# Lie Algebras 

Midterm I<br>Gümüşlük Akademisi<br>Ali Nesin<br>August 5th, 2000

## Recall

i. Let $L$ be a Lie algebra over a field $F$. An $\boldsymbol{L}$-module $V$ is a vector space over $F$ together with a bilinear map $L \times V \rightarrow V$ that sends the pair $(l, v) \in L \times V$ to an element denoted $l v \in V$ such that $\left[l, l^{\prime}\right] v=l\left(l^{\prime} v\right)-l^{\prime}(l v)$ for all $l, l^{\prime} \in L$ and $v \in V$.
ii. If $V$ and $W$ are vector spaces with bases $\left(v_{i}\right)_{i \in I}$ and $\left(w_{j}\right)_{j \in J}$, then the tensor product $V \otimes W$ has basis $\left(v_{i} \otimes w_{j}\right)_{i \in I, j \in J}$.
iii. If $V$ is a vector space, $V$ denotes the vector space $\operatorname{Hom}_{F}(V, F)$ of linear maps from $V$ into $F$.

All vector spaces and Lie algebras we consider are assumed to be finite dimensional over the base field $F$.

1. (Dual Basis). Let $f: V \times V \rightarrow F$ be a symmetric nondegenerate bilinear form. Let $v_{1}, \ldots, v_{n}$ be a basis of $V$. Show that there is a unique basis (called the dual base) $w_{1}, \ldots, w_{n}$ such that $f\left(v_{i}, w_{j}\right)=\delta_{i j}$. ( 20 pts.)
2. Show that an $L$-module $V$ is a direct sum of irreducible modules iff it is completely reducible (i.e. its submodules split, i.e. its submodules have complements). (7 pts.)
3. (Dual Space). Let $V$ be an $L$-module. Let $V^{*}$ be the dual space of $V$ (considered as a vector space). For $l \in L$ and $f \in V^{*}$, define $l f: V \rightarrow F$ by $(l f)(v)=-f(l v)$ for all $v$ $\in V$. Show that $l f \in V^{*}$ and that this multiplication defines a Lie module structure on $V^{*}$. (5 pts.)
4. Let $V$ and $W$ be vector spaces.

4a. Show that there is a unique linear map $\varphi$ from $V^{*} \otimes W$ into $\operatorname{Hom}_{F}(V, W)$ such that $\varphi(f \otimes w)(v)=f(v) w$ for all $f \in V^{*}, w \in W$ and $v \in V$. (6 pts.)

4b. Let $v_{1}, \ldots, v_{n}$ and $w_{1}, \ldots, w_{m}$ be bases of $V$ and $W$ respectively. Compute the endomorphism $\varphi\left(v_{i}^{*} \otimes w_{j}\right)$. (4 pts.)

4c. Deduce that $\varphi$ is an isomorphism of vector spaces. (5 pts.)
5. (Tensor Product of Modules). Let $V$ and $W$ be $L$-modules. For $l \in L, v \in V$ and $w \in W$ define $l(v \otimes w)=l v \otimes w+v \otimes l w$. Show that this defines a Lie algebra structure on $V \otimes W$. ( 6 pts.)
6. Let $V$ and $W$ be $L$-modules. By \#3, $V^{*}$ has an $L$-module structure. By \#5, $V^{*} \otimes$ $W$ has an $L$-module structure. By \#4, this $L$-module structure can be transferred to $\operatorname{Hom}_{F}(V, W)$ via $l \alpha=\varphi\left(l \varphi^{-1}(\alpha)\right)$. $\left(\right.$ Here $l \in L, \alpha \in \operatorname{Hom}_{F}(V, W), \varphi$ is as in \# 4).

Check that for $l \in L$ and $\alpha \in \operatorname{Hom}_{F}(V, W), l \alpha$ is given by $(l \alpha)(v)=l \alpha(v)-\alpha(l v)$ for $v \in V$. ( 7 pts .)
7. (Casimir Element). Let $L$ be a semisimple Lie algebra over an algebraically closed field of characteristic 0 and let $\varphi: L \rightarrow \operatorname{gl}(V)$ be a faithful representation of $L$ (i.e. $\varphi$ is a one-to-one Lie algebra homomorphism). For $x, y \in L$, define $\beta(x, y)=$ $\operatorname{tr}(\varphi(x) \varphi(y))$.

7a. Show that $\beta$ is a symmetric associative nondegenerate bilinear form. ( 5 pts. )
Let $x_{1}, \ldots, x_{n}$ be a basis of $L$. By \#1, there is a dual basis $y_{1}, \ldots, y_{n}$ such that $\beta\left(x_{i}, y_{j}\right)$ $=\delta_{i j}$ for all $i, j$. For $x \in L$, let $a_{i j}(x)$ and $b_{i j}(x) \in F$ be such that for all $i, j$,

$$
\begin{aligned}
& {\left[x, x_{i}\right]=\sum_{j} a_{i j}(x) x_{j}} \\
& {\left[x, y_{i}\right]=\sum_{j} b_{i j}(x) y_{j}}
\end{aligned}
$$

7b. Show that $\beta\left(\left[x, x_{i}\right], y_{k}\right)=-\beta\left(x_{i},\left[x, y_{k}\right]\right)$. By using that equality show that $a_{i k}(x)$ $=-b_{k i}(x)$. (5 pts.)

Let $c=\Sigma_{i} \varphi\left(x_{i}\right) \varphi\left(y_{i}\right) \in \operatorname{gl}(V) . c$ is called Casimir element of $\varphi$.
7d. Show that $\operatorname{tr}(\mathrm{c})=\operatorname{dim} L$. ( 5 pts.)
7c. Show that $[\varphi(x), c]=0$ for all $x \in L$. Thus $c \in \mathrm{C}_{\mathrm{End}(\nu)}(\varphi(L))$. (10 pts.)
7d. Assume $\varphi$ is irreducible. Show that $c=(\operatorname{dim} L / \operatorname{dim} V)$ Id. In particular $c$ is independent of the choice of the basis $x_{1}, \ldots, x_{n}$. ( 5 pts.)

7e. Compute $c$ in case $L=\operatorname{sl}_{2}(F), V=F^{2}$ and $\varphi=\mathrm{Id}$ by going through the definitions. (10 pts.)

