Math 311

Group Theory
Midterm 1
Ali Nesin

1. Find the number of Sylow p-subgroups of $\operatorname{Sym}(5)$ for all primes p. What is the cardinality of their normalizers?
2. Let n and m be two integers >1. Find the elements of the subgroup $\{x \in \mathbf{Z} / n \mathbf{Z}$: $m x=0\}$ explicitely. What is its cardinality? What is its isomorphism type?
3. Let U be a torsion abelian group. For a prime p define $U(p)=\{u \in U: u$ has order p^{n} for some $\left.n\right\}$. Show that U is the direct sum of these subgroups.
4. Let U and V be two finite cyclic groups whose orders are relatively prime. Show that $U \times V$ is a cyclic group.
5. Let F be a field and U be a finite subgroup of F. Show that U is cyclic. (Hint : Use Questions 3 and 4 to assume that $U=U(p)$).
6. Let \mathbf{F}_{q} be the field with q elements. (Recall that q is necesasrily a prime power, but this is not important here.) Let $\mathrm{GL}_{n}(q)$ be the group of invertible $n \times n$ matrices over the field \mathbf{F}_{q}. Show that $\mathrm{Z}\left(\mathrm{GL}_{n}(q)\right)$, the center of $\mathrm{GL}_{n}(q)$, is the set of nonzero scalar matrices.
7. Let $\mathrm{SL}_{n}(q)$ be the group of $n \times n$ matrices of determinent 1 over the field \mathbf{F}_{q}. Show that $\mathrm{Z}\left(\mathrm{SL}_{n}(q)\right)$, the center of $\mathrm{SL}_{n}(q)$, is the set of scalar matrices of $\mathrm{SL}_{n}(q)$.
8. Find the cardinalities of $\mathrm{GL}_{n}(q), \operatorname{PGL}_{n}(q), \mathrm{SL}_{n}(q), \mathrm{PSL}_{n}(q)$ where

$$
\begin{aligned}
& \operatorname{PGL}_{n}(q)=\operatorname{GL}_{n}(q) / Z\left(\operatorname{GL}_{n}(q)\right) \\
& \operatorname{PSL}_{n}(q)=\operatorname{SL}_{n}(q) / Z\left(\operatorname{SL}_{n}(q)\right)
\end{aligned}
$$

9. What is the center of $\mathrm{PGL}_{n}(q)$?
10. Can any of the groups $\operatorname{GL}_{n}(q), \operatorname{PGL}_{n}(q), \operatorname{SL}_{n}(q), \operatorname{PSL}_{n}(q)$ (even for different primes) be isomorphic to each other?
11. Show that $\mathrm{PSL}_{2}(5)$ is isomorphic to $\operatorname{Alt}(5)$.
