Math 211 (Abstract Algebra)

Quiz and Homework (on localization) 25-12-1998 Ali Nesin

Let *R* be a commutative ring with 1. Let *S* be a multiplicatively closed subset of *R* containing 1. On $R \times S$ define the relation,

by the rule

 $(r, s) \approx (r', s')$

"There exists an $s_1 \in S$ such that $s_1(s'r - ra') = 0$ ".

1. Show that this is an equivalence relation.

Let $S^{-1}R = (R \times S)/\approx$. Denote the equivalence class of (r, s) by the suggestive notation r/s.

2. Note that if $0 \in S$, then $S^{-1}R$ has only one element. From now on we assume that $0 \notin S$.

3. Show that on $S^{-1}R$ one can define addition and multiplication. With these operations $S^{-1}R$ becomes a ring (called the **ring of fractions of** *R* **by** *S*).

4. Show that there is a natural ring homomorphism φ from *R* into *S*⁻¹*R*. When is it an embedding?

5. Show that the elements of $\varphi(S)$ are invertible in $S^{-1}R$.

6. Show that if $S \subseteq R^*$, then $S^{-1}R \approx R$.

7. Let T be a ring and $\alpha: R \to T$ be a ring homomorphism such that $\alpha(S)$ is invertible in T. Show that there is a unique ring homomorphism $\beta: S^{-1}R \to T$ such that $\beta \circ \varphi = \alpha$.

8 and 9. Let *P* be a prime ideal of *R* (i.e. $xy \in P$ implies that either *x* or *y* is in *P*). Let $S = R \setminus P$. Show that *S* is a multiplicatively closed subset of *R* containing 1. Show that $S^{-1}R$ is a local ring (i.e. it has a unique maximal ideal, or equivalently the set of noninvertible elements of it forms an ideal; prove that assertion). $S^{-1}R$ is called the **local ring of R at P**.

10. Conclude that if R has no zerodivisors and $S = R \setminus \{0\}$, then $S^{-1}R$ is a field (called the **quotient field** or the **field of fractions of** R).

Note that if $R = \mathbb{Z}$, then $S^{-1}R \approx \mathbb{Q}$.

If R = F[X] is the ring of polynomials over the field *F*, then $S^{-1}R$ is the field of fractional polynomials over *F*.

11. Let J(R) denote the set of ideals of a ring R. Let $\psi: J(R) \to J(S^{-1}R)$ be defined by $\psi(I) = \varphi(I) = S^{-1}I$. Show that

11a. $\psi(I + J) = \psi(I) + \psi(J)$ **11b.** $\psi(I J) = \psi(I) \psi(J)$ **11c.** $\psi(I \cap J) = \psi(I) \cap \psi(J)$

12. Is ψ onto?