Math 411 Field Theory Midterm November 18, 2000 Ali Nesin

1. Let $E = \mathbb{Q}(\alpha)$ where α is the root of the equation $\alpha^3 + \alpha^2 + \alpha + 2 = 0$. Express the element $(\alpha - 1)^{-1}$ of *E* in the form $a\alpha^2 + b\alpha + c$ with $a, b, c \in \mathbb{Q}$.

2. Let $E = F(\alpha)$ where α is algebraic over *F* of odd degree. Show that $E = F(\alpha^2)$.

3. Let $F \le E$ be a field extension. Let α and β be two elements of *E* which are algebraic over the field *F* with minimal polynomials *f* and *g* respectively. Assume that the degrees of *f* and *g* are prime to each other. Show that *g* is irreducible in the polynomial ring $F(\alpha)[X]$.

4. Let α be the real positive fourth root of 2. Find all subfields of $\mathbb{Q}(\alpha)$.

5. If α is a complex root of $X^6 + X^3 + 1$, find all field homomorphisms $\sigma : \mathbb{Q}(\alpha) \to \mathbb{C}$. (Hint: The polynomial is a factor of $X^9 - 1$).

6. Let *E* and *F* be two finite extensions of the field *k*, both contained in a larger field *K*. Show that $[EF : k] \le [E : k][F : k]$. Show that the equality holds if [E : k] and [F : k] are prime to each other.

7. Let $f \in k[X]$ have degree *n*. Let *K* be its splitting field, i.e. $K = k[\alpha_1, ..., \alpha_n]$ where α_1 , ..., $\alpha_n \in K$ are such that $f = \prod_{i=1,...,n} (X - \alpha_i)$. Show that [K : k] divides *n*!

8. Find the splitting field of $X^{p^8} - 1$ over the field \mathbf{F}_p .