Semidirect Products

Let U and T be two groups and let $\varphi: T \to \operatorname{Aut}(U), t \to \varphi_t$ be a group homomorphism. We will construct a new group denoted by $U \rtimes_{\varphi} T$, or just by $U \rtimes T$ for short. The set on which the group operation is defined is the Cartesian product $U \times T$, and the operation is defined as follows: $(u, t)(u', t') = (u.\varphi_t(u'), tt')$. The reader will have no difficulty in checking that this is a group with (1, 1) as the identity element. The inverse is given by the rule: $(u, t)^{-1} = (\varphi_{t^{-1}}(u^{-1}), t^{-1})$. Let G denote this group. G is called the semidirect product of U and T (in this order; we also omit to mention φ). U can be identified with $U \times \{1\}$ and hence can be regarded as a normal subgroup of G. T can be identified with $\{1\} \times T$ and can be regarded as a subgroup of G. Then the subgroups U and T of G have the following properties: $U \triangleleft G, T \leq G, U \cap T = 1$ and G = UT.

Conversely, whenever a group *G* has subgroups *U* and *T* satisfying these properties, *G* is isomorphic to a semidirect product $U \rtimes_{\varphi} T$ where $\varphi : T \to \operatorname{Aut}(U)$ is given by $\varphi_t(u) = \operatorname{tut}^{-1}$.

When $G = U \rtimes T$, one says that the group G is **split**¹; then the subgroups U and T are called each other's **complements**. We also say that T (or U) splits in G. Note that T is not the only complement of U in G: for example, any conjugate of T is still a complement of U.

When the subgroup U is abelian, it is customary to denote the group operation of U additively. In this case, it is suggestive to let $tu = \varphi_t(u)$. Then the group operation can be written as: (u, t)(u', t') = (tu' + u, tt'). The reader should compare this with the following formal matrix multiplication:

(t	<i>u</i>)	(t')	<i>u</i> ')	_	(tt')	tu'+u
0	1)	0	1)	=	0	1)

Examples.

1. Let V be a vector space and GL(V) be the group of all vector space automorphisms of V. The group $V \rtimes GL(V)$ (where $\varphi = Id$) is a subgroup of Sym(V) as follows: (v, g)(w) = gw + v.

2. The subgroup $B_n(K)$ that consists of all the invertible $n \times n$ upper triangular matrices over a field *K* is the semidirect product of $UT_n(K)$ (upper-triangular matrices with ones on the diagonal) and $T_n(K)$ (invertible diagonal matrices).

Exercises.

26. Let *K* be any field. Show that the group

$$G = \left\{ \begin{pmatrix} t & u \\ 0 & 1 \end{pmatrix} : t \in K^*, \ u \in K \right\}$$

is a semidirect product of the form $G' \rtimes T$ for some subgroup *T*. This group is called the **affine group**.

¹ This is an abuse of language: every group G is split, for example as $G = G \rtimes \{1\}$. When we use the term "split", we have either U or T around.

27. Show that the direct product of two groups is a special case of semidirect product.

28. Let $G = U \rtimes T$. **a.** Let $U \leq H \leq G$. Show that $H = U \rtimes (H \cap T)$. **b.** Let $T \leq H \leq G$. Show that $H = (U \cap H) \rtimes T$. **c.** Show that if *T* is abelian then $G' \leq U$. **d.** Show that if $T_1 \leq T$, then $N_U(T_1) = C_U(T_1)$.

29. Let $G = U \rtimes T$. Let $t \in T$ and $x \in U$. Show that xt is *G*-conjugate to an element of *T* if and only if xt is conjugate to *t* if and only $(xt)^u = t$ for some $u \in U$ if and only if $x \in [U, t^{-1}]$.

30. Let $G = U \rtimes T$ and let $V \leq U$ be a *G*-normal subgroup of *U*. Show that $G/V \approx U/V \rtimes T$ in a natural way.

31. Let $G = U \rtimes T$ and let $V \leq U$ be a *G*-normal subgroup of *U*. By Exercise 30, $G/V \approx U/V \rtimes T$. Let $t \in T$ be such that V = ad(t)(V) and U/V = ad(t)(U/V). Show that U = ad(t)(U).

32. Let *K* be a field and let *n* be a positive integer. For $t \in K^*$ and $x \in K$, let $\varphi_t(x) = t^n x$. Set $G = K^+ \rtimes_{\varphi} K^*$. What is the center of *G*? Show that $Z_2(G) = Z(G)$. What is the condition on *K* that insures $G' \approx K^+$? Show that *G* is isomorphic to a subgroup of $GL_2(K)$.

