The group structure of $(\mathbb{Z} / n \mathbb{Z})^{*}$

Ali Nesin

I. Ring Decomposition.

Ia. Show that if n and m are prime to each other then $\mathbb{Z} / n m \mathbb{Z} \approx \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$ (as rings with identity).

Ib. Conclude that if $n=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$ is the prime decomposition of n then

$$
\mathbb{Z} \mid n \mathbb{Z} \approx \mathbb{Z} / p_{1}^{n_{1}} \mathbb{Z} \times \ldots \times \mathbb{Z} / p_{k}^{n_{k}} \mathbb{Z}
$$

as rings with identity.
Ic. Conclude that if $n=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$ is the prime decomposition of n then

$$
(\mathbb{Z} / n \mathbb{Z})^{*} \approx\left(\mathbb{Z} / p_{1}^{n_{1}} \mathbb{Z}\right)^{*} \times \ldots \times\left(\mathbb{Z} / p_{k}^{n_{k}} \mathbb{Z}\right)^{*} .
$$

Problem. Therefore to understand the group structure of $(\mathbb{Z} / n \mathbb{Z})^{*}$, we need to understand the group structures of $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{*}$ for primes p and natural numbers k.

II. Elementary Number Theory.

IIa. Show that if n and m are two integers prime to each other then there are integers a and b such that $a n+b m=1$.

IIb. Conclude that $(\mathbb{Z} / n \mathbb{Z})^{*}=\{\underline{m}: m$ and n are prime to each other $\}$.
Let $\varphi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{*}\right|=\mid\{m \leq n: m$ and n are prime to each other $\} \mid$.
IIc. Show that if p is a prime then $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$.
IId. Show that if n and m are prime to each other then $\varphi(n m)=\varphi(n) \varphi(m)$.
IIe. Compute $\varphi(500)$.
IIf. Show that $\left.\Sigma_{d}\right|_{n} \varphi(d)=n$. (Hint: Proceed by induction on n and use parts IIc and IId).

III. Elementary Group Theory.

Let G denote a group.
IIIa. Let $H \leq G$. For $a, b \in G$ show that either $a H=b H$ or $a H \cap b H=\varnothing$. Conclude that if G is finite then $|H|$ divides $|G|$.

IIIb. Let $g \in G$ have order d. (By definition d is the smallest positive integer such that $g^{d}=1$). Show that $|\langle g\rangle|=d$ and that if $g^{n}=1$ then d divides n. Conclude that if $g^{n}=g^{m}=1$ for relatively prime n and m then $g=1$.

IIIc. Assume G is finite and let $g \in G$ have order d. Conclude from above that d divides $|G|$ and that $g^{|G|}=1$. Conclude that for any $k \in \mathbb{Z}$ relatively prime to n, we have $k^{\varphi(n)} \equiv 1$ $\bmod n$. Conclude that for any $k \in \mathbb{Z}$ not divisible by the prime p, we have $k^{p-1} \equiv 1 \bmod p$. Conclude that for any $k \in \mathbb{Z}$ and prime p, we have $k^{p} \equiv k \bmod p$. (One can show this by induction on $|k|$ also).

IIId. Let $a, b \in G$ be two commuting elements whose orders n and m are relatively prime. Show that $a b$ has order $n m$.

IIIe. Let $\varphi: G \rightarrow H$ be a surjective homomorphism of abelian groups. Let

$$
\operatorname{Ker} \varphi=\{g \in G: \varphi(g)=1\} .
$$

Show that $\operatorname{Ker} \varphi \leq G$. Show that the $\operatorname{map} \varphi: G / \operatorname{Ker} \varphi \rightarrow H$ defined by $\varphi(g)=\varphi(g)$ is welldefined and is an isomorphism of groups. (This is also valid for nonabelian groups).

IV. Elementary Ring Theory

Let R be a ring and $f(X) \in R[X]$.
IVa. Show that if $r \in R$ is a root of f then $X-r$ divides f.
IVb. Show that if R is a domain and $r_{1}, \ldots, r_{k} \in R$ are distinct roots of f then

$$
\left(X-r_{1}\right)\left(X-r_{2}\right) \ldots\left(X-r_{\mathrm{k}}\right)
$$

divides f.
IVc. Conclude that a polynomial f over a domain can have at most $\operatorname{deg} f$ distinct roots in the domain. Conclude that the polynomial $X^{d}-1$ has at most d roots in a field.

IVd. Find a counterexample to IVb and IVc if R is not a domain.

