Permutation Groups

Ali Nesin Oct. 1999

Throughout *p* denotes a prime natural number.

1. Let A be a normal subgroup of a group G. Any subgroup H of G acts on A by conjugation. What is the kernel of this action?

2. Show that a finite *p*-group has nontrivial center.

3. Show that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \approx (\mathbb{Z}/n\mathbb{Z})^*$.

4. Show that an automorphism of order *p* of a finite *p*-group *A* fixes nontrivial elements of *A*.

5. Find a group of order p^n for some integer n > 0 with an automorphism of order p.

6a. Let G be a group. Define $Z = \{z \in G : zg = gz \text{ for all } g \in G\}$. Show that if G/Z is cyclic then G is abelian.

6b. Show that a group of order p^2 is abelian.

6c. Classify all groups of order p^2 . (Hint

6d. Find a nonabelian group of order p^n for $n \ge 3$.

6e. Show that a cyclic group of order p^n ($n \ge 2$) has automorphisms of order p.