41. Let $G = \mathbb{Z}_{p^{\infty}} \rtimes \mathbb{Z}/2\mathbb{Z}$ where $\mathbb{Z}/2\mathbb{Z}$ acts on $\mathbb{Z}_{p^{\infty}}$ by inversion (i.e. if $1 \neq i \in \mathbb{Z}/2\mathbb{Z}$ then $\varphi_i(g) = g^{-1}$ for all $g \in \mathbb{Z}_{p^{\infty}}$. Show that *G* is solvable of class 2, nonnilpotent but that the chain $(\mathbb{Z}_n(G))_{n \in \mathbb{N}}$ is strictly increasing. Show that *G* is isomorphic to a Sylow 2-subgroup of $PSL_2(K)$ where *K* is an algebraically closed field of characteristic $\neq 2$. (Recall that $SL_2(K)$ is the group consisting of 2×2 matrices of determinant 1 over *K*, and $PSL_2(K)$ is the factor group of $SL_2(K)$ modulo its center that consists of the two scalar matrices ± 1). What is the Sylow 2-subgroup of $SL_2(K)$ when char(K) = 2?

Permutation Groups.

Let *G* be a group and *X* a set. We say that *G* acts on *X* or that (G, *X*) is a **permutation group** if there is a map $G \times X \to X$ (denoted by $(g, x) \to g_{*}x$ or gx) that satisfies the following properties:

1 For all $g, h \in G$ and all $x \in X$, g(hx) = (gh)x.

2 For all $x \in X$, 1x = x.

This is saying that there is a group homomorphism $\varphi: G \to \text{Sym}(X)$ where Sym(X) is the group of all bijections of *X*. The kernel of φ is called the **kernel** of the action. When φ is one-to-one, the action is called **faithful**. In other words, *G* acts faithfully

on X when gx = x for all $x \in X$ implies g = 1. Note that $G/\ker(\varphi)$ acts on X in a natural way: $\check{g}x = gx$, and this action is faithful.

Two permutation groups (*G*, *X*) and (*H*, *Y*) are called **equivalent** if there are a group isomorphism $f: G \to H$ and a bijection $\varphi: X \to Y$ such that for all $g \in G$, $x \in X$ we have $\varphi(gx) = f(g)\varphi(x)$.

Let (G, X) be a permutation group. For any $Y \subseteq X$, we let

 $G_Y = \{g \in G : gy = y \text{ for all } y \in Y\}.$

 G_Y is called the **pointwise stabilizer** of *Y*. Note that $G_Y \le G$ is a subgroup. When $Y = \{x_1, ..., x_n\}$, we write $G_{x_1,...,x_n}$ instead of G_Y . Clearly G_Y is the intersection of the subgroups G_Y for $y \in Y$.

For $g \in G$ and $Y \subseteq X$ we define $gY = \{gy: y \in Y\}$ and the **setwise stabilizer** $G(Y) = \{g \in G : gY = Y\}$ of *Y*. We have $G_Y \leq G(Y)$. Finally for $A \subseteq G$, we define

 $F(A) = \{x \in X : ax = x \text{ for all } a \in A\},\$

the set of fixed points of A.

Exercise.

45. Let $A, B \subseteq G$ and $Y, Z \subseteq X$. Then the following hold: i. $A \subseteq G_{F(A)}$. ii. $Y \subseteq F(G_A)$. iii. If $A \subseteq B$ then $F(B) \subseteq F(A)$. iv. If $Y \subseteq Z$, then $G_Z \leq G_Y$. v. $F(G_{F(A)}) = F(A)$. vi. $G_{F(G_Y)} = G_Y$.

We say that *G* acts *n*-transitively on *X* if $|X| \ge n$ and if for any pairwise distinct $x_1, ..., x_n \in X$ and any pairwise distinct $y_1, ..., y_n \in X$, there is a $g \in G$ such that $gx_i = y_i$ for all i = 1, ..., n. Transitive means 1-transitive. We say that (G, X) is sharply *n*-transitive if it is *n*-transitive and if the stabilizer of *n* distinct points is reduced to $\{1\}$; in other words, if for any distinct $x_1, ..., x_n \in X$ and any distinct $y_1, ..., y_n \in X$, there is a unique $g \in G$ such that $gx_i = y_i \in X$ for all i = 1, ..., n. Sharply 1-transitive actions are also called **regular actions**. Up to equivalence, each group has only one regular action (see Exercise 46). Clearly, for every *n* and |X| = n, (Sym(*X*), *X*) is sharply *n* and also sharply (*n*-1)-transitive. If for $g \in G$, $x \in X$, gx = x implies g = 1, we say that the action of *G* is free or that *G* acts freely on *X*.

Let X be a group and $G \leq Aut(X)$. Then (G, X) is a permutation group. By abuse of language, one says that G acts **freely** (resp. **regularly**) on X if G acts freely (resp. regularly) on X^* .

Now we give the most important and, up to equivalence, the only example of transitive group actions:

Left-Coset Representation. Let *G* be a group and $B \le G$ a subgroup. Set X = G/B, the left-coset space. We can make *G* act on *X* by left multiplication: h(gB) = hgB. This action is called the **left-coset action**, or the the **left-coset representation**. The kernel of this action is the core $\bigcap_{g \in G} B^g$ of *B* in *G*, which is the maximal *G*-normal subgroup of *B*.

Exercises

46. Let (G, X) be a transitive permutation group. Let $x \in X$ be any point and let $B = G_x$. Then the permutation group (G, X) is equivalent to the left-coset representation (G, G/B). (Hint: Let $f = \text{Id}_G$ and $\varphi: G/B \to X$ be defined by $\varphi(gB) = gx$.)

