Group Theory

Quiz October 2006 Ali Nesin

G stands for a group throughout.

- 1. Let *H* and *K* be two subgroups of *G*. For $x \in G$, the set HxK is called a **double coset** (of *H* and *K*). Show that the double cosets of *H* and *K* partition *G*.
- **2.** For $H \le G$, let $N_G(H) = \{g \in G : gH = Hg\}$. Show that $H \triangleleft N_G(H) \le G$ and that $N_G(H)$ is the largest subgroup of *G* in which *H* is normal.
- **3.** Let *H* and *K* be two subgroups of *G*. Assume $H = \langle X \rangle$ and $Y = \langle Y \rangle$. Show that $\langle H, K \rangle = \langle X, Y \rangle$. Note: $\langle X \rangle$ denotes the subgroup generated by *X* and $\langle X, Y \rangle$ denotes $\langle X \cup Y \rangle$.
- 4. Let *H* and *K* be two subgroups of *G*. Assume $K \triangleleft G$. Show that $\langle H, K \rangle = HK$.
- 5. Let π be a set of primes. A π -number is an integer whose prime factors are in π . An element of *G* whose order is a π -number is called a π -element. A group is called a π -group if all its elements are π -elements. **5a.** Show that an abelian group generated by π -elements is a π -group. **5b.** Show that this is false for nonabelian groups. **5c.** Let *H* be the subgroup of *G* generated by all the π -elements of *G*. Show that for any homomorphism of φ of *G*,

 $\varphi(H) \leq H$. **5d.** Let $H \triangleleft G$ and assume that H and G/H are both π -groups. Show that G is a π -group.