Algebra (Final) June 17, 2006 Ali Nesin

A group is a set *G* together with a binary operation $*: G \times G \rightarrow G$ such that

G1. For all $x, y, z \in G$, (x * y) * z = x * (y * z).

G2. There is an $e \in G$ such that for all $x \in G$, x * e = e * x = x.

G3. For all $x \in G$, there is a $x' \in G$ such that x * x' = x' * x = e.

A group is sometimes written as the pair (G, *).

From now on G denotes a group. The binary operation on G will be denoted by *.

- 1. Which of the following is a group? $(\mathbb{N}, +)$, $(\mathbb{Z}, +)$, (\mathbb{Q}, \times) , $(\mathbb{Q}, +)$, (\mathbb{Q}, \times) , $(\mathbb{Q} \setminus \{0\}, \times)$, $(\mathbb{Q}^{>0}, \times)$, $(\mathbb{Q}^{<0}, \times)$. (4 pts.)
- 2. Show that the set Sym(X) of bijections of a set X is a group under composition. (3 pts.)
- **3.** Let *G* and *H* be two groups. We denote by * both binary operations. Show that the binary operation defined by (g, h) * (g', h') = (g * g', h * h') on $G \times H$ defines a group structure on $G \times H$. (4 pts.)
- **4.** Let *X* be a set and *G* a group. Let Func(*X*, *G*) be the set of functions from *X* into *G*. For $\varphi, \psi \in \text{Func}(X, G)$ define $\varphi * \psi : X \to G$ by $(\varphi * \psi)(x) = \varphi(x) * \psi(x)$ for all $x \in X$. Show that the set Func(*X*, *G*) is a group under this binary operation *. (4 pts.)
- **5.** Let *G* be a group and *X* a set. Let $f : G \to X$ be a bijection. For $x, y \in X$ define $x * y = f(f^{-1}(x)f^{-1}(y))$. Show that this defines a group operation on the set *X*. (4 pts.)
- 6. Show that the element e in a group G that satisfies G2 is unique. It is called the identity element of G. (2 pts.)
- 7. Show that if x*y = x*z in a group then y = z. (2 pts.) Does the same hold if the hypothesis is replaced by x*y = z*x? (4 pts.)
- 8. Show that, given $x \in G$, the element $x' \in G$ that satisfies G3 is unique. (2 pts.) From now on we let $x' = x^{-1}$. Show that $e^{-1} = e$. (2 pts.) Show that $(x^{-1})^{-1} = x$. (2 pts.) We will call x^{-1} the *inverse* of x.
- 9. Find $(x * y)^{-1}$ in terms of the binary operation * and the elements y^{-1} and x^{-1} . (2 pts.)
- **10.** For $x \in G$ and $n \in \mathbb{N}$, define x^n by induction on n as follows: $x^0 = e$ and $x^{n+1} = x^n * x$.

Find x^1 . Show that $e^n = e$ for all $n \in \mathbb{N}$. Show that given any $x \in G$ and $n, m \in \mathbb{N}$, $x^n * x^m = x^{n+m}$. (3 pts.) Give an example of a group where $(x * y)^2$ is not always equal to $x^2 * y^2$. (2 pts.)

- **11.** For $x \in G$ and $n \in \mathbb{N}$, define x^{-n} as $(x^n)^{-1}$. Show that $e^n = e$ for all $n \in \mathbb{Z}$. Show that given any $x \in G$ and $n, m \in \mathbb{Z}$, $x^n * x^m = x^m * x^n = x^{n+m}$. (4 pts.)
- **12.** Show that for all $x \in G$ and $n, m \in \mathbb{Z}$, $(x^n)^m = x^{nm}$. (4 pts.)
- **13.** For $x \in G$ if there exists a natural number n > 0 such that $x^n = e$, the smallest such n is called the *order* of x. If there is no such n, we say that the order of x is ∞ . We let o(x) to denote the order of x. Show that if $o(x) \neq \infty$ and o(x) divides n then $x^n = e$. (2 pts.) Find elements of order 2, 3, 4, 5, 6 and 7 of Sym X where $X = \{1, 2, 3, 4, 5\}$ if there arae any. (5pts.)
- **14.** Let *G* and *H* be two groups. A map $\varphi : G \to H$ is called a *homomorphism* (of groups) from *G* into *H* if $\varphi(x_*y) = \varphi(x)_*\varphi(y)$.

a) Show that the map $\varphi : G \to H$ defined by $\varphi(x) = e_H$ (the identity element of *H*) is always a homomorphism from *G* into *H*. (2 pts.)

b) Show that the identity map Id_G is always a homomorphism from G into G. (2 pts.)

c) Let *K* be another group and $\varphi : G \to H$ and $\psi : H \to K$ be two homomorphisms. Show that the composition $\psi \circ \varphi$ is a homomorphism from *G* into *K*. (2 pts.)

