
Semidirect Products 

Let U and T be two groups and let ϕ: T → Aut(U), t → ϕ t be a group 

homomorphism. We will construct a new group denoted by U �ϕ T, or just by U � T 

for short. The set on which the group operation is defined is the Cartesian product U × 

T, and the operation is defined as follows: (u, t)(u', t') = (u.ϕt(u'), tt'). The reader will 

have no difficulty in checking that this is a group with (1, 1) as the identity element. 

The inverse is given by the rule: (u, t)
−1

 = ( )( 1
1

−
−ϕ u

t
, t

−1
). Let G denote this group. G 

is called the semidirect product of U and T (in this order; we also omit to mention ϕ). 

U can be identified with U × {1} and hence can be regarded as a normal subgroup of 

G. T can be identified with {1} × T and can be regarded as a subgroup of G. Then the 

subgroups U and T of G have the following properties: U � G, T ≤ G, U ∩ T = 1 and 

G = UT.  

Conversely, whenever a group G has subgroups U and T satisfying these 

properties, G is isomorphic to a semidirect product U �ϕ T where ϕ : T → Aut(U) is 

given by ϕt(u) = tut
−1

.  

When G = U � T, one says that the group G is split
1
; then the subgroups U and T 

are called each other's complements. We also say that T (or U) splits in G. Note that 

T is not the only complement of U in G: for example, any conjugate of T is still a 

complement of U.  

When the subgroup U is abelian, it is customary to denote the group operation of 

U additively. In this case, it is suggestive to let tu = ϕt(u). Then the group operation 

can be written as: (u, t)(u', t') = (tu' + u, tt'). The reader should compare this with the 

following formal matrix multiplication:  
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Examples. 
1. Let V be a vector space and GL(V) be the group of all vector space 

automorphisms of V. The group V � GL(V) (where ϕ = Id) is a subgroup of Sym(V) 

as follows: (v, g)(w) = gw + v. 

 

2. The subgroup Bn(K) that consists of all the invertible n × n upper triangular 

matrices over a field K is the semidirect product of UTn(K) (upper-triangular matrices 

with ones on the diagonal) and Tn(K) (invertible diagonal matrices).  

 

Exercises. 
26. Let K be any field. Show that the group  

G = 
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is a semidirect product of the form G' � T for some subgroup T. This group is called 

the affine group.  

 

                                                      

1
 This is an abuse of language: every group G is split, for example as G = G � {1}. 

When we use the term “split”, we have either U or T around. 



27. Show that the direct product of two groups is a special case of semidirect 

product. 

 

28. Let G = U � T. 

a. Let U  ≤ H ≤ G. Show that H = U � (H ∩ T). 

b. Let T ≤ H ≤ G. Show that H = (U ∩ H) � T. 

c. Show that if T is abelian then G' ≤ U. 

d. Show that if T1 ≤ T, then NU(T1) = CU(T1). 

 

29. Let G = U � T. Let t ∈ T and x ∈ U. Show that xt is G-conjugate to an 

element of T if and only if xt is conjugate to t if and only (xt)
u
 = t for some u ∈ U if 

and only if x ∈ [U, t
−1

].  

 

30. Let G = U � T and let V ≤ U be a G-normal subgroup of U. Show that G/V 

≈ U/V � T in a natural way. 

 

31. Let G = U � T and let V ≤ U be a G-normal subgroup of U. By Exercise 30, 

G/V ≈ U/V � T. Let t ∈ T be such that V = ad(t)(V) and U/V = ad(t)(U/V). Show that 

U = ad(t)(U). 

 

32. Let K be a field and let n be a positive integer. For t ∈ K*
 and x ∈ K, let ϕt(x) 

= t
n
x. Set G = K

+
 �ϕ K

*
. What is the center of G? Show that Z2(G) = Z(G). What is 

the condition on K that insures G' ≈ K+
? Show that G is isomorphic to a subgroup of 

GL2(K). 

 

41. Let G = ∞
p

Z � Z/2Z where Z/2Z acts on ∞
p

Z by inversion (i.e. if 1 ≠ i 

∈ Z/2Z then ϕi(g) = g
−1

 for all g ∈ ∞
p

Z . Show that G is solvable of class 2, 

nonnilpotent but that the chain (Z_n(G))n ∈ N is strictly increasing. Show that G is 

isomorphic to a Sylow 2-subgroup of PSL2(K) where K is an algebraically closed field 

of characteristic ≠ 2. (Recall that SL2(K) is the group consisting of 2 × 2 matrices of 

determinant 1 over K, and PSL2(K) is the factor group of SL2(K) modulo its center 

that consists of the two scalar matrices ±1). What is the Sylow 2-subgroup of SL2(K) 

when char(K) = 2?  

