Group Theory Exam

January, 2007
Ali Nesin

1. Let A and B be cyclic groups of order n and m respectively. Assume $(n, m)=1$. Show that $A \oplus B$ is cyclic.
2. Find number of subgroups of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ (p is a prime).
3. How many subgroups does $\mathbb{Z} / n \mathbb{Z}$ have?
4. Let G be a finite p-group and Φ a p-group of automorphisms of G. Show that there is a nontrivial element $g \in G$ such that $\varphi(g)=g$ for all $\varphi \in \Phi$.
5. Show that a divisible group has no proper subgroups of finite index.
6. Show that \mathbb{Q} and $\mathbb{Q} \oplus \mathbb{Q}$ are not isomorphic.
7. Let G be an abelian group and $A \leq G$. Show that if A and G / A are divisible, then G is divisible.
8. A group G is said to be nilpotent if for any proper normal subgroup $H \triangleleft G, Z(G / H) \neq$ 1. Show that in a nilpotent group for any proper subgroup $H<G$, we have $H<N_{G}(H)$.
9. Let P be a Sylow p-subgroup of G. Show that P is characteristic in $\mathrm{N}_{G}(P)$ (i.e. $\varphi(P)=P$ for any automorphism φ of $N_{G}(P)$.) Conclude that $\mathrm{N}_{G}\left(\mathrm{~N}_{G}(P)\right)=\mathrm{N}_{G}(P)$. Show that if G is nilpotent, $\mathrm{N}_{G}(P)=G$, i.e. $P \triangleleft G$.
10. Let $t \in G$ be an involution, i.e. an element of order 2. Let $X=\{[t, g]: g \in G\}$. (Recall that $[t, g]=t^{-1} g^{-1} t g$.
a. Show that for $x \in X, x^{t}=x^{-1}$ and that $t \notin X$. Conclude that the elements of $t X$ are involutions.
b. Show that the map $\varphi: G / \mathrm{C}_{G}(t) \rightarrow X$ defined by $\varphi\left(g \mathrm{C}_{G}(t)\right)=\left[t, g^{-1}\right]$ is a well-defined bijection.
c. Assume from now on that G is finite and that $\mathrm{C}_{G}(t)=\{1, t\}$. We will show that X is an abelian subgroup without elements of order 2 and that $G=X \rtimes\{1, t\}$. Show that $|X|=|G| / 2$. Show that X has no involutions. Show that $X \cap t X=\varnothing$. Show that $G=X \sqcup \mathrm{t} X$ and that X is the set of elements of order $\neq 2$ of G. Show that X is a characteristic subset of G. Let $x \in X \backslash$ $\{1\}$ be a fixed element. Show that t^{x} inverts X as well. Conclude that $1 \neq x^{2}=t t^{x}$ centralizes X. Show that $X=\mathrm{C}_{G}\left(x^{2}\right) \leq G$. Show that X is an abelian group without involutions.
11. Let G be a finite group with an involutive automorphism α (i.e. $\alpha^{2}=\mathrm{Id}$) without nontrivial fixed points (i.e. $\alpha(g)=g$ implies $g=1$). Show that G is inverted by α.

12a. Let G be a group of prime exponent p. Show that for $g \in G^{*}$, no two distinct elements of $\langle\mathrm{g}\rangle$ can be conjugated in G.
b. Show that if $\exp (G)=p$, then G has at least p conjugacy classes.
c. (Reineke) Let G be a group and assume that for some $x \in G$ of finite order, we have G $=x^{G} \cup\{1\}$. Show that $|G|=1$ or 2 .
13. Let G be an arbitrary torsion group without involutions. Show that G is 2-divisible. Assume G has an involutive automorphism α that does not fix any nontrivial elements of G. We will show that G is abelian and is inverted by α.
a. Show that for $a, b \in G$, if $a^{2}=b^{2}$ then $a=b$.

Let $g \in G$. Let $h \in G$ be such that $h^{2}=\alpha(g) g$.
b. Show that $\alpha(h)^{2}=\left(h^{-1}\right)^{2}$. Conclude that $\alpha(h)=h^{-1}$.
c. Show that $\alpha\left(g h^{-1}\right)=g h^{-1}$. Deduce that $g=h$. This proves the result.

