Group Theory Exam

January, 2007 Ali Nesin

1. Let *A* and *B* be cyclic groups of order *n* and *m* respectively. Assume (n, m) = 1. Show that $A \oplus B$ is cyclic.

Proof: Let *a* and *b* generate *A* and *B* respectively. Then I claim that (a, b) generates $A \times B$. For this, for any $u, v \in \mathbb{Z}$, I have to find an $x \in \mathbb{Z}$ such that $(a^u, b^v) = (a, b)^x = (a^x, b^x)$, i.e. we have to solve the system

$$u \equiv x \bmod n,$$
$$v \equiv x \bmod m.$$

Since (n, m) = 1 there are $r, s \in \mathbb{Z}$ such that rn + sm = 1. Thus

$$n(u-v) + sm(u-v) = u - v$$

Then x = u - rn(u - v) = v + sm(u - v) is a solution of the system.

2. Find number of subgroups of $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ (*p* is a prime).

Solution: $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ is a vector space of dimension 2 over $\mathbb{Z}/p\mathbb{Z}$ and any subgroup is a subspace of $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$. There is a unique subspace of dimension 0 and a unique subspace of dimension 2. Let us count the number of subspaces of dimension 1. Each such subspace is generated by a non zero vector of $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and there are $p^2 - 1$ of them. But p - 1 of them generate the same subspace (the ones wich are non zero multiples of each other). Hence there are $(p^2 - 1)/(p - 1) = p + 1$ such subspace. Therefore $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ has (p + 1) + 2 = p + 3 subgroups.

Similarly $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ has $(p^3 - 1)/(p - 1) = p^2 + p + 1$ subspaces of dimension 1. The number of a vector space of dimension 2 is equal to the number of subspaces of dimension 1 because any subspace of dimension 2 is given by the solutions (x, y, z) of an equation of the form ax + bx + cy = 0 for a nonzero vector $(a, b, c) \in \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$. Thus $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ has $2(p^2 + p + 1) + 2$ subgroups.

3. How many subgroups does $\mathbb{Z}/n\mathbb{Z}$ have?

Solution: Any subgroup of $\mathbb{Z}/n\mathbb{Z}$ is equal to $k\mathbb{Z}/n\mathbb{Z}$ for some unique *k* dividing *n*. (Why?) Thus the number of subgroups of $\mathbb{Z}/n\mathbb{Z}$ is equal to the number of divisors of *n*. If $n = p_1^{k_1} \dots p_r^{k_r}$ is the prime decomposition of *n* then the number of divisors of *n* is $(k_1 + 1) \dots (k_r + 1)$.

4. Let *G* be a finite *p*-group and Φ a *p*-group of automorphisms of *G*. Show that there is a nontrivial element $g \in G$ such that $\varphi(g) = g$ for all $\varphi \in \Phi$.

Proof: For $g \in G$, the orbit Φg is in one-to-one correspondence with $\Phi/C_{\Phi}(g)$ where $C_{\Phi}(g) = \{\varphi \in \Phi : \varphi(g) = g\}$ via the map $\varphi g \mapsto [\varphi]$ as it can be checked easily. Thus $|\Phi g|$ is a power of p. Note that $|\Phi/C_{\Phi}(g)| = 1$ iff $C_{\Phi}(g) = \Phi$ iff $\varphi(g) = g$ for all $\varphi \in \Phi$. Since G is the disjoint union of orbits and since the orbit of the identity element 1 has only 1 element, there must be other orbits with 1 element. This proves that there is a nontrivial element $g \in G$ such that $\varphi(g) = g$ for all $\varphi \in \Phi$.

5. Show that a divisible group has no proper subgroups of finite index.

Proof: Let *G* be a divisible group and *H* a subgroup of finite index. If [G : H] = n, we know that $\bigcap_{g \in G} H^g$ is a normal subgroup of index dividing *n*! Replacing *H* by this subgroup, we may assume that *H* is normal in *G*. Let *n* be the index. Then $g^n \in H$ for all $g \in G$. Since every $x \in G$ is an *n*th power, this shows that G = H.

6. Show that \mathbb{Q} and $\mathbb{Q} \oplus \mathbb{Q}$ are not isomorphic.

Proof: \mathbb{Q} has no proper nontrivial divisible subgroup

7. Let G be an abelian group and $A \leq G$. Show that if A and G/A are divisible, then G is divisible.

8. A group *G* is said to be *nilpotent* if for any proper normal subgroup $H \triangleleft G$, $Z(G/H) \neq 1$. Show that in a nilpotent group for any proper subgroup $H \triangleleft G$, we have $H \triangleleft N_G(H)$.

9. Let *P* be a Sylow *p*-subgroup of *G*. Show that *P* is characteristic in $N_G(P)$ (i.e. $\varphi(P) = P$ for any automorphism φ of $N_G(P)$.) Conclude that $N_G(N_G(P)) = N_G(P)$. Show that if *G* is nilpotent, $N_G(P) = G$, i.e. $P \triangleleft G$.

10. Let $t \in G$ be an involution, i.e. an element of order 2. Let $X = \{[t, g]: g \in G\}$. (Recall that $[t, g] = t^{-1}g^{-1}tg$.

a. Show that for $x \in X$, $x^t = x^{-1}$ and that $t \notin X$. Conclude that the elements of tX are involutions.

b. Show that the map $\varphi : G/C_G(t) \to X$ defined by $\varphi(gC_G(t)) = [t, g^{-1}]$ is a well-defined bijection.

c. Assume from now on that *G* is finite and that $C_G(t) = \{1, t\}$. We will show that *X* is an abelian subgroup without elements of order 2 and that $G = X \rtimes \{1, t\}$. Show that |X| = |G|/2. Show that *X* has no involutions. Show that $X \cap tX = \emptyset$. Show that $G = X \sqcup tX$ and that *X* is the set of elements of order $\neq 2$ of *G*. Show that *X* is a characteristic subset of *G*. Let $x \in X \setminus \{1\}$ be a fixed element. Show that t^x inverts *X* as well. Conclude that $1 \neq x^2 = tt^x$ centralizes *X*. Show that $X = C_G(x^2) \leq G$. Show that *X* is an abelian group without involutions.

11. Let G be a finite group with an involutive automorphism α (i.e. $\alpha^2 = \text{Id}$) without nontrivial fixed points (i.e. $\alpha(g) = g$ implies g = 1). Show that G is inverted by α .

12a. Let G be a group of prime exponent p. Show that for $g \in G^*$, no two distinct elements of $\langle g \rangle$ can be conjugated in G.

b. Show that if exp(G) = p, then G has at least p conjugacy classes.

c. (Reineke) Let *G* be a group and assume that for some $x \in G$ of finite order, we have $G = x^G \cup \{1\}$. Show that |G| = 1 or 2.

13. Let G be an arbitrary torsion group without involutions. Show that G is 2-divisible. Assume G has an involutive automorphism α that does not fix any nontrivial elements of G. We will show that G is abelian and is inverted by α .

a. Show that for $a, b \in G$, if $a^2 = b^2$ then a = b.

Let $g \in G$. Let $h \in G$ be such that $h^2 = \alpha(g)g$.

b. Show that $\alpha(h)^2 = (h^{-1})^2$. Conclude that $\alpha(h) = h^{-1}$.

c. Show that $\alpha(gh^{-1}) = gh^{-1}$. Deduce that g = h. This proves the result.