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I. Ring Decomposition. 

Ia. Show that if n and m are prime to each other then �/nm� ≈ �/n� × �/m� (as rings 

with identity). 

Ib. Conclude that if kn

k

n
ppn ...1

1= is the prime decomposition of n then 

�/n� ≈ �/ 1

1

n
p � × ... × �/ kn

kp � 

as rings with identity. 

Ic. Conclude that if kn

k

n
ppn ...1

1= is the prime decomposition of n then 

(�/n�)* ≈ (�/ 1

1

n
p �)* × ... × (�/ kn

kp �)*. 

 

Problem. Therefore to understand the group structure of (�/n�)*, we need to 

understand the group structures of (�/p
k
�)* for primes p and natural numbers k. 

 

II. Elementary Number Theory. 

IIa. Show that if n and m are two integers prime to each other then there are integers a 

and b such that an + bm = 1. 

IIb. Conclude that (�/n�)* = {m : m and n are prime to each other}. 

Let ϕ(n) = (�/n�)* = {m ≤ n : m and n are prime to each other}. 

IIc. Show that if p is a prime then ϕ(p
k
) = p

k
 − p

k−1
. 

IId. Show that if n and m are prime to each other then ϕ(nm) = ϕ(n)ϕ(m). 

IIe. Compute ϕ(500). 

IIf. Show that Σdn ϕ(d) = n. (Hint: Proceed by induction on n and use parts IIc and IId). 

 

III. Elementary Group Theory. 

Let G denote a group. 

IIIa. Let H ≤ G. For a, b ∈ G show that either aH = bH or aH ∩ bH = ∅. Conclude that 

if G is finite then H divides G. 

IIIb. Let g ∈ G have order d. (By definition d is the smallest positive integer such that 

g
d
 = 1). Show that 〈g〉 = d and that if g

n
 = 1 then d divides n. Conclude that if g

n
 = g

m
 = 1 

for relatively prime n and m then g = 1. 

IIIc. Assume G is finite and let g ∈ G have order d. Conclude from above that d divides 

G and that g
G

 = 1. Conclude that for any k ∈ � relatively prime to n, we have k
ϕ(n)

 ≡ 1 

mod n. Conclude that for any k ∈ � not divisible by the prime p, we have k
p−1

 ≡ 1 mod p. 

Conclude that for any k ∈ � and prime p, we have k
p
 ≡ k mod p. (One can show this by 

induction on k also). 

IIId. Let a, b ∈ G be two commuting elements whose orders n and m are relatively 

prime. Show that ab has order nm. 

IIIe. Let ϕ : G → H be a surjective homomorphism of abelian groups. Let  

Ker ϕ = {g ∈ G : ϕ(g) = 1}. 

Show that Ker ϕ ≤ G. Show that the map ϕ : G/Ker ϕ → H defined by ϕ(g) = ϕ(g) is well-

defined and is an isomorphism of groups. (This is also valid for nonabelian groups). 

 

IV. Elementary Ring Theory 



Let R be a ring and f(X) ∈ R[X]. 

IVa. Show that if r ∈ R is a root of f then X − r divides f. 

IVb. Show that if R is a domain and r1, ..., rk ∈ R are distinct roots of f then  

(X − r1)(X − r2) ... (X − rk) 

divides f. 

IVc. Conclude that a polynomial f over a domain can have at most deg f distinct roots in 

the domain. Conclude that the polynomial X
d
 − 1 has at most d roots in a field. 

IVd. Find a counterexample to IVb and IVc if R is not a domain. 

 

V. Case k = 1. 

Va. Show that �/n� is a field if and only if n is a prime. 

From now on we let K denote a field and G, a finite multiplicative subgroup of K*. We 

will show that G is cyclic. By setting K = �/p�, this will show that (�/p�)* ≈ �/(p−1)�, 

settling the case k = 1. 

Let G = n. It is enough to show that G has an element of order n.  

Vb. Let g ∈ G have order d. Show that {x ∈ G : x
d
 = 1} = 〈g〉 ≈ �/d�. (Hint: Everything 

takes place in a field!) 

Vc. Let d be a divisor of n. Conclude from above that G has either 0 or ϕ(d) elements of 

order d. 

Vd. Using IIf and Vc show that G has (exactly ϕ(n)) elements of order n. 

Ve. Conclude that G is cyclic. Conclude that (�/p�)* ≈ �/(p − 1)�. 

 

VI. Case p > 2 and k > 1. 

We let R = �/p
k
�. We will show that R* is cyclic. Since 

R* = p
k
 − p

k−1
 = p

k−1
(p − 1) 

and since p
k−1

 and p − 1 are prime to each other, by IIId, it is enough to find elements of order 

p
k−1

 and p − 1 of R*. We will show that 1 + p is an element of R* of order p
k−1

. It is more 

difficult to find explicitly an element of order p − 1. 

VIa. Show that any a ∈ R can be written as 

a = a0 + a1p + ... + ak−1p
k−1

 

for some unique a0, ..., ak−1 ∈ {0, 1, ..., p−1}. From now on, given a ∈ R, a0 will denote the 

above “first coordinate” of a. 

VIb. Show that a ∈ R* iff a0 ≠ 0. 

VIc. Show that for all i, 1 + p
i
R ≤ R*. 

VId. Show that 1 + pR = p
k−1

 and that R*/(1+pR) = p − 1. 

VIe. Show that if p > 2 and a ∈ 1 + p
i
R* then a

p
 ∈ 1 + p

i+1
R*. Show that this is false if p 

= 2. Conclude that the order of 1 + p is p
k−1

. 

Now we will find an element of order p − 1. 

VIf. Let ϕ : R* → R* be the group homomorphism defined by ϕ(r) = r
p−1

. Show that 

ϕ(R*) ≤ 1 + pR. (Hint: IIIc.) 

VIg. Show that ϕ restricted to 1 + pR is one-to-one. (Hint: VId). Conclude that ϕ(R*) = 

1 + pR. 

VIi. Conclude that R* ≈ (1 + pR) × {r ∈ R* : r
p−1

 = 1}. (Hint : VIg, IIIe, IIIb). 

VIj. Let ψ : R* → (�/p�)* be defined by ψ(a) = [a0]. Show that ψ is a surjective 

homomorphism of groups. Conclude that R*/(1+pR) ≈ (�/p�)* ≈ �/(p−1)�. (Hint IIIe). 



VIk. Conclude from VIi and VIj that {r ∈ R* : r
p−1

 = 1} ≈ �/(p−1)�. Conclude that R* 

has an element of order p − 1. Conclude that R* is cyclic. 

 

VII. Case p = 2 and k > 1. 

Show that (�/2
k
�)* ≈ �/2

k−2
� × �/2�. (Details will be given later). 

 

VIII. General Teorem. 

Conclude from all the above that  

1) if 4 does not divide n, (�/n�)* ≈ �/ϕ(n)�,  

2) if 4 divides n, (�/n�)* ≈ �/ϕ(n/2)� × �/2�. 

 

 


