Math 211 Final Exam (Group Theory) Ali Nesin

- 1. Let n > 1 be an integer and let m be a divisor of n.
 - a) Show that $\mathbb{Z}/n\mathbb{Z}$ has m elements whose order divides m. (5 pts.)

Answer: Let $x \in \mathbb{Z}$ be such that $m\underline{x} = \underline{0}$ in $\mathbb{Z}/n\mathbb{Z}$. Then $n \mid mx$ and hence $n/m \mid x$. Therefore $x \equiv 0$, n/m, 2n/m, ..., kn/m, ..., (m-1)n/m. Thus there are exactly m elements in $\mathbb{Z}/n\mathbb{Z}$ whose order divides m.

b) How many elements does $\mathbb{Z}/n\mathbb{Z}$ have whose order is exactly m? (5 pts.)

Answer: By above, $\{\underline{x} \in \mathbb{Z}/n\mathbb{Z} : m\underline{x} = 0\} = \langle n/m \rangle \approx \mathbb{Z}/m\mathbb{Z}$. Thus number of elements of $\mathbb{Z}/n\mathbb{Z}$ whose order is exactly m is $\varphi(m)$.

c) Show that a subgroup of a cyclic group is cyclic. (5 pts.)

Answer: Let G be a cyclic group. If $G \approx \mathbb{Z}$, this must be clear at this stage of your studies. Assume $G \approx \mathbb{Z}/n\mathbb{Z}$ for some n > 1. Let $H \leq \mathbb{Z}/n\mathbb{Z}$ have order m. Then $m \mid n$ and $H \leq \{h \in \mathbb{Z}/n\mathbb{Z} : mh = 0\}$. By part $a, H = \{h \in \mathbb{Z}/n\mathbb{Z} : mh = 0\}$ and H is cyclic.

2. Let *p* be a prime. Suppose that *G* has a normal and nontrivial *p*-subgroup. Show that *G* has a normal and nontrivial abelian subgroup. (5 pts.)

Answer: Let $H \triangleleft G$ be a *p*-subgroup. Since $Z(H) \neq 1$ and Z(H) is characteristic in H, $Z(H) \triangleleft G$.

- 3. Let $p \le q$ be two primes and G a group of order pq. Show that if $q \not\equiv 1 \mod p$ then G is abelian. (5 pts.)
- 4. Let p < q be two primes and G a group of order pq^2 . Show that if $q \not\equiv \pm 1 \mod p$ then G is abelian. (10 pts.)
- 5. Let p < q be two primes with $q \equiv 1 \mod p$.
 - a) Show that there are at most p nonisomorphic groups of order pq. (5 pts.)
 - b) Show that the upper bound p may be attained. (5 pts.)
- 6. Let p and q be two primes such that $q \not\equiv 1 \mod p$. Let n be a natural number. Let G be a group of order $p^n q$.
- a) Show that G has a nontrivial normal abelian subgroup. (5 pts.)
- b) Show that there is a sequence $1 = G_0 \le G_1 \le ... \le G_n \le G_{n+1}$ of normal subgroups such that G_{i+1}/G_i is of prime order for each i = 0, ..., n. (5 pts.)
- 7. Give the correct mathematical definition of the following "definition": A finite group G is called *solvable* if either G = 1 or there is a nontrivial normal abelian subgroup A such that G/A is solvable. (5 pts.)
- 8. a) Show that if H_1 and H_2 are two subgroups of finite index of the group G, then $H_1 \cap H_2$ is a subgroup of finite index of G. (5 pts.)
- b) Show that if H is a subgroup of finite index of the group G, then H has finitely many conjugates. (5 pts.)
- c) Show that if H is a subgroup of finite index of the group G, then there is a normal subgroup N of finite index in G such that $N \subseteq H$. (5 pts.)
- 9. Let $H \le G$ be a subgroup of finite index, say n. Let $X = G/H = \{xH : x \in G\}$ (the left coset space). For $g \in G$ and $xH \in X$, define $\varphi_g(xH) = gxH$.
 - a) Show that φ_g is a bijection of X, so that $\varphi_g \in \text{Sym}(X)$. (2 pts.)

- b) For $g \in G$, let $\varphi(g) = \varphi_g \in \text{Sym}(X)$. Show that φ is a group homomorphism from G into Sym(X). (3 pts.)
- c) Show that $Ker(\varphi) = \bigcap_{g \in G} H^g \le H$. (5 pts.)
- d) Show that $[G : Ker(\varphi)]$ divides n! (5 pts.)
- e) Compare this with #8c. (5 pts.)
- 10. Let G be a finite group and p, the smallest prime that divides |G|. Let H be a subgroup of G of index p. Show that $H \triangleleft G$. (20 pts.)