Math 211 Algebra Final January 2009 Ali Nesin

1. [Cauchy's Theorem]. Let G be finite group and p a prime divisor of |G|. Let X =

 $\{(g_1, ..., g_p) \in G^p = G \times ... \times G : g_1, ..., g_p = 1\}$. Let $H = \langle t \rangle \approx \mathbb{Z}/p\mathbb{Z}$. **a.** Show that $t(g_1, ..., g_p) = (g_p, g_1, ..., g_{p-1})$ defines an action of *H* on *X*. (5 pts.) **b.** What are the possible sizes of the *H*-orbits? (5 pts.) **c.** Show that *G* must have an element of order *p*. (10 pts.)

2. a. Let *G* be a group. Find all subgroups of $\mathbb{Z}/2\mathbb{Z} \times G$ in terms of subgroups of *G*. (5 pts.)

b. Let *G* be a simple group. Show that for any $g \in G \setminus \{1\}$, $G = \langle g^G \rangle$. (5 pts.) **c.** Let $G_1, ..., G_n$ be simple nonabelian subgroups. Show that $G_1 \times ... \times G_n$ has exactly 2^n normal subgroups. (5 pts.)

d. Find the number of subgroups of $\mathbb{Z}/120\mathbb{Z}$. (5 pts.)

e. Let *p* be a prime. Find number of subgroups of $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. (10 pts.)

- **3.** Let $G \neq 1$ be a finite *p*-group where *p* s a prime and Φ a *p*-group of automorphisms of *G*. Show that there is a nontrivial element $g \in G$ such that $\varphi(g) = g$ for all $\varphi \in \Phi$. (15 pts.)
- 4. Let G be a group.

a. Show that if $A \le G$ is an abelian subgroup and if $g \in N_G(A)$, then the map ad(g): $A \to A$ defined by ad(g)(a) = [a, g] is a group homomorphism. Find its kernel. (7 pts.)

b. Let $x, y, z \in G$. Show $[[x, y^{-1}], z]^{y}[[y, z^{-1}], x]^{z}[[z, x^{-1}], y]^{x} = 1$. (3 pts.)

c. Conclude that if *H* and *K* are two subgroups of *G* and if [[H, K], K] = 1, then $H \le C_G(K')$. (10 pts.)

d. [Three Subgroup Lemma of P. Hall] Let H, K, L be three normal subgroups of G. Using part b, show that $[[H, K], L] \leq [[K, L], H][[L, H], K]$. (5 pts.)

5. Let $H \triangleleft G$. Let *S* be a Sylow *p*-subgroup of *H*.

a. Show that there is a Sylow *p*-subgroup *T* of *G* such that $T \cap H = S$. (5 pts.)

b. Show that $G = HN_G(S)$. (10 pts.)

a. Show that any group of order < 60 is solvable. (25 pts.) **b.** Show that a nonsolvable group of order 60 is isomorphic to Alt 5. (25 pts.)