 

 

Permutation Groups. 

Let G be a group and X a set. We say that G acts on X or that (G, X) is a 

permutation group if there is a map G × X → X (denoted by (g, x) → g*x or gx) that 

satisfies the following properties: 

1 For all g, h ∈ G and all x ∈ X, g(hx) = (gh)x. 

2 For all x ∈ X, 1x = x. 

This is saying that there is a group homomorphism ϕ: G → Sym(X) where Sym(X) is 

the group of all bijections of X. The kernel of ϕ is called the kernel of the action. 

When ϕ is one-to-one, the action is called faithful. In other words, G acts faithfully 



on X when gx = x for all x ∈ X implies g = 1. Note that G/ker(ϕ) acts on X in a natural 

way: ğx = gx, and this action is faithful.  

Two permutation groups (G, X) and (H, Y) are called equivalent if there are a 

group isomorphism f : G → H and a bijection ϕ : X → Y such that for all g ∈ G, x ∈ X 

we have ϕ(gx) = f(g)ϕ(x). 

Let (G, X) be a permutation group. For any Y ⊆ X, we let  

GY = {g ∈ G : gy = y for all y ∈ Y}. 

GY is called the pointwise stabilizer of Y. Note that GY ≤ G is a subgroup. When Y = 

{x1, ..., xn}, we write 
nxxG ,...,1

instead of GY. Clearly GY is the intersection of the 

subgroups Gy for y ∈ Y.  

 For g ∈ G and Y ⊆ X we define gY = {gy: y ∈ Y} and the setwise stabilizer G(Y) 

= {g ∈ G : gY = Y} of Y. We have GY ≤ G(Y). Finally for A ⊆ G, we define  

F(A) = {x ∈ X: ax = x for all a ∈ A}, 

the set of fixed points of A.  

 

Exercise.  

45. Let A, B ⊆G and Y, Z ⊆ X. Then the following hold: 

i. A ⊆ GF(A). 

ii. Y ⊆ F(GA). 

iii. If A ⊆ B then F(B) ⊆F(A). 

iv. If Y ⊆ Z, then GZ ≤ GY. 

v. F(GF(A)) = F(A). 

vi. )( YGFG = GY. 

 

We say that G acts n-transitively on X if |X| ≥ n and if for any pairwise distinct 

x1, ..., xn ∈ X and any pairwise distinct y1, ..., yn ∈ X, there is a g ∈ G such that gxi = yi 

for all i = 1, ..., n. Transitive means 1-transitive. We say that (G, X) is sharply n-

transitive if it is n-transitive and if the stabilizer of n distinct points is reduced to {1}; 

in other words, if for any distinct x1, ..., xn ∈ X and any distinct y1, ..., yn ∈ X, there is 

a unique g ∈ G such that gxi = yi ∈ X for all i = 1, ..., n. Sharply 1-transitive actions 

are also called regular actions. Up to equivalence, each group has only one regular 

action (see Exercise 46). Clearly, for every n and |X| = n, (Sym(X), X) is sharply n and 

also sharply (n−1)-transitive. If for g ∈ G, x ∈ X, gx = x implies g = 1, we say that the 

action of G is free or that G acts  freely on X. 

 Let X be a group and G ≤ Aut(X). Then (G, X) is a permutation group. By 

abuse of language, one says that G acts freely (resp. regularly) on X if G acts freely 

(resp. regularly) on X
*
. 

 Now we give the most important and, up to equivalence, the only example of 

transitive group actions:  

 

Left-Coset Representation. Let G be a group and B ≤ G a subgroup. Set X = 

G/B, the left-coset space. We can make G act on X by left multiplication: h(gB) = 

hgB. This action is called the left-coset action, or the the left-coset representation. 

The kernel of this action is the core I Gg

g
B
∈

of B in G, which is the maximal G-normal 

subgroup of B. 

 

Exercises  



 

46. Let (G, X) be a transitive permutation group. Let x ∈ X be any point and let B 

= Gx. Then the permutation group (G, X) is equivalent to the left-coset representation 

(G, G/B). (Hint: Let f = IdG and ϕ: G/B → X be defined by ϕ(gB) = gx.) 

