Group Theory Midterm November 2006 Ali Nesin

Throughout G denotes a group.

For X, $Y \subseteq G$, let [X, Y] denote the subgroup generated by all the elements of the form [x, y] $:= x^{-1}y^{-1}xy$ for $x \in X$ and $y \in Y$.

1. Show that [X, Y] = [Y, X].

2. Show that if *H* and *K* are subgroups of *G* that normalize each other then $[H, K] \leq H \cap K$.

3. Show that for x, y, $z \in G$, $[x, yz] = [x, z][x, y]^z$ and $[xy, z] = [x, z]^y[y, z]$. Conclude that if H, $K \leq G$, then H and K normalize the subgroup [H, K]. Conclude also that if $A \leq G$ is an abelian subgroup and if $g \in N_G(A)$, then the map $\operatorname{ad}(g): A \to A$ defined by $\operatorname{ad}(g)(a) = [a, g]$ is a group homomorphism whose kernel is $C_A(g)$.

We define G^n and $G^{(n)}$ by induction on *n*: $G^0 = G^{(0)} = G, G^{n+1} = [G, G^n], G^{(n+1)} = [G^{(n)}, G^{(n)}].$ We let $G' = G^1 = G^{(1)}$.

4. Show that $G^{n+1} \leq G^n$ and that $G^{(n+1)} \leq G^{(n)}$. Show also that G^n and $G^{(n)}$ are characteristic subgroups of G.

5. Show that if $H \triangleleft G$ and G/H is abelian then $G' \leq H$. Conversely show that if $G' \leq H \leq$ G, then $H \triangleleft G$ and G/H is abelian.

6. Let x, y, z be three elements of G. Show that

 $[[x, y^{-1}], z]^{y}[[y, z^{-1}], x]^{z}[[z, x^{-1}], y]^{x} = 1.$

Conclude that if H and K are two subgroups of a group G and if [[H, K], K] = 1, then [H, K]K'] = 1.

7. (Three Subgroup Lemma of P. Hall) Let H, K, L be three normal subgroups of G. Using # 6, show that $[[H, K], L] \leq [[K, L], H][[L, H], K].$

8. Show that $[G^i, G^j] \leq G^{i+j+1}$ and $G^{(i)} \leq G^i$ for all i, j.

We define $Z_n(G)$ by induction on *n* as follows: $Z_n(G) = 1$ if $n \le 0$ and for $n \ge 0$, $Z_{n+1}(G)$ is the unique subgroup of G that contains $Z_n(G)$ such that $Z(G/Z_n(G)) = Z_{n+1}(G)/Z_n(G)$.

9. Show that $Z_n(G)$ is a characteristic subgroup of G for all n.

10. Show that $[G^i, Z_i] \leq Z_{j-i-1}$ and that $[Z^{i+1}, G^i] = 1$ for all i, j.

A group is said to be *solvable* if $G^{(n)} = 1$ for some *n*. If $G^{(n)} = 1$ but that $G^{(n-1)} \neq 1$, *G* is said to be solvable of class *n*.

A group is said to be *nilpotent* if $G^n = 1$ for some *n*. If $G^n = 1$ but that $G^{n-1} \neq 1$, *G* is said to be nilpotent of class n.

11. Show that a nilpotent group is solvable.

12. Let G be nilpotent of class n. Show that $G^{n-i} \leq Z_i$. Conclude that $G = Z_n$.

13. Conversely, assume that $G = Z_n$. Show that $G^i \leq Z_{n-i}$. Conclude that G is nilpotent of class n.

14. Show that *G* is nilpotent of class *n* if and only if $Z_n = G$ and $Z_{n-1} \neq G$.