Math 211 Final Exam
(Group Theory)
Ali Nesin

1. Let $n>1$ be an integer and let m be a divisor of n.
a) Show that $\mathbb{Z} / n \mathbb{Z}$ has m elements whose order divides m. (5 pts .)

Answer: Let $x \in \mathbb{Z}$ be such that $m \underline{x}=\underline{0}$ in $\mathbb{Z} / n \mathbb{Z}$. Then $n \mid m x$ and hence $n / m \mid x$. Therefore $x \equiv 0, n / m, 2 n / m, \ldots, k n / m, \ldots,(m-1) n / m$. Thus there are exactly m elements in $\mathbb{Z} / n \mathbb{Z}$ whose order divides m.
b) How many elements does $\mathbb{Z} / n \mathbb{Z}$ have whose order is exactly m ? (5 pts .)

Answer: By above, $\{\underline{x} \in \mathbb{Z} / n \mathbb{Z}: m \underline{x}=0\}=\langle n / m\rangle \approx \mathbb{Z} / m \mathbb{Z}$. Thus number of elements of $\mathbb{Z} / n \mathbb{Z}$ whose order is exactly m is $\varphi(m)$.
c) Show that a subgroup of a cyclic group is cyclic. (5 pts .)

Answer: Let G be a cyclic group. If $G \approx \mathbb{Z}$, this must be clear at this stage of your studies. Assume $G \approx \mathbb{Z} / n \mathbb{Z}$ for some $n>1$. Let $H \leq \mathbb{Z} / n \mathbb{Z}$ have order m. Then $\left.m\right|_{n}$ and $H \leq\{h \in \mathbb{Z} / n \mathbb{Z}: m h=0\}$. By part a, $H=\{h \in \mathbb{Z} / n \mathbb{Z}: m h=0\}$ and H is cyclic.
2. Let p be a prime. Suppose that G has a normal and nontrivial p-subgroup. Show that G has a normal and nontrivial abelian subgroup. (5 pts .)
Answer: Let $H \triangleleft G$ be a p-subgroup. Since $\mathrm{Z}(H) \neq 1$ and $\mathbf{Z}(H)$ is characteristic in $H, \mathrm{Z}(H)$ $\triangleleft G$.
3. Let $p \leq q$ be two primes and G a group of order $p q$. Show that if $q \not \equiv 1 \bmod p$ then G is abelian. (5 pts.)
4. Let $p<q$ be two primes and G a group of order $p q^{2}$. Show that if $q \not \equiv \pm 1 \bmod p$ then G is abelian. (10 pts.)
5. Let $p<q$ be two primes with $q \equiv 1 \bmod p$.
a) Show that there are at most p nonisomorphic groups of order $p q$. (5 pts.)
b) Show that the upper bound p may be attained. (5 pts .)
6. Let p and q be two primes such that $q \not \equiv 1 \bmod p$. Let n be a natural number. Let G be a group of order $p^{n} q$.
a) Show that G has a nontrivial normal abelian subgroup. (5 pts.)
b) Show that there is a sequence $1=G_{0} \leq G_{1} \leq \ldots \leq G_{n} \leq G_{n+1}$ of normal subgroups such that G_{i+1} / G_{i} is of prime order for each $i=0, \ldots, n$. (5 pts .)
7. Give the correct mathematical definition of the following "definition": A finite group G is called solvable if either $G=1$ or there is a nontrivial normal abelian subgroup A such that G / A is solvable. (5 pts .)
8. a) Show that if H_{1} and H_{2} are two subgroups of finite index of the group G, then $H_{1} \cap$ H_{2} is a subgroup of finite index of G. (5 pts.)
b) Show that if H is a subgroup of finite index of the group G, then H has finitely many conjugates. (5 pts.)
c) Show that if H is a subgroup of finite index of the group G, then there is a normal subgroup N of finite index in G such that $N \subseteq H$. (5 pts .)
9. Let $H \leq G$ be a subgroup of finite index, say n. Let $X=G / H=\{x H: x \in G\}$ (the left coset space). For $g \in G$ and $x H \in X$, define $\varphi_{g}(x H)=g x H$.
a) Show that φ_{g} is a bijection of X, so that $\varphi_{g} \in \operatorname{Sym}(X)$. (2 pts.)
b) For $g \in G$, let $\varphi(g)=\varphi_{g} \in \operatorname{Sym}(X)$. Show that φ is a group homomorphism from G into $\operatorname{Sym}(X)$. (3 pts.)
c) Show that $\operatorname{Ker}(\varphi)=\cap_{g \in G} H^{g} \leq H$. (5 pts.)
d) Show that $[G: \operatorname{Ker}(\varphi)]$ divides n ! (5 pts.)
e) Compare this with \#8c. (5 pts .)
10. Let G be a finite group and p, the smallest prime that divides $|G|$. Let H be a subgroup of G of index p. Show that $H \triangleleft G$. (20 pts.)

