Math 211 Ali Nesin

November 2007

G denotes always a group.

1. Show that a group of prime order is cyclic. (3 pts.)

2. Show that a subgroup of a cyclic group is cyclic. (4 pts.)

3. Show that for *n* and *m* prime to each other $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$. (2 pts.) Show the converse. (10 pts.)

4. Let the center Z(G) of G be defined as $Z(G) = \{z \in G : zg = gz \text{ for all } g \in G\}$. It is easy to sow that $Z(G) \triangleleft G$. Show that if G/Z(G) is a cyclic group then G is abelian. (7 pts.)

5. For $a, g \in G$ define $\operatorname{Inn}_g(a) = gag^{-1}$. **5a.** Show that Inn_g is an automorphism of G. **5b.** Show that $\operatorname{Inn} : G \to \operatorname{Aut}(G)$ is a homomorphism of groups whose kernel is Z(G). **5c.** Show that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. (2 + 4 + 4 pts.)

6. Find the group structures of Aut($\mathbb{Z}/12\mathbb{Z}$), Aut(Sym(3)), Aut($\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$) and Aut($\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$). (16 pts.)

7. For $X \subseteq G$ define the **centralizer** of *X* to be

 $C_G(X) = \{g \in G : gx = xg \text{ for all } x \in X\}.$

It is easy to show that $C_G(X) \leq G$.

7a. Show that if $X \subseteq Y$ then $C_G(Y) \subseteq C_G(X)$. (1 pts.) **7b.** Show that $X \subseteq C_G(C_G(X))$. (2 pts.) **7c.** Conclude that $C_G(C_G(C_G(X))) = C_G(X)$. (5 pts.)

8. For an element $a \in G$ of a group G, define the **conjugacy class** of a to be the set $a^G = \{g^{-1}ag : g \in G\}$

and the **centralizer** of *a* to be

$$C_G(a) = \{g \in G : ga = ag\}.$$

8a. Find an example where $C_G(a)$ is not a normal subgroup of G. (2 pts.)

8b. Show that $|G/C_G(a)| = |a^G|$. (4 pts.)

8c. Show that any two conjugacy classes are either equal or disjoint. (3 pts.)

8d. Conclude the class formula $|G| = |Z(G)| + \sum_{\text{some } g \notin Z(G)} |G| / |C_G(Z)|$. (5 pts.)

8e. Conclude that the center of a finite *p*-group is nontrivial. (*p* is a prime from now on). (4 pts.)

8f. Conclude from this and #4 that a group of order p^2 is abelian. (2 pts.)

8g. Classify all groups of order p^2 . (4 pts.)

8h*. Find a nonabelian group of order p^3 . (5 pts.)

8i. Classify all abelian groups of order p^3 . (6 pts.)

9. Let *H* and *K* be two subgroups of *G*. For $x \in G$, the set HxK is called a **double coset** (of *H* and *K*).

9a. Show that the double cosets of H and K partition G. (2 pts.)

9b. Show that $|G:H| = \sum_{\text{some } g \in G} |K: K \cap H^x|$. (**Hint:** Use part a to count the number of right cosets of *H* in a different way). (8 pts.)

10a. Let $A_1, ..., A_n$ be simple nonabelian groups. Find all normal subgroups of $A_1 \times ... \times A_n$. (5 pts.)

10b. What can you say about $Aut(A \times ... \times A)$ in terms of Aut(A) if A is nonabelian and simple? (15 pts.)