1. Every involution is a product of at most three involutions each of which is a square. (1 2) = $[(1 2)(3 4)(5 6)(7 8) \dots][(3 4)(5 6)(7 8)(9 10) \dots] = [(1324)(5768)\dots]^2[(3546)(798 10)\dots]^2$ (12)(34)(56)(78)... = $[(1324)(5768)\dots]^2$ (12)(34)(56) = $(1324)^2(56)$

2. An infinite cycle is a product two involutions each of which is a square. $(...75312468...) = [(12)(34)(56) ...][(23)(45)(67)...] = [(1324)(5768)...]^{2}[(2435)(6879)...]^{2}$

3. A product of finitely many (finite or infinite) cycles is a product of (finitely many) involutions each of which is a square.

Proof: Enough to do it for finite cycles: $(123...n) = (12)(23)...(n-1, n) = \alpha_1^2 \alpha_2^2 ... \alpha_{2n-2}^2$ where α_i is an element of order 4 such that $(i, i+1) = \alpha_{2i-1}^2 \alpha_{2i}^2$.

4. A product of disjoint $(123)(456) = (142536)^2$

3. Let $\sigma \in \text{Sym}(N)$. Assume σ is a product of finite disjoint cycles: $\sigma = \sigma_1 \sigma_2 \sigma_3$... We may assume that each

 $[(123)(567)(9\ 10\ 11)...][(345)(789)(11\ 12\ 13)...] = (...13\ 9\ 5\ 1\ 2\ 3\ 4\ 6\ 7\ 8\ 10\ 11\ 12\ 14\ ...)$