Show that the composition $\psi \circ \psi$ is a nonnonnorphism from G into K. (2 pts.)

d) Let $\varphi : G \to H$ be a homomorphism which is also a bijection. Show that φ^{-1} is a homomorphism from *H* onto *G*. (4 pts.) Such a φ is called an *isomorphism*.

Whenever there is an isomorphism from *G* into *H* we say that *G* and *H* are *isomorphic* and we write $G \approx H$. Show that Func(2, *G*) $\approx G \times G$. (4 pts.)

e) Show that 1) $G \approx G$, 2) If $G \approx H$ then $H \approx G$, 3) If $G \approx H$ and $H \approx K$ then $G \approx K$. (4 pts.)

f) An isomorphism from G onto G is called an *automorphism* of G. We let Aut G be the set of automorphisms of G. Show that Aut G is a group under the composition of functions. (2 pts.)

g) Let $\varphi : G \to H$ be a homomorphism. Show that φ maps the identity element of *G* onto the identity element of *H*. (3 pts.)

h) Let $\varphi : G \to H$ be a homomorphism. Show that $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$. (3 pts.)

i) A homomorphism from a group into itself is called an *endomorphism*. Find all endomorphisms of Sym 2, Sym 3. (4 pts.) Find all homomorphisms from Sym 3 into Sym

2. (4 pts.) Find all homomorphisms of (\mathbb{Z} , +). (4 pts.)

j) Show that any two groups with *n* elements are isomorphic for n = 1, 2, 3 (4 pts.)

k) Show that there are two nonisomorphic groups G_1 and G_2 with 4 elements such that any group G with 4 elements is isomorphic to either G_1 or G_2 . (8 pts.)

l) Let $a \in G$. Show that the map $Inn_a : G \to G$ defined by $Inn_a(x) = a^{-1}xa$ defines a group automorphism of *G*. (5 pts.)

m) Show that the map Inn : $G \rightarrow \text{Aut } G$ defined by $\text{Inn}(a) = \text{Inn}_a$ is a group homomorphism. (5 pts.)

n) Let $\varphi : G \to H$ be a homomorphism. Show that the image $\varphi(G)$ of *G* under φ together with the binary operation that makes *H* a group is a group. (5 pts.)

o) n) Let $\varphi : G \to H$ be a homomorphism. Show that the image $\{g \in G : \varphi(g) = 1\}$ together with the binary operation that makes *G* a group is a group. (5 pts.)

1. Prove or disprove:

1a. $\{f : \mathbb{N} \to \mathbb{N} : f \text{ is a bijection and } \{x \in \mathbb{N} : f(x) \neq x\} \text{ is finite}\}$ a subgroup of Sym(\mathbb{N}).

1b. $\{f : \mathbb{N} \to \mathbb{N} : f \text{ is a bijection and } | \{x \in \mathbb{N} : f(x) \neq x\} | \text{ is an even integer} \}$ is a

subgroup of $Sym(\mathbb{N})$.

1c. $\{q \in \mathbb{Q}^{>0} : q = a/b \text{ and } b \text{ is square-free}\}\ a \text{ subgroup of } \mathbb{Q}^*.$

2. Find the subgroup of

2a. \mathbb{Q}^+ generated by 2/3.

2b. \mathbb{Q}^+ generated by 2/3 and 4/9.

2c. \mathbb{Q}^* generated by $\{1/p : p \text{ a prime in } \mathbb{N}\}$.

2d. \mathbb{Q}^* generated by $\{1/p : p \text{ an odd prime in } \mathbb{N}\}$.

3. Show that the permutations $(1 \ 2)$ and $(1 \ 2 \dots n)$ generate Sym(n).

4. Write the elements of Alt(3) and of Alt(4).

5. Find *Z*(Sym(4)).

6. Show that $Z(G) \triangleleft G$.

7. Show that [X, Y] = [Y, X] for all $X, Y \subseteq G$.

8. Let *H* and *K* be two normal subgroups of *G*. Show that $[H, K] \subseteq H \cap K$.

9. Let H be a nonempty finite subset of a group G closed under multiplication. Show that H is a subgroup of G.

10. Considering Sym(4) as a subgroup of Sym(5) in a natural way, find $C_{Sym(4)}((25))$.

11. Show that for all *a*, *b*, *c* in *G*, $[a, bc] = [a, c] [a, b]^c$ $[ab, c] = [a, c]^b[b, c].$

15. For $a \in G$, define the function $\text{Inn}(a) : G \to G$ by $(\text{Inn}(a))(x) = axa^{-1}$.

15a. Show that $Inn(a) \in Aut(G)$.

15b. Show that the map Inn : $G \rightarrow Aut(G)$ is a homomorphism of groups.

15c. What is the kernel of the homomorphism Inn?