Lie Algebras HW4

Ali Nesin July 26rd, 2000

Throughout *L* stands for a Lie algebra.

1. Suppose *L* is nilpotent. Let $0 \neq A \triangleleft L$. Show that $A \cap Z(L) \neq 0$.

2. (Normalizer Condition). Suppose *L* is nilpotent and A < L. Show that $A < N_L(A)$.

3. Show that if dim(L) = 2 then L is solvable of class 2, i.e. $L^{(2)} = [L', L'] = 0$ where L' = [L, L].

4. Show that L' is the smallest ideal I of L such that L/I is abelian.

5. Show that *L* is nilpotent of class *n* iff $L^n = 0$ and $L^{n-1} \neq 0$.

6. Show that a solvable Lie algebra has an ideal with trivial multiplication.

7. Let *A* be such that $L' \leq A \leq L$. Show that $A \triangleleft L$.

8. Show that if *L* has an ideal of codimension 2 then L' < L.

9. Show that L' < L iff *L* has an ideal of codimension 1.

10. For $X \subseteq L$, set $C_L(X) = \{c \in L : [c, x] = 0 \text{ for all } x \in X\}$. Show that $C_L(X) \leq L$.

11. Show that for "most" of the fields F, $sl_2(F)$ is a simple Lie algebra of dimension 3.