47. If $N_G(B) = B$, then the left-coset action of G on G/B is equivalent to the conjugation action of G on $\{B^g: g \in G\}$.

48. Let (G, X) be a 2-transitive group and $B = G_x$. Then $G = B \sqcup BgB$ for every $g \in G \setminus B$. In particular *B* is a maximal subgroup of *G*. Conversely, if *G* is a group with a proper subgroup *B* satisfying the property $G = B \cup BgB$ for every (equivalently some) $g \in G \setminus B$, then the permutation group (G, G/B) is 2-transitive. (Hint: Assume *G* is 2-transitive, and let *x* and *B* as in the statement. Let $g \in G \setminus B$ be a fixed element of *G*. Let $h \in G \setminus B$ be any element. Since *G* is 2-transitive, there is an element $b \in G$ that sends the pair of distinct points (x, gx) to the pair of distinct points (x, hx). Thus $b \in B$ and bgx = hx, implying $h^{-1}bg \in B$ and $h \in BgB$.)

49. Let *G* be a group and let $H \leq G$ be a subgroup. Assume [G:H] = n. By considering the coset action $G \to \text{Sym}(G/H)$ show that $[G:\bigcap_{g\in G} H^g]$ divides *n*!. The subgroup $\bigcap_{g\in G} H^g$ is called the **core** of *H* in *G*.

50. Let (G, X) be a permutation group. Assume *G* has a regular normal subgroup *A* (i.e. the permutation group (A, X) is regular). Show that $G = A \rtimes G_x$ for any $x \in X$. Show that (G, X) is equivalent to the permutation group (G, A) where $G = A \rtimes G_x$ acts on *A* as follows: For $a \in A$, $h \in G_x$ and $b \in A$, $(ah).b = ab^{h^{-1}}$. Show that *G* is faithful if and only if $C_H(A) = 1$.

51 Let (G, X) be a permutation group. Show that $G_{g^{-1}x} = G_x^{g}$ for any $x \in X$. Show that if G is an *n*-transitive group, then for any $1 \le i \le n$, all the *i*-point stabilizers are conjugate to each other.

52. Let (G, X) be a transitive permutation group. Show that if G is abelian then, for any $x \in X$, G_x is the kernel of the action and $(G/G_x, X)$ is a regular permutation group.

53. Let $n \ge 2$ be an integer. Show that (G, X) is *n*-transitive if and only if $(G_x, X \setminus \{x\})$ is (n-1)-transitive for any (equivalently some) $x \in X$. State and prove a similar statement for sharply *n*-transitive groups.

54. Let (G, X) be a permutation group. A subset $Y \subseteq X$ is called a set of imprimitivity if for all $g, h \in G$, either gY = hY or $gY \cap hY = \emptyset$. If the only sets of imprimitivity are the singleton sets and X, then (G, X) is called a **primitive** permutation group. Show that a 2-transitive group is primitive. Assume that (G, X) is transitive. Show that (G, X) is primitive if and only if G_x is a maximal subgroup for some (equiv. all) $x \in X$. Conclude that if G is a 2-transitive group, then G_x is a maximal subgroup. (This also follows from Exercise 48).

55. Let G be a group and B < G be a proper subgroup with the following properties: There is a $g \in G$ such that $G = B \cup BgB$ and if agb = a'gb' for a, a', b, b' $\in B$ then a = a' and b = b'. Show that (G, G/B) is a sharply 2-transitive permutation group.

56. Let $G = A \rtimes H$ be a group where *H* acts regularly on *A* by conjugation (i.e. on A^*). Show that *G* is a sharply 2-transitive group.

57. Let (G, X) be a sharply 2-transitive permutation group, and for a fixed $x \in X$, set $B = G_x$. Show that for any fixed $g \in G \setminus B$, $G = B \sqcup BgB$ and if agb = a'gb' for a, $b, a', b' \in B$, then a = a' and b = b'. Show also that the conjugates of B are disjoint from each other. Show that there are involutions that swap given any two points. Conclude that there are involutions outside of B.

58. Show that the group

$$G = \left\{ \begin{pmatrix} t & u \\ 0 & 1 \end{pmatrix} : t \in K^*, \ u \in K \right\}$$

acts sharply 2-transitively on the set

$$\mathbf{X} = \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix} \colon x \in K \right\}.$$

59. Show that $G = PGL_2(K) = GL_2(K)/Z$ where *Z* is the set of scalar matrices (which is exactly the center of $GL_2(K)$) acts sharply 3-transitively on *G*/*B* where $B = B_2(K)$. Show that there is a natural correspondence between *G*/*B* and the set $K \cup \{\infty\}$. Transport the action of *G* on $K \cup \{\infty\}$ and describe it algebraically.

60. Let *V* be a vector space over a field *K*. Show that $V \rtimes GL(V)$ acts 2-transitively on *V* (see Example 1). Show that, when dim_{*K*}(V) = 1, we find the example of Exercise 58.