Lie Algebras HW5

Gümüşlük Akademisi Ali Nesin July 28rd, 2000

1. Let *L* be a 3 dimensional Lie Algebra over a field *K*. Let e_1 , e_2 , e_3 be a basis of *L*. For *i*, *j* = 1, 2, 3 and *i* < *j* set

$$[e_i, e_j] = a_{ij1}e_1 + a_{ij2}e_2 + a_{ij3}e_3.$$
^(*)

1a. Show that the constants $(a_{i,j,k})_{i < j,k}$ determine the Lie algebra structure of *L*. **1b.** What are the relations between the constants $(a_{i,j,k})_{i < j,k}$ for the multiplication

(*) to define a Lie algebra structure?

2. Show that a Lie algebra *L* where Z(L) has codimension ≤ 1 in *L* is abelian.

3. Show that a Lie algebra *L* where Z(L) has codimension ≤ 2 in *L* is solvable.

4. Show that a nilpotent Lie algebra of dimension 2 is abelian.

5. Show that a nilpotent Lie algebra of dimension 3 is nilpotent of class ≤ 2 .

6. Classify all nilpotent Lie algebras of dimension 3.

7. Show that a nilpotent Lie algebra over F of dimension 3 is a subalgebra of $gl_n(F)$.

8. Show that a Lie algebra over *F* of dimension 3 is a subalgebra of some $gl_n(F)$.

9. Let *A* be an algebra (not necessarily associative) over a field *F*. Let $\delta \in \text{Der}(A)$. **9a.** Show that for $\lambda, \mu \in F$ and $x, y \in A$,

 $(\delta - (\lambda + \mu)\mathrm{Id})^{n}(xy) = \sum_{i=0, 1, \dots, n} ((\delta - \lambda\mathrm{Id})^{n-i}x)((\delta - \mu\mathrm{Id})^{i}y).$

9b. For $\lambda \in F$, let $A_{\lambda} = \{x \in A : (\delta - \lambda \operatorname{Id})^{k}(x) = 0 \text{ for some } k \in \mathbb{N}\}$. Show that $A_{\lambda}A_{\mu} \leq A_{\lambda+\mu}$.