Lie Algebras HW7

Gümüşlük Akademisi Ali Nesin August 2nd, 2000

Let *L* be a finite dimensional Lie algebra. Let $\kappa : L \times L \to F$ be defined by $\kappa(x, y) = tr((ad x)(ad y)).$

 κ is a symmetric bilinear form called the **Killing form** of *L*.

1. Show that the Killing form is associative in the sense that for all $x, y, z \in L$, $\kappa([x, y], z] = \kappa(x, [y, z])$.

2. Compute the Killing form of the Lie algebra of 3×3 strictly upper matrices.

3. Compute the Killing form of $sl_2(F)$.

4. Lie's Theorem states that over an algebraically closed field **F**, a finite dimensional solvable Lie algebra has a common eigenvector in case $char(\mathbf{F}) = 0$ or $dim(L) < char(\mathbf{F})$. Here we find a counterexample in case $dim(L) = char(\mathbf{F})$.

Let **F** be any field of characteristic p > 0. Let *V* be a vector space of dimension *p*. Let $v_0, ..., v_{p-1}$ be a basis of *V*. Define $x, y \in gl(V)$ by

> $x(v_i) = v_{i-1}$ (we set $v_{-1} = v_{n-1}$) $y(v_i) = iv_i$

for all i = 0, 1, ..., p - 1.

Let *A* be the sub Lie algebra of gl(V) generated by *x* and *y*.

4a. Show *A* is solvable

4b. Show that *A* has no common eigenvector.

4c. Show that A' has nonnilpotent endomorphisms if p = 2. Is this true if p > 2?

5. We will now find a counterexample in all characteristics p > 0 to a statement that we know it holds in characteristic 0: *If L is solvable then L'is nilpotent*.

Let *A* and *F* be as above. Let $B = A \oplus \mathbf{F}^p$ (direct sum as a vector space). Turn *B* into a Lie algebra by decreeing that \mathbf{F}^p is abelian, that *A* acts on \mathbf{F}^p as usual and that *A* has its Lie product.

5a. Check that this really gives a Lie algebra structure to B.

5b. Check that $B' = \mathbf{F}x \oplus \mathbf{F}^p$.

5c. Check that *B* is solvable.

5d. Check that *B*′ is not nilpotent.