Group Theory Final

Math 311 January 2000 Ali Nesin

1a. Show that the group of translations of \mathbb{R}^n is a subgroup of $\text{Sym}(\mathbb{R}^n)$ normalized by $\text{GL}_n(\mathbb{R})$. (3 pts.)

1b. Show that the elements of $\text{Sym}(\mathbb{R}^n)$ that send a line onto a line form a group that is isomorphic to the group $\mathbb{R}^n \rtimes \text{GL}_n(\mathbb{R})$ where $\text{GL}_n(\mathbb{R})$ acts on \mathbb{R}^n as expected. (5 pts.)

1c. Show that the above group $\mathbb{R}^n \rtimes \operatorname{GL}_n(\mathbb{R})$ can be embedded in $\operatorname{GL}_{n+1}(\mathbb{R})$. (6 pts.)

1d. Show that any element of $GL_2(\mathbb{R})$ is a product of a diagonal matrix, of an upper triangular matrix and of a rotation. (6 pts.)

1e. Let *K* be an algebraically closed field. Let $g \in GL_2(K)$. Find all the isomorphism types of the centralizer of *g* in $GL_2(K)$. (7 pts.)

1f. Let *K* be any field and let $g \in GL_2(K) \setminus Z(GL_2(K))$. Show that the centralizer of *g* in $GL_2(K)$ is solvable of class at most 2. Is the same true in $GL_n(K)$ for n > 2? (7 pts.)

1g. Find all the isometries of \mathbb{R}^2 . (10 pts.)

2. Let *G* be a sharply 2-transitive group acting on a set *X* of size *n*. Let $x \in X$, $T = G_x$ and $N = (G \setminus \bigcup_{g \in G} T^g) \cup \{1\}$.

2a. Show that $|G| = n^2 - n.$ (3 pts.)

2b. Show that |T| = n - 1. (3 pts.)

2c. Show that $T^{g} \cap T = 1$ if $g \notin T$. (3 pts.)

2d. Show that |N| = n. (3 pts.)

2e. Show that $N \setminus \{1\}$ is the set of elements of *G* that does not fix a point of *X*. Conclude that *N* is a normal subset of *G*. (4 pts.)

2f. Show that if $n \in N \setminus \{1\}$, then $C_G(n) \subseteq N$. (4 pts.)

2g. Show that $N \setminus \{1\}$ is one conjugacy class. (5 pts.)

2i. Find the size of $C_G(n)$ for $n \in N$. (5 pts.)

2j. Conclude that *N* is an abelian group. (5 pts.)

2k. Show that *N* is an elementary abelian group. (7 pts.)

21. Show that $G = N \rtimes T$. (2 pts.)

2m. Show that *G* has always an involution. (2 pts.)

2n. Show that *T* has an involution iff *n* is odd. (2 pts.)

20. Show that *N* has an involution iff *n* is even. (2 pts.)

2p. Show that *T* has at most one involution, in which case this involution must be central in *T*. (Hint: Assume *T* has two involutions *i* and *j*. Let $y \neq x$ and let *g* carry (y, iy) onto (y, jy). Then ij^g fixes the points *y* and *iy* and *g* fixes *x* and *y*). (6 pts.)