Math 211 Algebra Final January 2009
 Ali Nesin

1. [Cauchy's Theorem]. Let G be finite group and p a prime divisor of $|G|$. Let $X=$ $\left\{\left(g_{1}, \ldots, g_{p}\right) \in G^{p}=G \times \ldots \times G: g_{1}, \ldots, g_{p}=1\right\}$. Let $H=\langle t\rangle \approx \mathbb{Z} / p \mathbb{Z}$.
a. Show that $t\left(g_{1}, \ldots, g_{p}\right)=\left(g_{p}, g_{1}, \ldots, g_{p-1}\right)$ defines an action of H on X. (5 pts.)
b. What are the possible sizes of the H-orbits? (5 pts .)
c. Show that G must have an element of order p. (10 pts .)
2. a. Let G be a group. Find all subgroups of $\mathbb{Z} / 2 \mathbb{Z} \times G$ in terms of subgroups of G. (5 pts.)
b. Let G be a simple group. Show that for any $g \in G \backslash\{1\}, G=\left\langle g^{G}\right\rangle$. (5 pts.)
c. Let G_{1}, \ldots, G_{n} be simple nonabelian subgroups. Show that $G_{1} \times \ldots \times G_{n}$ has exactly 2^{n} normal subgroups. (5 pts .)
d. Find the number of subgroups of $\mathbb{Z} / 120 \mathbb{Z}$. (5 pts.)
e. Let p be a prime. Find number of subgroups of $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ and $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \times$ $\mathbb{Z} / p \mathbb{Z}$. (10 pts.)
3. Let $G \neq 1$ be a finite p-group where p s a prime and Φ a p-group of automorphisms of G. Show that there is a nontrivial element $g \in G$ such that $\varphi(g)=g$ for all $\varphi \in \Phi$. (15 pts.)
4. Let G be a group.
a. Show that if $A \leq G$ is an abelian subgroup and if $g \in \mathrm{~N}_{G}(A)$, then the map $\operatorname{ad}(g)$: $A \rightarrow A$ defined by $\operatorname{ad}(g)(a)=[a, g]$ is a group homomorphism. Find its kernel. (7 pts.)
b. Let $x, \mathrm{y}, z \in G$. Show $\left[\left[x, y^{-1}\right], z\right]^{y}\left[\left[y, z^{-1}\right], x\right]^{z}\left[\left[z, x^{-1}\right], y\right]^{x}=1$. (3 pts.)
c. Conclude that if H and K are two subgroups of G and if $[[H, K], K]=1$, then $H \leq$ $C_{G}\left(K^{\prime}\right)$. (10 pts.)
d. [Three Subgroup Lemma of P. Hall] Let H, K, L be three normal subgroups of G. Using part b, show that $[[H, K], L] \leq[[K, L], H][[L, H], K]$. (5 pts.)
5. Let $H \triangleleft G$. Let S be a Sylow p-subgroup of H.
a. Show that there is a Sylow p-subgroup T of G such that $T \cap H=S$. (5 pts .)
b. Show that $G=H N_{G}(S)$. (10 pts.)
6. a. Show that any group of order <60 is solvable. (25 pts .)
b. Show that a nonsolvable group of order 60 is isomorphic to Alt 5 . (25 pts.)