V. Case $k=1$.

Va. Show that $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is a prime.
From now on we let K denote a field and G, a finite multiplicative subgroup of K^{*}. We will show that G is cyclic. By setting $K=\mathbb{Z} / p \mathbb{Z}$, this will show that $(\mathbb{Z} / p \mathbb{Z})^{*} \approx \mathbb{Z} /(p-1) \mathbb{Z}$, settling the case $k=1$.

Let $|G|=n$. It is enough to show that G has an element of order n.
Vb. Let $g \in G$ have order d. Show that $\left\{x \in G: x^{d}=1\right\}=\langle g\rangle \approx \mathbb{Z} / d \mathbb{Z}$. (Hint: Everything takes place in a field!)

Vc. Let d be a divisor of n. Conclude from above that G has either 0 or $\varphi(d)$ elements of order d.

Vd. Using IIf and Vc show that G has (exactly $\varphi(n)$) elements of order n.
Ve. Conclude that G is cyclic. Conclude that $(\mathbb{Z} / p \mathbb{Z})^{*} \approx \mathbb{Z} /(p-1) \mathbb{Z}$.

VI. Case $\boldsymbol{p}>2$ and $\boldsymbol{k}>1$.

We let $R=\mathbb{Z} / p^{k} \mathbb{Z}$. We will show that R^{*} is cyclic. Since

$$
\left|R^{*}\right|=p^{k}-p^{k-1}=p^{k-1}(p-1)
$$

and since p^{k-1} and $p-1$ are prime to each other, by IIId, it is enough to find elements of order p^{k-1} and $p-1$ of R^{*}. We will show that $1+p$ is an element of R^{*} of order p^{k-1}. It is more difficult to find explicitly an element of order $p-1$.

VIa. Show that any $a \in R$ can be written as

$$
a=a_{0}+a_{1} p+\ldots+a_{k-1} p^{k-1}
$$

for some unique $a_{0}, \ldots, a_{k-1} \in\{0,1, \ldots, p-1\}$. From now on, given $a \in R, a_{0}$ will denote the above "first coordinate" of a.

VIb. Show that $a \in R^{*}$ iff $a_{0} \neq 0$.
VIc. Show that for all $i, 1+p^{i} R \leq R^{*}$.
VId. Show that $|1+p R|=p^{k-1}$ and that $\left|R^{*} /(1+p R)\right|=p-1$.
VIe. Show that if $p>2$ and $a \in 1+p^{i} R^{*}$ then $a^{p} \in 1+p^{i+1} R^{*}$. Show that this is false if p $=2$. Conclude that the order of $1+p$ is p^{k-1}.

Now we will find an element of order $p-1$.
VIf. Let $\varphi: R^{*} \rightarrow R^{*}$ be the group homomorphism defined by $\varphi(r)=r^{p-1}$. Show that $\varphi\left(R^{*}\right) \leq 1+p R$. (Hint: IIIc.)

VIg. Show that φ restricted to $1+p R$ is one-to-one. (Hint: VId). Conclude that $\varphi\left(R^{*}\right)=$ $1+p R$.
VIi. Conclude that $R^{*} \approx(1+p R) \times\left\{r \in R^{*}: r^{p-1}=1\right\}$. (Hint : VIg, IIIe, IIIb).

VIj. Let $\psi: R^{*} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{*}$ be defined by $\psi(a)=\left[a_{0}\right]$. Show that ψ is a surjective homomorphism of groups. Conclude that $R^{*} /(1+p R) \approx(\mathbb{Z} / p \mathbb{Z})^{*} \approx \mathbb{Z} /(p-1) \mathbb{Z}$. (Hint IIIe).

VIk. Conclude from VIi and VIj that $\left\{r \in R^{*}: r^{p-1}=1\right\} \approx \mathbb{Z} /(p-1) \mathbb{Z}$. Conclude that R^{*} has an element of order $p-1$. Conclude that R^{*} is cyclic.
VII. Case $p=2$ and $k>1$.

Show that $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{*} \approx \mathbb{Z} / 2^{k-2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. (Details will be given later).

VIII. General Teorem.

Conclude from all the above that

1) if 4 does not divide $n,(\mathbb{Z} / n \mathbb{Z})^{*} \approx \mathbb{Z} / \varphi(n) \mathbb{Z}$,
2) if 4 divides $n,(\mathbb{Z} / n \mathbb{Z})^{*} \approx \mathbb{Z} / \varphi(n / 2) \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
