# Group Theory Exam 

January, 2007
Ali Nesin

1. Let $A$ and $B$ be cyclic groups of order $n$ and $m$ respectively. Assume $(n, m)=1$. Show that $A \oplus B$ is cyclic.

Proof: Let $a$ and $b$ generate $A$ and $B$ respectively. Then I claim that $(a, b)$ generates $A \times B$. For this, for any $u, v \in \mathbb{Z}$, I have to find an $x \in \mathbb{Z}$ such that $\left(a^{u}, b^{v}\right)=(a, b)^{x}=\left(a^{x}, b^{x}\right)$, i.e. we have to solve the system

$$
\begin{aligned}
& u \equiv x \bmod n \\
& v \equiv x \bmod m .
\end{aligned}
$$

Since $(n, m)=1$ there are $r, s \in \mathbb{Z}$ such that $r n+s m=1$. Thus

$$
r n(u-v)+\operatorname{sm}(u-v)=u-v .
$$

Then $x=u-r n(u-v)=v+\operatorname{sm}(u-v)$ is a solution of the system.
2. Find number of subgroups of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ ( $p$ is a prime).

Solution: $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ is a vector space of dimension 2 over $\mathbb{Z} / p \mathbb{Z}$ and any subgroup is a subspace of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$. There is a unique subspace of dimension 0 and a unique subspace of dimension 2. Let us count the number of subspaces of dimension 1. Each such subspace is generated by a non zero vector of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and there are $p^{2}-1$ of them. But $p-1$ of them generate the same subspace (the ones wich are non zero multiples of each other). Hence there are $\left(p^{2}-1\right) /(p-1)=p+1$ such subspace. Therefore $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ has $(p+1)+2=p+$ 3 subgroups.

Similarly $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ has $\left(p^{3}-1\right) /(p-1)=p^{2}+p+1$ subspaces of dimension 1. The number of a vector space of dimension 2 is equal to the number of subspaces of dimension 1 because any subspace of dimension 2 is given by the solutions $(x, y, z)$ of an equation of the form $a x+b x+c y=0$ for a nonzero vector $(a, b, c) \in \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$. Thus $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ has $2\left(p^{2}+p+1\right)+2$ subgroups.
3. How many subgroups does $\mathbb{Z} / n \mathbb{Z}$ have?

Solution: Any subgroup of $\mathbb{Z} / n \mathbb{Z}$ is equal to $k \mathbb{Z} / n \mathbb{Z}$ for some unique $k$ dividing $n$. (Why?) Thus the number of subgroups of $\mathbb{Z} / n \mathbb{Z}$ is equal to the number of divisors of $n$. If $n=p_{1}{ }_{1}{ }_{1} \ldots$ $p_{r}{ }_{r}^{k}$ is the prime decomposition of $n$ then the number of divisors of $n$ is $\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)$.
4. Let $G$ be a finite $p$-group and $\Phi$ a $p$-group of automorphisms of $G$. Show that there is a nontrivial element $g \in G$ such that $\varphi(g)=g$ for all $\varphi \in \Phi$.

Proof: For $g \in G$, the orbit $\Phi g$ is in one-to-one correspondance with $\Phi / C_{\Phi}(g)$ where $C_{\Phi}(g)=\{\varphi \in \Phi: \varphi(g)=g\}$ via the map $\varphi g \mapsto[\varphi]$ as it can be checked easily. Thus $|\Phi g|$ is a power of $p$. Note that $\left|\Phi / C_{\Phi}(g)\right|=1$ iff $C_{\Phi}(g)=\Phi$ iff $\varphi(g)=g$ for all $\varphi \in \Phi$. Since $G$ is the disjoint union of orbits and since the orbit of the identity element 1 has only 1 element, there must be other orbits with 1 element. This proves that there is a nontrivial element $g \in G$ such that $\varphi(g)=g$ for all $\varphi \in \Phi$.
5. Show that a divisible group has no proper subgroups of finite index.

