Algebra (Math 212)

Ali Nesin

Let G be a group, K a field and V a K-vector space. Recall that GL(V) is the set of invertible linear maps from V into itself, and that it is a group under composition.

A group homomorphism ρ from *G* into GL(*V*) is called a **representation** of *G*. We also say that *V* is a *K*[*G*]-space. For $g \in G$ and $v \in V$, instead of $\rho(g)(v)$, we may simply write gv.

1. Explain why for all $g, h \in G, v, w \in V$ and $\alpha \in K$, we have g(v + w) = gv + gw $g(\alpha v) = \alpha gv$ g(hv) = (gh)(v)ev = v.

2. Conversely, suppose that a map $G \times V \to V$ that sends a pair (g, v) to an element denoted gv of V is given so that the four equalities above hold for all $g, h \in G, v, w \in V$ and $\alpha \in K$. Show that this map turns V into a K[G]-space in a natural way. (5 pts.)

2. Define the concept of the direct-sum of two K[G]-spaces. (5 pts.)

3. Define the concept of a *K*[*G*]-subspace of a *K*[*G*]-space. (5 pts.)

4. Show that the quotient of a K[G]-space by a K[G]-subspace is a K[G]-space. (5 pts.)

A K[G]-space V is called **irreducible** if $V \neq 0$ and if 0 and V are the only K[G]-subspaces of V.

5. Let *V* be a K[G]-space. Show that if *G* or dim_{*F*}(*V*) is finite then *V* has an irreducible K[G]-subspace. Assuming |G| = n, show that any irreducible K[G]-space has dimension $\leq n$. (15 pts.)

6. Assume *K* is algebraically closed and *G* is abelian. Show that any irreducible K[G]-space is 1-dimensional. (15 pts.)

7. Assume |G| = n > 1 and let V be a K[G]-space. Let $v \in V$ and $w = \sum_{g \in G} gv$. Show that gw = w for all $g \in G$. Conclude that any irreducible K[G]-space has dimension $\leq n - 1$. (10 pts.)

8. Let $K = \mathbb{C}$ and n > 0 an integer. Find all irreducible $\mathbb{C}[\mathbb{Z}/n\mathbb{Z}]$ -spaces. (15 pts.)

9. Find an irreducible K[Sym(3)]-space. (10 pts.)

10. Find all irreducible $\mathbf{F}_p[\mathbb{Z}/p\mathbb{Z}]$ -spaces. (20 pts.)