Lie Algebras HW3 Derivations and Exponentiations

Ali Nesin July 23rd, 2000

1. Let *V* be a vector space and let $\alpha \in \text{End}(V)$ be a **nilpotent** endomorphism of **nilpotency degree** *k* for some natural numbers k > 0, this means that $\alpha^k = 0$ and $\alpha^i \neq 0$ for i < k. In case the characteristic *p* of the base field > 0, we assume that $k \le p$.

Define (computing in $\text{End}_F(V) = \text{gl}(V)$)

 $\exp \alpha = \text{Id} + \alpha + \alpha^2/2! + \dots + \alpha^{k-1}/(k-1)!$

1a. Show that the vector space endomorphism η of *A* defined by $\eta = \exp \alpha - \operatorname{Id}$ is nilpotent of nilpotency degree $\leq k$.

1b. Conclude that $\operatorname{Id} - \eta + \eta^2 - \dots \pm \eta^{k-1}$ is the inverse of exp α , so that exp $\alpha \in \operatorname{GL}(V)$.

1c. Assume α and β are commuting nilpotent endomorphisms of nilpotency degree k and l respectively. Show that $\alpha + \beta$ is a nilpotent endomorphism of nilpotency degree $\leq k + l$.

1d. Let α and β be as above. Assume further that either p = 0 or $\max(k, l) \le p$. Show that $\exp(\alpha + \beta) = (\exp \alpha)(\exp \beta)$.

1e. Show that $\exp(\alpha)^{-1} = \exp(-\alpha)$.

1f. Is it possible to define exp α for nilpotent α without the restriction on the characteristic and the nilpotency class?

1g. Show that every strictly upper triangular $n \times n$ matrix (with zeroes on the diagonai and below) is nilpotent of class $\leq n$.

2. (Leibniz Rule). Let *A* be an algebra. Let $\delta \in \text{Der}(A)$ be a derivation. Show that for all natural numbers *n*,

$$\delta^{n}(xy) = \sum_{i=0,\dots,n} \binom{n}{i} \delta^{i}(x) \delta^{n-i}(y).$$

3. Let *A* be an algebra (not necessarily associative).

3a. Let $\delta \in \text{Der}(A)$ and $\varphi \in \text{Aut}(A)$. Show that $\varphi^{-1}\delta\varphi \in \text{Der}(A)$.

3b. Assume δ is a nilpotent derivation of nilpotency degree *k* for some natural number k > 0. Let $\varphi \in Aut(A)$. Show that $\varphi^{-1}\delta\varphi$ is a nilpotent derivation of nilpotency degree *k*.

4. Let A be an algebra (not necessarily associative). Let δ be a nilpotent derivation of nilpotency degree $\leq k$ for some natural number k > 0. In case the characteristic p of the base field $\neq 0$, we assume that $k \leq p$. Show that $\exp(\delta)$ is an algebra automorphism of A.

5. Let *L* be a Lie algebra over a field of characteristic 0. For $x \in L$, recall that $adx \in Der(L)$, so that we can apply the results above in case ad *x* is nilpotent, i.e. when *x* is **ad-nilpotent**. Let Inn(L) be the subgroup of Aut(L) generated by the set $\{exp(ad x) : x \in L \text{ and } ad x \text{ is nilpotent}\}$. Show that Inn(L) is a normal subgroup of Aut(L).

6. Let *F* be a field of characteristic $\neq 2$. Let $u = \in sl_2(F)$.

6a. Compute the derivation ad *u* of $sl_2(F)$; what is the matrix of ad *u* in some suitable basis of $sl_2(F)$?

6b. Show that ad *u* is nilpotent.

6c. Compute exp(ad *u*).

6d. What is the inverse of exp(ad *u*)?

6e. For $y \in sl_2(F)$, compute exp(ad u)(y).

6f. Show that *u* is nilpotent.

6g. Find exp u and $(\exp u)^{-1}$.

6h. For $y \in sl_2(F)$, compute $(\exp u)y(\exp u)^{-1}$.

6i. Compare the results of 6e and 6g. They should be the same. This is not avccidental, see next exercise.

6j. Can you compute exp ad *u* when char(F) = 2?

7. Let *L* be a sub Lie algebra of gl(V). Let $x \in L$ be a nilpotent element of nilpotency class *k*. If characteristic *p* of the base field is not 0, assume that $k \leq p$.

Let λ_x and ρ_x be the right and left multiplications in the ring gl(*V*).

7a. Note that ad $x = \lambda_x + \rho_{-x}$ and that λ_x and ρ_{-x} are nilpotent and that they commute. Conclude that ad x is nilpotent. Thus a nilpotent element in a Lie algebra is ad-nilpotent.

7b. Show that exp ad $x = \lambda_{\exp x} \circ \rho_{\exp(-x)}$. (Hint: Use using 7a and 1d).

7c. Show that for any $y \in L$, $(\exp x)y(\exp x)^{-1} = (\exp \operatorname{ad} x)(y)$, in other words the action of the automorphism exp ad x on L is given by an inner conjugation.

8. Let *L* be a Lie algebra.

8a. Show that for $x \in L$ and $\delta \in Der(L)$, $[\delta, ad x] = ad(\delta x)$. **8b.** Show that ad(L) is an ideal of Der(L).