Galois Theory Febr. 2001 Final Ali Nesin

Open books!

1. Prove that the following two properties are equivalent:

(a) Every algebraic extension of *K* is separable.

(b) Either char(K) = 0 or char(K) = p > 0 and every element of K has a pth root in K.

2. Let E be an algebraic extension of F. Show that every subring of E that contains F is a field.

3. Let E = F(x) where x is transcendental over F.

3a. Let $F < K \le F(x)$. Show that F(x) is algebraic over *K*.

3b. Let y = f(x)/g(x) where *f* and *g* are prime to each other. Let $n = \max(\deg(f), \deg(g))$. Show that $[F(x) : F(y)] \le n$.

3c. Everything as above. Prove that [F(x) : F(y)] = n.

4. Show that there is a maximal subfield of **C** that does not contain $\sqrt{2}$.

5. Let $p_1, p_2, ..., p_n$ be distinct prime numbers. What is the Galois group of the polynomial $(X^2 - p_1) ... (X^2 - p_n)$ over **Q**?

6. Find the Galois group of $X^3 - X + 1$ over **Q**, **F**₂ and **F**₇.

- **7.** Find the roots of unity of the fields $\mathbf{Q}(\sqrt{2})$, $\mathbf{Q}(i)$, $\mathbf{Q}(\sqrt{-2})$.
- 8. Let ζ be a primitive n^{th} root of unity. Let $K = \mathbf{Q}(\zeta)$. 8a. If $n = p^r$ $(r \ge 1)$ is a prime power, show that $N_{K/\mathbf{Q}}(1 - \zeta) = p$. 8b. If n is divisible by at least two distinct primes, show that $N_{K/\mathbf{Q}}(1 - \zeta) = 1$.

9. Let k be a field, K its algebraic closure, $\sigma \in \text{Gal}(K/k)$, $F = \text{Fix}_{K}(\sigma)$. Show that every finite extension of F is cyclic.