Lie Algebras HW9

Gümüşlük Akademisi Ali Nesin August 5th, 2000

Let $L = sl_2(F)$ where F is algebraically closed. Let $x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ y = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ h = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

be the standard basis of $sl_2(F)$ (regarded as a vector space).

We will classify irreducible finite dimensional *L*-modules. Let *V* be such a module. For $\lambda \in F$, set

$$V_{\lambda} = \{ v \in V : hv = \lambda v \}.$$

 V_{λ} is a subspace of V. Note that λ is an eigen-value iff $V_{\lambda} \neq 0$. In this case we call λ a weight and V_{λ} a weight space.

1. Check that [x, y] = h, [h, x] = 2x and [h, y] = -2y.

2. Show that V is a direct sum of distinct weight spaces.

3. Show that $xV_{\lambda} \le V_{\lambda+2}$ and that $yV_{\lambda} \le V_{\lambda-2}$. Conclude that there is a weight space V_{λ} such that $xV_{\lambda} = 0$.

A nonzero vector of a weight space V_{λ} such as above is called a **maximal vector** of weight λ . We choose a maximal vector $v_0 \in V_{gl}$ Let $v_{-1} = 0$ and for $i \ge 0$, define $v_i = (1/i!) y^i v_0$.

4. Show that for $i \ge 0$, $hv_i = (\lambda - 2i)v_i$, i.e. $v_i \in V_{\lambda - 2i}$.

5. Show that for $i \ge 0$, $yv_i = (i + 1)v_{i+1}$.

6. Show that for $i \ge 0$, $xv_i = (\lambda - i + 1)v_{i-1}$.

7. Show that $\operatorname{Vect}(v_i : i \ge 0) = \bigoplus_{i \ge 0} Fv_i$ and is an *L*-module.

9. Show that $\operatorname{Vect}(v_i : i \ge 0) = L$ and that if $V_{\lambda} \ne 0$ then $V_{\lambda} = \operatorname{Vect}(v)$.

11. Let $m = \dim V$. Show that $v_0 \in V_m$.

12. Show that either all the weights λ are even or they are all odd.

13. Show that

4. Show that