Math 411

Field Theory
Midterm
November 18, 2000
Ali Nesin

1. Let $E=\mathbb{Q}(\alpha)$ where α is the root of the equation $\alpha^{3}+\alpha^{2}+\alpha+2=0$. Express the element $(\alpha-1)^{-1}$ of E in the form $a \alpha^{2}+b \alpha+c$ with $a, b, c \in \mathbb{Q}$.
2. Let $E=F(\alpha)$ where α is algebraic over F of odd degree. Show that $E=F\left(\alpha^{2}\right)$.
3. Let $F \leq E$ be a field extension. Let α and β be two elements of E which are algebraic over the field F with minimal polynomials f and g respectively. Assume that the degrees of f and g are prime to each other. Show that g is irreducible in the polynomial ring $F(\alpha)[X]$.
4. Let α be the real positive fourth root of 2 . Find all subfields of $\mathbb{Q}(\alpha)$.
5. If α is a complex root of $X^{6}+X^{3}+1$, find all field homomorphisms $\sigma: \mathbb{Q}(\alpha) \rightarrow \mathbf{C}$. (Hint: The polynomial is a factor of $X^{9}-1$).
6. Let E and F be two finite extensions of the field k, both contained in a larger field K. Show that $[E F: k] \leq[E: k][F: k]$. Show that the equality holds if $[E: k]$ and $[F: k]$ are prime to each other.
7. Let $f \in k[X]$ have degree n. Let K be its splitting field, i.e. $K=k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ where α_{1}, $\ldots, \alpha_{n} \in K$ are such that $f=\Pi_{i=1, \ldots, n}\left(X-\alpha_{i}\right)$. Show that $[K: k]$ divides $n!$
8. Find the splitting field of $X^{p^{8}}-1$ over the field \mathbf{F}_{p}.
