ, containing the two vertices q1, q2, and the two
diagonal points q3 and q4, then (q1, q2, q3, q4) is harmonic. Conversely every harmonic quadruple of points
in P1 can be obtained in this way.

Proof. Choose appropriate coordinates and verify that the affine coordinate of q4 w.r.t. (q1, q2, q3) is −1
for a 4-tuple as described in the statement of the theorem. Alternatively, projecting one diagonal D1 onto
another diagonal D2 from the two vertices which are not contained in either of these diagonals, shows that
the cross ratio of (q1, q2, q3, q4) is invariant under (12) ∈ S4, which implies that the 4-tuple is harmonic.

Conversely suppose (q1, q2, q3, q4) is harmonic. Then since PGL(2,F) preserves the cross-ratio we may
assume q1(0, 1), q2(1, 0), q3(1, 1), and q4(−1, 1). Now embed P1 as the line X2 = 0 in P2 and find a complete
quadrangle satisfying the required properties. �
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Lecture 5. The projective groups

Perspectivities. Perspectivities from an important type of collineations. A collineation α of Pn with n ≥ 2
is called an axial collineation if there exists a hyperplane H such that α fixes each point of H. In this case
H is called the axis of α. A collineation is α is called a central collineation if there exists a point p such that
α fixes each hyperplane through p. The point p is called the centre of α.

Theorem 19. If a collineation α of Pn, n ≥ 2, has an axis, then it also has a centre, and conversely.

Proof. We show that an axis implies a centre. If α is the identity then there is nothing to prove. So suppose
α 6= id. Consider the two cases: (i) α has no fixpoints outside its axis; (ii) α has a fixpoint outside its axis.
(i) Since α fixes each point of its axis, a hyperplane H, it fixes each subspace contained in H. Consider the
line ` = rrα where r is point not contained in H. (Such a point exists since α 6= id.) Then ` intersects the
H in a point p = pα, and it follows that ` is fixed by α since `α = (rp)α = rαp. We will show that p is a
centre for α. Let m be any other line through p, not contained in H. The plane π = 〈`,m〉 meets H in a
line `1 and therefore π = 〈`1, `〉. Moreover, since both ` and `1 are fixed by α, also π must be fixed by α.
It follows that mα is contained in π too. Let s be a point on m different from p, i.e. m = sp. Consider the
line m1 = ssα, and note that m1 is contained in π. Using the same argument as was used to prove that
`α = ` one sees that mα

1 = m1. Since m1 and ` belong to π and are both fixed by α, they intersect in point
and that point must also be fixed by α. This implies that m1 meets ` in the point p (there are no fixpoints
outside H), and it follows that m = m1 which is a line fixed by α. We have shown that each line through p
is fixed. But then also each hyperplane through p is fixed by α. We have shown that p is a centre for α.

(ii) Let p be a fixpoint of α with p /∈ H. Consider any line ` through p. Then ` meets H in a point r and
since both r and p are fixed by α, it follows that also ` is fixed by α. This shows that each line through p is
fixed by α, i.e. the point p is a centre for α.

For the converse, apply the principle of duality. �

A central (or axial) collineation is also called a perspectivity. The group of all perspectivities with common
centre p and common axis H is called a perspectivity group and is denoted by Persp(p,H). Perspectivities
with incident (centre,axis)-pair are called elations, and perspectivities of which the centre is not contained
in the axis are called homologies.

Theorem 20. A perspectivity α 6= id of Pn, n ≥ 2, has a unique axis and a unique centre.

Proof. Suppose α has two distinct centres p and p′. Consider a point s not on pp′ and the lines ` = sp and
`′ = sp′. Then both lines ` and `′ are fixed by α and therefore sα must be contained in their intersection,
i.e. s = sα. It then easily follows that α = id (convince yourself that α also fixes every point on pp′). The
uniqueness of the axis follows from the principle of duality. �

Theorem 21. Given a point-hyperplane pair (p,H) and two points x 6= x′ of Pn, n ≥ 2, not contained in
H ∪ {p}, with x, x′, p collinear, there exists a unique α ∈ Persp(p,H) such that xα = x′.

Proof. Suppose dimV = n+ 1. First we prove uniqueness. If xα = x′ and xβ = x′ with α, β ∈ Persp(p,H),

then xαβ
−1

= x with αβ−1 ∈ Persp(p,H). Consider any hyperplane H ′ through x. Since x /∈ H the
hyperplane H ′ = 〈x,H ∩ H ′〉, and it follows that H ′ is also fixed by αβ−1. This shows that x 6= p is also
centre of αβ−1. By the uniqueness of the centre (Theorem 21) it follows that αβ−1 = id.

In order to show the existence of α ∈ Persp(p,H) such that xα = x′, we distinguish between elations and
homologies, i.e. p ∈ H and p /∈ H.

(a) If p ∈ H then consider any point y /∈ H, and two frames

Λ(p, p1, . . . , pn−1, x, y) and Λ′(p, p1, . . . , pn−1, x
′, y′),

where z = xy ∩H, y′ = py ∩ x′z, and p1, . . . , pn−1 ∈ H. Then Σa(p, p1, . . . , pn−1, z) is a frame of H.
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(b) If p /∈ H then consider two frames

Λ(p, p1, . . . , pn, x) and Λ′(p, p1, . . . , pn, x
′),

where p1, . . . , pn ∈ H. Then Σb(p1, . . . , pn, z), with z = px ∩H is a frame of H.

In both cases (a) and (b) let α be the unique projectivity satisfying Λα = Λ′. Then α fixes both frames Σa
and Σb, and this implies that H is an axis of α and is therefore a perspectivity.

It follows that α also has a centre and we are left to show that the centre of α is p. This immediately follows
in case (b) since α fixes p and p /∈ H.

In case (a), suppose p′ is the centre of α. Clearly p′ /∈ {x, x′, y, y′}. Then the line xp′ is fixed by α, imlying
p′ ∈ xx′. The same argument using the points y and y′ shows that p′ is on the line yy′. It follows that
p = p′. �

Remark 22. Choosing a convenient frame in part (a) of the above proof (precisely p = 〈e1〉, H = 〈e1 . . . , en〉,
x(1, 0, . . . , 0) and x′(1, a, 0, . . . , 0)), we see that the elation α is induced by ϕ = (A, id), with

A =


1 0
a 1

0

0 In−1

 .

Theorem 23. If α is an elation of PG(V ), with dimV ≥ 3, then α ∈ PSL(V ).

Proof. The above remark combined with the fact that PGL(V ) acts transitively on frames and det(g−1Ag) =
det(A). �

Analogously to the definition of collineations of a projective line, the previous Corollary motivates the
following definition of elations on a projective line. An elation of P1 is a projectivity α = (A, id) with 1
fixpoint and such A has eigenvalue 1 with algebraic multiplicity 2.

The fundamental diagram. Our next aim is to understand the following diagram of exact sequences.

SL(V ) ∩ Sc(V ) Sc(V ) N

SL(V ) GL(V ) F∗

PSL(V ) PGL(V ) F∗/N

det

det

ϕ 7→ ϕ̄ ϕ 7→ ϕ̄ a 7→ an+1

Figure 1. A diagram of exact sequences with V = Fn+1 and N := {an+1 : a ∈ F∗}.