Proof: Let $G$ be a divisible group and $H$ a subgroup of finite index. If $[G: H]=n$, we know that $\cap_{g \in G} H^{g}$ is a normal subgroup of index dividing $n$ ! Replacing $H$ by this subgroup, we may assume that $H$ is normal in $G$. Let $n$ be the index. Then $g^{n} \in H$ for all $g \in G$. Since every $x \in G$ is an $n$th power, this shows that $G=H$.
6. Show that $\mathbb{Q}$ and $\mathbb{Q} \oplus \mathbb{Q}$ are not isomorphic.

Proof: $\mathbb{Q}$ has no proper nontrivial divisible subgroup
7. Let $G$ be an abelian group and $A \leq G$. Show that if $A$ and $G / A$ are divisible, then $G$ is divisible.
8. A group $G$ is said to be nilpotent if for any proper normal subgroup $H \triangleleft G, Z(G / H) \neq$ 1. Show that in a nilpotent group for any proper subgroup $H<G$, we have $H<N_{G}(H)$.
9. Let $P$ be a Sylow $p$-subgroup of $G$. Show that $P$ is characteristic in $\mathrm{N}_{G}(P)$ (i.e. $\varphi(P)=P$ for any automorphism $\varphi$ of $N_{G}(P)$.) Conclude that $\mathrm{N}_{G}\left(\mathrm{~N}_{G}(P)\right)=\mathrm{N}_{G}(P)$. Show that if $G$ is nilpotent, $\mathrm{N}_{G}(P)=G$, i.e. $P \triangleleft G$.
10. Let $t \in G$ be an involution, i.e. an element of order 2. Let $X=\{[t, g]: g \in G\}$. (Recall that $[t, g]=t^{-1} g^{-1} t g$.
a. Show that for $x \in X, x^{t}=x^{-1}$ and that $t \notin X$. Conclude that the elements of $t X$ are involutions.
b. Show that the map $\varphi: G / \mathrm{C}_{G}(t) \rightarrow X$ defined by $\varphi\left(g \mathrm{C}_{G}(t)\right)=\left[t, g^{-1}\right]$ is a well-defined bijection.
c. Assume from now on that $G$ is finite and that $\mathrm{C}_{G}(t)=\{1, t\}$. We will show that $X$ is an abelian subgroup without elements of order 2 and that $G=X \rtimes\{1, t\}$. Show that $|X|=|G| / 2$. Show that $X$ has no involutions. Show that $X \cap t X=\varnothing$. Show that $G=X \sqcup \mathrm{t} X$ and that $X$ is the set of elements of order $\neq 2$ of $G$. Show that $X$ is a characteristic subset of $G$. Let $x \in X \backslash$ $\{1\}$ be a fixed element. Show that $t^{x}$ inverts $X$ as well. Conclude that $1 \neq x^{2}=t t^{x}$ centralizes $X$. Show that $X=\mathrm{C}_{G}\left(x^{2}\right) \leq G$. Show that $X$ is an abelian group without involutions.
11. Let $G$ be a finite group with an involutive automorphism $\alpha$ (i.e. $\alpha^{2}=\mathrm{Id}$ ) without nontrivial fixed points (i.e. $\alpha(g)=g$ implies $g=1$ ). Show that $G$ is inverted by $\alpha$.

12a. Let $G$ be a group of prime exponent $p$. Show that for $g \in G^{*}$, no two distinct elements of $\langle\mathrm{g}\rangle$ can be conjugated in $G$.
b. Show that if $\exp (G)=p$, then $G$ has at least $p$ conjugacy classes.
c. (Reineke) Let $G$ be a group and assume that for some $x \in G$ of finite order, we have $G$ $=x^{G} \cup\{1\}$. Show that $|G|=1$ or 2 .
13. Let $G$ be an arbitrary torsion group without involutions. Show that $G$ is 2-divisible. Assume $G$ has an involutive automorphism $\alpha$ that does not fix any nontrivial elements of $G$. We will show that $G$ is abelian and is inverted by $\alpha$.
a. Show that for $a, b \in G$, if $a^{2}=b^{2}$ then $a=b$.

Let $g \in G$. Let $h \in G$ be such that $h^{2}=\alpha(g) g$.
b. Show that $\alpha(h)^{2}=\left(h^{-1}\right)^{2}$. Conclude that $\alpha(h)=h^{-1}$.
c. Show that $\alpha\left(g h^{-1}\right)=g h^{-1}$. Deduce that $g=h$. This proves the result.

