Lie Algebras HW2

Ali Nesin July 23rd, 2000

1. (Lie Algebra Associated to an Associative Algebra) Let A be an associative algebra over a field F. Show that the bracket operation defined by [x, y] = xy - yx turns (A, +, [,]) into a Lie algebra.

2. (**Derivations**). Let *A* be an algebra (not necessarily associative) over a field *F*. An *F*-linear map $\delta : A \to A$ is called a derivation, if $\delta(ab) = a\delta(b) + \delta(a)b$. Show that the set Der(*A*) of derivations of *A* is a Lie algebra under the usual bracket operation $[\delta_1, \delta_2] = \delta_1 \circ \delta_2 - \delta_2 \circ \delta_1$.

3. (Inner Derivations of a Lie Algebra). Let *L* be a Lie algebra. For $x \in L$, let ad(x) denote the map from *L* into *L* defined by (ad(x))(y) = [x, y].

3a. Show that $ad(x) \in Der(L)$ for all $x \in L$.

3b. Show that $Inn(L) = \{ad(x) : x \in L\}$ is a sub Lie algebra of Der(L).

3c. Show that Inn(L) is an ideal of Der(L), i.e. that $[Inn(L), Der(L)] \leq Inn(L)$.

3d. Show that the map $ad : x \to ad(x)$ is a Lie algebra homomorphism from *L* into InnDer(*L*).

3e. What is the kernel of ad?

3f. Show that a centerless Lie algebra of finite dimension is isomorphic to a sub Lie algebra of gl(L). (In fact, by a theorem of Ado and Iwasawa, any finite dimensional Lie algebra is isomorphic to a subalgebra of gl(V) for some V, but this is harder to prove).

3g. Let $x \in gl_n(F)$ have *n* distinct eigenvalues $\alpha_1, ..., \alpha_n$. Show that ad(x) has n^2 eigenvalues with $\alpha_i - \alpha_i$ as the only eigenvalues.

3h. Let $x \in L$. Show that the subspace of *L* spanned by the eigenvectors of ad(x) is a sub Lie algebra of *L*.

4. (Lie Algebras of type A: Special Linear Algebras). Show that for any two $n \times n$ matrices A, B over any commutative ring, tr(AB) = tr(BA). Conclude that the set $sl_n(F)$ of $n \times n$ matrices of trace 0 over a field F is a Lie subalgebra of $gl_n(F)$.

5. (Lie Algebras of type C: Symplectic Algebras). Let V be a vector space over a field F. Let $f: V \times V \to F$ be a nondegenerate bilinear skewsymmetric form on V, thus

f is bilinear

If f(v, V) = 0 then v = 0

f(v, w) = -f(w, v) all $v, w \in V$

By Question #8 of HW 1, up to equivalence there is only one such *f*.

Let $\operatorname{sp}(V) = \{ \varphi \in \operatorname{End}_F(V) = \operatorname{gl}(V) : f(\varphi(v), w) = -f(v, \varphi(w)) \}$. Show that $\operatorname{sp}(V)$ is a Lie subalgebra of $\operatorname{gl}(V)$, in fact of $\operatorname{sl}(V)$ if $\dim(V) < \infty$.

6. (Lie Algebras of type B and D: Orthogonal Algebras). Let V be a vector space over a field F. Let $f: V \times V \rightarrow F$ be a nondegenerate bilinear symmetric form on V, thus

f is bilinear, If f(v, V) = 0 then v = 0f(v, w) = f(w, v) all $v, w \in V$

Let $o(V, f) = \{ \varphi \in \text{End}_F(V) = gl(V) : f(\varphi(v), w) = -f(v, \varphi(w)) \}$. Show that o(V) is a Lie subalgebra of gl(V), in fact of sl(V) if $\dim(V) < \infty$.