Math 212 (Abstract Algebra) MT 2008
 Ali Nesin

I. We consider the \mathbb{C}-algebra $M=\operatorname{Mat}_{2 \times 2}(\mathbb{C})$.

1. Show that any 2×2 matrix over \mathbb{C} is conjugate to one of the following two types of matrices (20 pts.):

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right)
$$

2. Show that for any $m \in M$ there is a nonzero monic polynomial $p_{m}(X) \in$ $\mathbb{C}[X]$ of degree ≤ 4 such that $p_{m}(m)=0$. (5 pts.)
3. Show that the monic polynomial $p_{m}(X)$ above can be chosen so that for all $q(X) \in M, p_{m}(\mathrm{X})$ divides $q(X)$ whenever $q(m)=0 .\left(p_{m}(X)\right.$ is called the minimal polynomial of m). (5 pts .)
4. Show that the subalgebra $\mathbb{C}[m]$ of M generated by \mathbb{C} (view \mathbb{C} as the subalgebra of M that consists of scalar matrices) and m is isomorphic to $\mathbb{C}[X] /\left\langle p_{m}(X)\right\rangle$. (Here p_{m} is chosen as in Q3). (5 pts.)
5. Let $m \in M, g \in \mathrm{GL}_{2}(\mathbb{C})$ and $p(X) \in \mathbb{C}[X]$. Show that if $p(m)=0$ then $p\left(g^{-1} m g\right)=0$. (5 pts.)
6. \quad Show that for any $m \in M$ there is a nonzero polynomial $p_{m}(X) \in \mathbb{C}[X]$ of degree ≤ 2 such that $p_{m}(m)=0$. Find examples where $\operatorname{deg} p_{m}=1$ and deg $p_{m}>1$. (5 pts.)
7. Show that $\mathbb{C}[m]$ is isomorphic to one of the three types of \mathbb{C}-algebras: \mathbb{C}, $\mathbb{C}[X] / X^{2}$ and $\mathbb{C}[X] /\left\langle X^{2}-c X\right\rangle$ for $c \in \mathbb{C}$. (10 pts.)
8. Are any of the above \mathbb{C}-algebras isomorphic to each other? (10 pts .)
II. Now we consider the \mathbb{R}-algebra $M=\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
9. Let $\rho(\theta)=\left(\begin{array}{lc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ where $\theta \in[0,2 \pi)$. Show that $\rho(\theta)$ is the anticlockwise rotation of angle θ around the origine. (5 pts .)
10. Show that there is a polynomial $p_{\theta}(X) \in \mathbb{R}[X]$ of degree ≤ 2 such that $p_{\theta}(\rho(\theta))=0$. (10 pts.) Find all θ for which the polynomial $p_{\theta}(X)$ is irreducible of degree 2. (5 pts .)
11. Suppose $p_{\theta}(X)$ is irreducible of degree 2 . Show that the \mathbb{R}-algebra $\mathbb{R}[\rho(\theta)]$ generated by $\rho(\theta)$ is isomorphic to the field \mathbb{C} of complex numbers. (5 pts.)
12. \quad Show that any $m \in M$ has a minimal polynomial of degree ≤ 2 over \mathbb{R}. (20 pts.)
III. For $m \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$, study the isomorphism type of the \mathbb{Z}-module $\mathbb{Z}[m]$ generated by ring of the scalar matrices $(\approx \mathbb{Z}$) and the matrix m. (50 pts .)
