A group is a set G together with a binary operation *: $G \times G \rightarrow G$ such that
G1. For all $x, y, z \in G,(x * y) * z=x *(y * z)$.
G2. There is an $e \in G$ such that for all $x \in G, x * e=e * x=x$.
G3. For all $x \in G$, there is a $x^{\prime} \in G$ such that $x * x^{\prime}=x^{\prime} * x=e$.
A group is sometimes written as the pair ($G, *$).
From now on G denotes a group. The binary operation on G will be denoted by *.

1. Which of the following is a group? $(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{Z}, \times),(\mathbb{Q},+),(\mathbb{Q}, \times),(\mathbb{Q} \backslash\{0\}, \times)$, $\left(\mathbb{Q}^{>0}, \times\right),\left(\mathbb{Q}^{<0}, \times\right) .(4 \mathrm{pts}$.)
2. Show that the set $\operatorname{Sym}(X)$ of bijections of a set X is a group under composition. (3 pts.)
3. Let G and H be two groups. We denote by $*$ both binary operations. Show that the binary operation defined by $(g, h) *\left(g^{\prime}, h^{\prime}\right)=\left(g * g^{\prime}, h * h^{\prime}\right)$ on $G \times H$ defines a group structure on $G \times H$. (4 pts.)
4. Let X be a set and G a group. Let $\operatorname{Func}(X, G)$ be the set of functions from X into G. For $\varphi, \psi \in \operatorname{Func}(X, G)$ define $\varphi * \psi: X \rightarrow G$ by $(\varphi * \psi)(x)=\varphi(x) * \psi(x)$ for all $x \in X$. Show that the set $\operatorname{Func}(X, G)$ is a group under this binary operation *. (4 pts.)
5. Let G be a group and X a set. Let $f: G \rightarrow X$ be a bijection. For $x, y \in X$ define $x * y=$ $f\left(f^{-1}(x) f^{-1}(y)\right)$. Show that this defines a group operation on the set X. (4 pts.)
6. Show that the element e in a group G that satisfies G 2 is unique. It is called the identity element of G. (2 pts.)
7. Show that if $x * y=x^{*} z$ in a group then $y=z$. (2 pts.) Does the same hold if the hypothesis is replaced by $x * y=z^{*} x$? (4 pts.)
8. Show that, given $x \in G$, the element $x^{\prime} \in G$ that satisfies G3 is unique. (2 pts.) From now on we let $x^{\prime}=x^{-1}$. Show that $e^{-1}=e$. (2 pts.) Show that $\left(x^{-1}\right)^{-1}=x$. (2 pts.) We will call x^{-1} the inverse of x.
9. Find $(x * y)^{-1}$ in terms of the binary operation $*$ and the elements y^{-1} and x^{-1}. (2 pts .)
10. For $x \in G$ and $n \in \mathbb{N}$, define x^{n} by induction on n as follows: $x^{0}=e$ and $x^{n+1}=x^{n} * x$. Find x^{1}. Show that $e^{n}=e$ for all $n \in \mathbb{N}$. Show that given any $x \in G$ and $n, m \in \mathbb{N}$, $x^{n} * x^{m}=x^{n+m}$. (3 pts.) Give an example of a group where $\left(x_{*} y\right)^{2}$ is not always equal to $x^{2} * y^{2}$. (2 pts.)
11. For $x \in G$ and $n \in \mathbb{N}$, define x^{-n} as $\left(x^{n}\right)^{-1}$. Show that $e^{n}=e$ for all $n \in \mathbb{Z}$. Show that given any $x \in G$ and $n, m \in \mathbb{Z}, x^{n} * x^{m}=x^{m} * x^{n}=x^{n+m}$. (4 pts.)
12. Show that for all $x \in G$ and $n, m \in \mathbb{Z},\left(x^{n}\right)^{m}=x^{n m}$. (4 pts.)
13. For $x \in G$ if there exists a natural number $n>0$ such that $x^{n}=e$, the smallest such n is called the order of x. If there is no such n, we say that the order of x is ∞. We let $\mathrm{o}(x)$ to denote the order of x. Show that if $\mathrm{o}(x) \neq \infty$ and $\mathrm{o}(x)$ divides n then $x^{n}=e$. (2 pts.) Find elements of order 2, 3, 4, 5, 6 and 7 of Sym X where $X=\{1,2,3,4,5\}$ if there arae any. (5pts.)
14. Let G and H be two groups. A map $\varphi: G \rightarrow H$ is called a homomorphism (of groups) from G into H if $\varphi(x * y)=\varphi(x) * \varphi(y)$.
a) Show that the map $\varphi: G \rightarrow H$ defined by $\varphi(x)=e_{H}$ (the identity element of H) is always a homomorphism from G into H. (2 pts.)
b) Show that the identity map Id_{G} is always a homomorphism from G into G. (2 pts.)
c) Let K be another group and $\varphi: G \rightarrow H$ and $\psi: H \rightarrow K$ be two homomorphisms. Show that the composition $\psi \circ \varphi$ is a homomorphism from G into K. (2 pts.)
d) Let $\varphi: G \rightarrow H$ be a homomorphism which is also a bijection. Show that φ^{-1} is a homomorphism from H onto G. (4 pts.) Such a φ is called an isomorphism.

