Group Theory Final

Math 311
January 2000
Ali Nesin

1a. Show that the group of translations of \mathbb{R}^{n} is a subgroup of $\operatorname{Sym}\left(\mathbb{R}^{n}\right)$ normalized by $\mathrm{GL}_{n}(\mathbb{R})$. (3 pts.)

1b. Show that the elements of $\operatorname{Sym}\left(\mathbb{R}^{n}\right)$ that send a line onto a line form a group that is isomorphic to the group $\mathbb{R}^{n} \rtimes \mathrm{GL}_{n}(\mathbb{R})$ where $\mathrm{GL}_{n}(\mathbb{R})$ acts on \mathbb{R}^{n} as expected. (5 pts.)

1c. Show that the above group $\mathbb{R}^{n} \rtimes \mathrm{GL}_{n}(\mathbb{R})$ can be embedded in $\mathrm{GL}_{n+1}(\mathbb{R})$. (6 pts.)

1d. Show that any element of $\mathrm{GL}_{2}(\mathbb{R})$ is a product of a diagonal matrix, of an upper triangular matrix and of a rotation. (6 pts.)

1e. Let K be an algebraically closed field. Let $g \in \mathrm{GL}_{2}(K)$. Find all the isomorphism types of the centralizer of g in $\mathrm{GL}_{2}(K)$. (7 pts.)

1f. Let K be any field and let $g \in \mathrm{GL}_{2}(K) \backslash \mathrm{Z}\left(\mathrm{GL}_{2}(K)\right)$. Show that the centralizer of g in $\mathrm{GL}_{2}(K)$ is solvable of class at most 2. Is the same true in $\mathrm{GL}_{n}(K)$ for $n>2$? (7 pts.)

1g. Find all the isometries of \mathbb{R}^{2}. (10 pts.)
2. Let G be a sharply 2-transitive group acting on a set X of size n. Let $x \in X, T$ $=G_{x}$ and $N=\left(G \backslash \bigcup_{g \in G} T^{g}\right) \cup\{1\}$.

2a. Show that $|G|=n^{2}-n$. (3 pts.)
2b. Show that $|T|=n-1$. (3 pts.)
2c. Show that $T^{g} \cap T=1$ if $g \notin T$. (3 pts.)
2d. Show that $|N|=n$. (3 pts.)
2e. Show that $N \backslash\{1\}$ is the set of elements of G that does not fix a point of X. Conclude that N is a normal subset of G. (4 pts.)

2f. Show that if $n \in N \backslash\{1\}$, then $\mathrm{C}_{G}(n) \subseteq N$. (4 pts.)
2g. Show that $N \backslash\{1\}$ is one conjugacy class. (5 pts.)
2i. Find the size of $\mathrm{C}_{G}(n)$ for $n \in N$. (5 pts.)
$\mathbf{2 j}$. Conclude that N is an abelian group. (5 pts.)
$\mathbf{2 k}$. Show that N is an elementary abelian group. (7 pts .)
21. Show that $G=N \rtimes T$. (2 pts.)
$\mathbf{2 m}$. Show that G has always an involution. (2 pts.)
2n. Show that T has an involution iff n is odd. (2 pts .)
20. Show that N has an involution iff n is even. (2 pts.)

2p. Show that T has at most one involution, in which case this involution must be central in T. (Hint: Assume T has two involutions i and j. Let $y \neq x$ and let g carry $(y, i y)$ onto $(y, j y)$. Then $i j^{g}$ fixes the points y and $i y$ and g fixes x and y). (6 pts.)

