Math 212 (Algebra)

2 Nisan 2000
Let R be a ring. A derivation D is a map $D: R \rightarrow R$ such that for all $x, y \in R$,

$$
\begin{gather*}
D(x+y)=D(x)+D(y) \tag{*}\\
D(x y)=D(x) y+x D(y) \tag{**}
\end{gather*}
$$

1. Show that if D_{1} and D_{2} are derivations on R, then $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ is also a derivation on R. (Note: This part will not be used in the sequel).

From now on we assume that the ring R is commutative with identity.
2. Show that if D is a derivation on a ring R, then

2a. $D(0)=0$.
2b. $D(-x)=-D(x)$ for all $x \in R$.
2c. $D(n)=0$ for all integers n (we mean the image of the integer n in R).
2d. $D\left(x^{n}\right)=n x^{n-1} D(x)$ for all $x \in R$ and $n \in \mathbf{N}$.
2d. $D\left(x^{n}\right)=n x^{n-1} D(x)$ for all $x \in R^{*}$ and $n \in \mathbf{Z}$.
2e. $D(x y z)=D(x) y z+x D(y) z+x y D(z)$ for all $x, y, z \in R$.
3. Show that the set of derivations is an R-module.
4. Let $D: R[X] \rightarrow R[X]$ be an additive map. Show that if D satisfies (**) for monomials (i.e. $D\left(a X^{n} b X^{m}\right)=D\left(a X^{n}\right) b X^{m}+a X^{n} D\left(b X^{m}\right)$ for all $a, b \in R$ and $n, m \in \mathbb{N}$) then D is a derivation on $R[X]$.
5. On the polynomial ring $R[X]$ define

$$
\left(\sum_{i} r_{i} X^{i}\right)^{\prime}=\sum_{i} i r_{i} X^{i-1}
$$

Show that the map $f \mapsto f^{\prime}$ is a derivation on $R[X]$. (Hint: Use part 4. Note that this is the "usual" derivation).
6. Assuming R is a field, what can you say about $f \in R[X]$ if $f^{\prime}=0$?
7. Let D be a derivation on R. Extend D to the polynomial ring $R[X]$ by the rule

$$
D\left(\sum_{i} r_{i} X^{i}\right)=\sum_{i} D\left(r_{i}\right) X^{i}
$$

Note that $D(X)=0$. Show that D is a derivation on $R[X]$. (Hint: Use part 4).
8. Let D be a derivation on R. Let $u \in R[X]$ be fixed. Show that the map

$$
D_{u}: R[X] \rightarrow R[X]
$$

given by

$$
D_{u}(f)=D(f)+u f^{\prime}
$$

for all $f \in R[X]$ is a derivation on $R[X]$ that extends the derivation D of R and that $D(X)=u$. (Hint: Use parts 3, 5 and 7).
9. Let D be a derivation on R. Let $u \in R[X]$ be fixed. Show that there is a unique derivation E on $R[X]$ that extends the derivation D of R and that $E(X)=u$. (Hint: Show that E, if it exists, must be as equal to D_{u} of part 8 and use part 8 to show its existence).
10. Let D be a derivation on R.

10a. On the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ define the derivation D as in part 7 .

10b. Regarding, $R\left[X_{1}, \ldots, X_{n}\right]$ as $R\left[X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right]\left[X_{i}\right]$, as in part 5 we define a derivation that we denote by D_{i} of by $\partial / \partial X_{i}$ (partial differentiation with resğpect to X_{i}).

10c. Let $u_{1}, \ldots, u_{n} \in R\left[X_{1}, \ldots, X_{n}\right]$. Define

$$
D^{\prime}=D+\sum_{i=1, \ldots, n} u_{i} \partial / \partial X_{i}
$$

Show that D^{\prime} is a derivation on $R\left[X_{1}, \ldots, X_{n}\right]$, that $\left.D^{\prime}\right|_{R}=D$ and that $D^{\prime}\left(X_{i}\right)=u_{i}$ for all $i=1, \ldots, n$.

One can show as in part 9 that the derivation D^{\prime} on $R\left[X_{1}, \ldots, X_{n}\right]$ defined above is the unique derivation that satisfies $\left.D^{\prime}\right|_{R}=D$ and $D\left(X_{i}\right)=u_{i}$ for all $i=1, \ldots, n$.
11. (Chain Rule.) Let S be a subring of R. Let D be a derivation on R such that $\left.D\right|_{S}=0$. Let $f\left(X_{1}, \ldots, X_{n}\right) \in S\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial. We will show that

$$
D\left(f\left(u_{1}, \ldots, u_{n}\right)\right)=\sum_{i=1, \ldots, n} D\left(u_{i}\right)\left(\partial f / \partial X_{i}\right)\left(u_{1}, \ldots u_{n}\right)
$$

for all u_{1}, \ldots, u_{n}.
11c. Show that it is enough to prove this result for monomials f (i.e. for polynomials of the form $f=a X_{1}^{r_{1}} \cdots X_{n}^{r_{n}}$.

11d. Show the result for all f.
12. (Taylor's Expansion.) Let f be a polynomial of degree n over R in one variable. By replacing the indeterminate of f by $X+Y$, we obtain the polynomial $f(X+$ $Y) \in R[X, Y]$. Since the degree of $f(X+Y)$ in Y is still n, we can write,

$$
\begin{equation*}
f(X+Y)=f_{0}(X)+f_{1}(X) Y+\ldots+f_{n}(X) Y^{n} \tag{*}
\end{equation*}
$$

We will compute the polynomials $f_{i}(X)$ in terms of the derivatives $f^{(j)}(X)$ for $j=1, \ldots$, n where $f^{(1)}=f^{\prime}$ is the derivation given in part 5 and $f^{(i+1)}=\left(f^{(i)}\right)^{\prime}$

12a. Show that
Differentiate $\left({ }^{*}\right)$ with respect to Y, i.e. apply $\partial / \partial Y$ to $\left(^{*}\right) k$ times.