Whenever there is an isomorphism from G into H we say that G and H are isomorphic and we write $G \approx H$. Show that $\operatorname{Func}(2, G) \approx G \times G$. (4 pts.)
e) Show that 1) $G \approx G, 2$) If $G \approx H$ then $H \approx G, 3$) If $G \approx H$ and $H \approx K$ then $G \approx K$. (4 pts.)
f) An isomorphism from G onto G is called an automorphism of G. We let Aut G be the set of automorphisms of G. Show that Aut G is a group under the composition of functions. (2 pts .)
g) Let $\varphi: G \rightarrow H$ be a homomorphism. Show that φ maps the identity element of G onto the identity element of H. (3 pts.)
h) Let $\varphi: G \rightarrow H$ be a homomorphism. Show that $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$ for all $x \in G$. (3 pts.)
i) A homomorphism from a group into itself is called an endomorphism. Find all endomorphisms of Sym 2, Sym 3. (4 pts.) Find all homomorphisms from Sym 3 into Sym 2. (4 pts.) Find all homomorphisms of ($\mathbb{Z},+$). (4 pts.$)$
j) Show that any two groups with n elements are isomorphic for $n=1,2,3$ (4 pts.)
k) Show that there are two nonisomorphic groups G_{1} and G_{2} with 4 elements such that any group G with 4 elements is isomorphic to either G_{1} or G_{2}. (8 pts .)

1) Let $a \in G$. Show that the map $\operatorname{Inn}_{a}: G \rightarrow G$ defined by $\operatorname{Inn}_{a}(x)=a^{-1} x a$ defines a group automorphism of G. (5 pts .)
m) Show that the map $\operatorname{Inn}: G \rightarrow$ Aut G defined by $\operatorname{Inn}(a)=\operatorname{Inn}_{a}$ is a group homomorphism. (5 pts .)
n) Let $\varphi: G \rightarrow H$ be a homomorphism. Show that the image $\varphi(G)$ of G under φ together with the binary operation that makes H a group is a group. (5 pts .)
o) n) Let $\varphi: G \rightarrow H$ be a homomorphism. Show that the image $\{g \in G: \varphi(g)=1\}$ together with the binary operation that makes G a group is a group. (5 pts.)
1. Prove or disprove:

1a. $\{f: \mathbb{N} \rightarrow \mathbb{N}: f$ is a bijection and $\{x \in \mathbb{N}: f(x) \neq x\}$ is finite $\}$ a subgroup of $\operatorname{Sym}(\mathbb{N})$.
1b. $\{f: \mathbb{N} \rightarrow \mathbb{N}: f$ is a bijection and $|\{x \in \mathbb{N}: f(x) \neq x\}|$ is an even integer $\}$ is a subgroup of $\operatorname{Sym}(\mathbb{N})$.

1c. $\left\{q \in \mathbb{Q}^{>0}: q=a / b\right.$ and b is square-free $\}$ a subgroup of \mathbb{Q}^{*}.
2. Find the subgroup of

2a. \mathbb{Q}^{+}generated by $2 / 3$.
2b. \mathbb{Q}^{+}generated by $2 / 3$ and $4 / 9$.
2c. \mathbb{Q}^{*} generated by $\{1 / p: p$ a prime in $\mathbb{N}\}$.
2d. $\mathbb{Q} *$ generated by $\{1 / p: p$ an odd prime in $\mathbb{N}\}$.
3. Show that the permutations (12) and (12 $2 . n$) generate $\operatorname{Sym}(n)$.
4. Write the elements of $\operatorname{Alt}(3)$ and of $\operatorname{Alt}(4)$.
5. Find $Z(\operatorname{Sym}(4))$.
6. Show that $Z(G) \triangleleft G$.
7. Show that $[X, Y]=[Y, X]$ for all $X, Y \subseteq G$.
8. Let H and K be two normal subgroups of G. Show that $[H, K] \subseteq H \cap K$.
9. Let H be a nonempty finite subset of a group G closed under multiplication. Show that H is a subgroup of G.
10. Considering $\operatorname{Sym}(4)$ as a subgroup of $\operatorname{Sym}(5)$ in a natural way, find $C_{S y m(4)}((25))$.
11. Show that for all a, b, c in G,

$$
\begin{aligned}
& {[a, b c]=[a, c][a, b]^{c}} \\
& {[a b, c]=[a, c]^{b}[b, c] .}
\end{aligned}
$$

15. For $a \in G$, define the function $\operatorname{Inn}(a): G \rightarrow G$ by

$$
(\operatorname{Inn}(a))(x)=a x a^{-1}
$$

15a. Show that $\operatorname{Inn}(a) \in \operatorname{Aut}(G)$.
15b. Show that the map $\operatorname{Inn}: G \rightarrow \operatorname{Aut}(G)$ is a homomorphism of groups.
$\mathbf{1 5 c}$. What is the kernel of the homomorphism Inn?