 

47. If NG(B) = B, then the left-coset action of G on G/B is equivalent to the 

conjugation action of G on {B
g
: g ∈ G}. 

 

48. Let (G, X) be a 2-transitive group and B = Gx. Then G = B � BgB for every g 

∈ G \ B. In particular B is a maximal subgroup of G. Conversely, if G is a group with 

a proper subgroup B satisfying the property G = B ∪ BgB for every (equivalently 

some) g ∈ G \ B, then the permutation group (G, G/B) is 2-transitive. (Hint: Assume 

G is 2-transitive, and let x and B as in the statement. Let g ∈ G \ B be a fixed element 

of G. Let h ∈ G \ B be any element. Since G is 2-transitive, there is an element b ∈ G 

that sends the pair of distinct points (x, gx) to the pair of distinct points (x, hx). Thus b 

∈ B and bgx = hx, implying h
−1

bg ∈ B and h ∈ BgB.) 

 

49. Let G be a group and let H ≤ G be a subgroup. Assume [G:H] = n. By 

considering the coset action G → Sym(G/H) show that [G:I Gg

g
H

∈
] divides n!. The 

subgroup I Gg

g
H

∈
is called the core of H in G.  

 

50. Let (G, X) be a permutation group. Assume G has a regular normal subgroup 

A (i.e. the permutation group (A, X) is regular). Show that G = A � Gx for any x ∈ X. 

Show that (G, X) is equivalent to the permutation group (G, A) where G = A � Gx acts 

on A as follows: For a ∈ A, h ∈ Gx and b ∈ A, (ah).b = 
1−

h
ab . Show that G is faithful 

if and only if CH(A) = 1.  

 

51 Let (G, X) be a permutation group. Show that 
xg

G 1−  = Gx 
g
 for any x ∈ X. Show 

that if G is an n-transitive group, then for any 1≤ i ≤ n, all the i-point stabilizers are 

conjugate to each other. 

 

52. Let (G, X) be a transitive permutation group. Show that if G is abelian then, 

for any x ∈ X, Gx is the kernel of the action and (G/Gx, X) is a regular permutation 

group. 

 

53. Let n ≥ 2 be an integer. Show that (G, X) is n-transitive if and only if (Gx, X \ 

{x}) is (n−1)-transitive for any (equivalently some) x ∈ X. State and prove a similar 

statement for sharply n-transitive groups. 

 

54. Let (G, X) be a permutation group. A subset Y ⊆ X is called a set of 

imprimitivity if for all g, h ∈ G, either gY = hY or gY ∩ hY = ∅. If the only sets of 

imprimitivity are the singleton sets and X, then (G, X) is called a primitive 

permutation group. Show that a 2-transitive group is primitive. Assume that (G, X) is 

transitive. Show that (G, X) is primitive if and only if Gx is a maximal subgroup for 

some (equiv. all) x ∈ X. Conclude that if G is a 2-transitive group, then Gx is a 

maximal subgroup. (This also follows from Exercise 48). 



  

55. Let G be a group and B < G be a proper subgroup with the following 

properties: There is a g ∈ G such that G = B ∪ BgB and if agb = a'gb' for a, a', b, b' 

∈ B then a = a' and b = b'. Show that (G, G/B) is a sharply 2-transitive permutation 

group. 

 

56. Let G = A � H  be a group where H acts regularly on A by conjugation (i.e. 

on A
*
). Show that G is a sharply 2-transitive group.  

 

57. Let (G, X) be a sharply 2-transitive permutation group, and for a fixed x ∈ X, 

set B = Gx. Show that for any fixed g ∈ G \ B, G = B � BgB and if agb = a'gb' for a, 

b, a', b' ∈ B, then a = a' and b = b'. Show also that the conjugates of B are disjoint 

from each other. Show that there are involutions that swap given any two points. 

Conclude that there are involutions outside of B. 

 

58.  Show that the group  
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acts sharply 2-transitively on the set  
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59. Show that G = PGL2(K) = GL2(K)/Z where Z is the set of scalar matrices (which is 

exactly the center of GL2(K)) acts sharply 3-transitively on G/B where B = B2(K). Show that 

there is a natural correspondence between G/B and the set K ∪ {∞}. Transport the action of G 

on K ∪ {∞} and describe it algebraically.  

 

60. Let V be a vector space over a field K. Show that V � GL(V) acts 2-

transitively on V (see Example 1). Show that, when dimK(V) = 1, we find the example 

of Exercise 58. 

  
 


