Group Theory

Quiz on Sylow Theorems October 1999 Ali Nesin

G stands for a group.

1. Let *H* and *K* be two subgroups of *G*. For $x \in G$, the set HxK is called a **double** coset (of *H* and *K*).

1a. Show that the double cosets partition *G*.

1b. Assume G is finite. Show that $|G:H| = \sum_{x \in G} |K:K \cap H^x|$. (Hint: Use

part a to count the number of right cosets of H in a different way).

1c. Assume G is finite and that H is a Sylow p-subgroup of G. Show that for some $x \in G, K \cap H^x$ is a Sylow p-subgroup of K.

From now on we always assume that G is finite.

2. Let *P* be a *p*-subgroup which is the Sylow subgroup of $N_G(P)$. Show that *P* is a Sylow *p*-subgroup of *G*.

3. Let *P* be a Sylow *p*-subgroup of *G* and let $H \triangleleft G$. Show that $H \cap P$ is a Sylow *p*-subgroup of *H*.

4 (Frattini Argument). Let $H \triangleleft G$ and *P* be a Sylow *p*-subgroup of *H*. Show that $G = H \operatorname{N}_G(H)$.

5. Let $H \leq G$.

5a. Let *P* be a Sylow *p*-subgroup of *G*. Show that if $N_G(P) \le H$, then $H = N_G(H)$.

5b. Let *P* be a Sylow *p*-subgroup of *H*. Show that if $N_G(P) \le H$, then *P* is a Sylow *p*-subgroup of *G*.

5c. Assume that for any $1 \neq K \leq H$, $N_G(K) \leq H$. Show that |H| and |G/H| are prime to each other.

6. Let $|G| = p^n q$ where p and q are two distinct primes. Show that if p does not divide q - 1, in particular if $p \ge q$, then G is solvable¹.

7. Let $|G| = p^n q$ where p and q are two distinct primes. Show that if $q > p^n$, then G is solvable.

¹ A famous theorem of Burnside states that a group of order $p^n q^m$ is solvable, but you cannot use this theorem in this exercise!