Math 212 (Abstract Algebra) MT 2008 Ali Nesin

I. We consider the \mathbb{C} -algebra $M = Mat_{2\times 2}(\mathbb{C})$.

1. Show that any 2×2 matrix over \mathbb{C} is conjugate to one of the following two types of matrices (20 pts.):

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}.$$

- 2. Show that for any $m \in M$ there is a nonzero monic polynomial $p_m(X) \in \mathbb{C}[X]$ of degree ≤ 4 such that $p_m(m) = 0$. (5 pts.)
- 3. Show that the monic polynomial $p_m(X)$ above can be chosen so that for all $q(X) \in M$, $p_m(X)$ divides q(X) whenever q(m) = 0. $(p_m(X)$ is called the minimal polynomial of m). (5 pts.)
- 4. Show that the subalgebra $\mathbb{C}[m]$ of M generated by \mathbb{C} (view \mathbb{C} as the subalgebra of M that consists of scalar matrices) and m is isomorphic to $\mathbb{C}[X]/\langle p_m(X) \rangle$. (Here p_m is chosen as in Q3). (5 pts.)
- 5. Let $m \in M$, $g \in GL_2(\mathbb{C})$ and $p(X) \in \mathbb{C}[X]$. Show that if p(m) = 0 then $p(g^{-1}mg) = 0$. (5 pts.)
- 6. Show that for any $m \in M$ there is a nonzero polynomial $p_m(X) \in \mathbb{C}[X]$ of degree ≤ 2 such that $p_m(m) = 0$. Find examples where deg $p_m = 1$ and deg $p_m > 1$. (5 pts.)
- 7. Show that $\mathbb{C}[m]$ is isomorphic to one of the three types of \mathbb{C} -algebras: \mathbb{C} , $\mathbb{C}[X]/X^2$ and $\mathbb{C}[X]/\langle X^2 cX \rangle$ for $c \in \mathbb{C}$. (10 pts.)
- 8. Are any of the above \mathbb{C} -algebras isomorphic to each other? (10 pts.)

II. Now we consider the \mathbb{R} -algebra $M = Mat_{2\times 2}(\mathbb{R})$.

1. Let $\rho(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ where $\theta \in [0, 2\pi)$. Show that $\rho(\theta)$ is the anti-

clockwise rotation of angle θ around the origine. (5 pts.)

- 2. Show that there is a polynomial $p_{\theta}(X) \in \mathbb{R}[X]$ of degree ≤ 2 such that $p_{\theta}(\rho(\theta)) = 0$. (10 pts.) Find all θ for which the polynomial $p_{\theta}(X)$ is irreducible of degree 2. (5 pts.)
- 3. Suppose $p_{\theta}(X)$ is irreducible of degree 2. Show that the \mathbb{R} -algebra $\mathbb{R}[\rho(\theta)]$ generated by $\rho(\theta)$ is isomorphic to the field \mathbb{C} of complex numbers. (5 pts.)
- 4. Show that any $m \in M$ has a minimal polynomial of degree ≤ 2 over \mathbb{R} . (20 pts.)

III. For $m \in \text{Mat}_{2\times 2}(\mathbb{Z})$, study the isomorphism type of the \mathbb{Z} -module $\mathbb{Z}[m]$ generated by ring of the scalar matrices ($\approx \mathbb{Z}$) and the matrix *m*. (50 pts.)