Math 211 (Abstract Algebra)

Quiz and Homework (on localization)
 25-12-1998
 Ali Nesin

Let R be a commutative ring with 1 . Let S be a multiplicatively closed subset of R containing 1 . On $R \times S$ define the relation,

$$
(r, s) \approx\left(r^{\prime}, s^{\prime}\right)
$$

by the rule
"There exists an $s_{1} \in S$ such that $s_{1}\left(s^{\prime} r-r a^{\prime}\right)=0 "$.

1. Show that this is an equivalence relation.

Let $S^{-1} R=(R \times S) / \approx$. Denote the equivalence class of (r, s) by the suggestive notation r / s.
2. Note that if $0 \in S$, then $S^{-1} R$ has only one element. From now on we assume that $0 \notin S$.
3. Show that on $S^{-1} R$ one can define addition and multiplication. With these operations $S^{-1} R$ becomes a ring (called the ring of fractions of \boldsymbol{R} by \boldsymbol{S}).
4. Show that there is a natural ring homomorphism φ from R into $S^{-1} R$. When is it an embedding?
5. Show that the elements of $\varphi(S)$ are invertible in $S^{-1} R$.
6. Show that if $S \subseteq R^{*}$, then $S^{-1} R \approx R$.
7. Let T be a ring and $\alpha: R \rightarrow T$ be a ring homomorphism such that $\alpha(S)$ is invertible in T. Show that there is a unique ring homomorphism $\beta: S^{-1} R \rightarrow T$ such that $\beta \circ \varphi=\alpha$.

8 and 9. Let P be a prime ideal of R (i.e. $x y \in P$ implies that either x or y is in P). Let $S=R \backslash P$. Show that S is a multiplicatively closed subset of R containing 1 . Show that $S^{-1} R$ is a local ring (i.e. it has a unique maximal ideal, or equivalently the set of noninvertible elements of it forms an ideal; prove that assertion). $S^{-1} R$ is called the local ring of \boldsymbol{R} at \boldsymbol{P}.
10. Conclude that if R has no zerodivisors and $S=R \backslash\{0\}$, then $S^{-1} R$ is a field (called the quotient field or the field of fractions of \boldsymbol{R}).

Note that if $R=\mathbb{Z}$, then $S^{-1} R \approx \mathbb{Q}$.
If $R=F[X]$ is the ring of polynomials over the field F, then $S^{-1} R$ is the field of fractional polynomials over F.
11. Let $J(R)$ denote the set of ideals of a ring R. Let $\psi: J(R) \rightarrow J\left(S^{-1} R\right)$ be defined by $\psi(I)=\varphi(I)=S^{-1} I$. Show that

11a. $\psi(I+J)=\psi(I)+\psi(J)$
11b. $\psi(I J)=\psi(I) \psi(J)$
11c. $\psi(I \cap J)=\psi(I) \cap \psi(J)$
12. Is ψ onto?

