1. Every involution is a product of at most three involutions each of which is a square.
$(12)=[(12)(34)(56)(78) \ldots][(34)(56)(78)(910) \ldots]=[(1324)(5768) \ldots]^{2}[(3546)(79810) \ldots]^{2}$
$(12)(34)(56)(78) \ldots=[(1324)(5768) \ldots]^{2}$
$(12)(34)(56)=(1324)^{2}(56)$
2. An infinite cycle is a product two involutions each of which is a square.
$(\ldots 75312468 \ldots)=[(12)(34)(56) \ldots][(23)(45)(67) \ldots]=[(1324)(5768) \ldots]^{2}[(2435)(6879) \ldots]^{2}$
3. A product of finitely many (finite or infinite) cycles is a product of (finitely many) involutions each of which is a square.
Proof: Enough to do it for finite cycles: $(123 \ldots n)=(12)(23) \ldots(n-1, n)=\alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \ldots \alpha_{2 n-2}{ }^{2}$ where $\alpha_{i}$ is an element of order 4 such that $(i, i+1)=\alpha_{2 i-1}{ }^{2} \alpha_{2 i}{ }^{2}$.
4. A product of disjoint
$(123)(456)=(142536)^{2}$
5. Let $\sigma \in \operatorname{Sym}(\mathbf{N})$. Assume $\sigma$ is a product of finite disjoint cycles: $\sigma=\sigma_{1} \sigma_{2} \sigma_{3} \ldots$. We may assume that each
$[(123)(567)(91011) \ldots][(345)(789)(111213) \ldots]=(\ldots 1395123467810111214 \ldots)$
