Lie Algebras HW6

Gümüşlük Akademisi Ali Nesin July 30th, 2000

1. Let *F* be a field and $G = GL_n(F)$. Let $D_n(F)$ and $B_n(F)$ be the set of diagonal and upper triangular matrices of *G*.

1a. Show that $N_G(D_n(F))/D_n(F) \approx \text{Sym}(n)$.

1b. Show that $D_n(F)$ splits in $N_G(D_n(F))$, i.e. show that there is a subgroup $S \le N_G(D_n(F))$ such that $N_G(D_n(F)) = D_n(F)S$ and $D_n(F) \cap S = 1$. **1c.** Show that $N_G(B_n(F)) = B_n(F)$

2. Let *F* be a field and $L = gl_n(F)$. Let $d_n(F)$ and $b_n(F)$ be the set of diagonal and upper triangular matrices of *L*. Assume char(*F*) = 0

2a. Show that $N_L(d_n(F)) = d_n(F)$.

2b. Show that $N_L(b_n(F)) = b_n(F)$.

2c. What happens in characteristic p > 0?

3. Show that if char(F) = 2 then $sl_2(F)$ is nilpotent.

4. Show that if char(F) = p > 0 then $sl_p(F)$ is not simple.

5. Let *L* be a nilpotent Lie algebra. Let *K* be an ideal of codimension 1 (why does it have to exist?)

5a. Show that $C_L(K) \neq 0$.

5b. Let $x \in L \setminus K$. Let *n* be the smallest integer such that $C_L(K) \leq L^n$. Let $z \in C_L(K) \setminus L^{n+1}$. Let $\delta : L \to L$ be the linear map that sends *K* to 0 and *x* to *z*. Show that δ is a derivation.

5c. Show that for all $l \in L$, $\delta \neq ad(l)$.

6. Let *L* be a finite dimensional Lie algebra, $K \blacktriangleleft L$ be such that L/K is nilpotent and such that $(ad x)|_K$ is nilpotent for all $x \in L$. Show that *L* is nilpotent.

7a. Show that $Z(gl_n(F)) = FId$.

7b. Show that if *F* is algebraically closed, then $gl_n(F) = sl_n(F).Z(gl_n(F))$.

7c. Find $Z(gl_n(F))$.

7d. Use Lie's theorem to prove that if char(F) = 0 or if n < char(F) then $Rad(sl_n(F)) = Z(sl_n(F))$.