Group Theory (Math 311) Final on Sylow Subgroups of Sym(n)

Fall 2005

Ali Nesin

January 19, 2005

Question. Study the structure of the Sylow p-subgroups of Sym(n).

Proposition 1 Let $n \in \mathbb{N}$ and p a prime. Let $k = \lfloor n/p \rfloor$. Then a Sylow p-subgroup of Sym(n) is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^k \rtimes P$ where P is a Sylow p-subgroup of Sym(k) and P acts on $(\mathbb{Z}/p\mathbb{Z})^k$ by permuting the components.

The generators of $(\mathbb{Z}/p\mathbb{Z})^k$ can be taken to be the cycles

$$\sigma_i = ((i-1)p+1,\ldots,ip)$$

for i = 1, ..., k. The element $\sigma_1 \sigma_2 ... \sigma_k$ is in the center of the Sylow p-subgroup. And the center of the Sylow p-subgroup is in $(\mathbb{Z}/p\mathbb{Z})^k$.

Proof: Let P be a Sylow p-subgroup of Sym(n). We first note that $|P| = p^{[n/p] + [n/p^2] + \dots}$.

If p does not divide n, then $P \leq \text{Sym}(n-1) \leq \text{Sym}(n)$. So we may assume that p divides n. Let n = kp. Now we have $|P| = p^{[n/p] + [n/p^2] + \dots} = p^{k+[k/p] + [k/p^2] \dots}$.

Since P has a nontrivial center, there is an element z of order p in Z(P). Conjugating if necessary, we may assume that

 $z = z_i = (1, 2, \dots, p)(p + 1, p + 2, \dots, 2p) \dots ((i - 1)p + 1, (i - 1)p + 2, \dots, ip)$

for some i = 1, ..., k. Thus $P \leq C_{\text{Sym}(n)}(z_i)$. Now we compute $|C_{\text{Sym}(n)}(z_i)|$ and choose i so that $p^{[n/p]+[n/p^2]+...}$ (which is equal to $p^{k+[k/p]+[k/p^2]...}$) divides $|C_{\text{Sym}(n)}(z_i)|$.

It is clear that

$$|z_i^{\text{Sym}(n)}| = \frac{\binom{n}{p}(p-1)!\binom{n-p}{p}(p-1)!\dots\binom{n-(i-1)p}{p}(p-1)!}{i!} = \frac{n!}{p^i i!}$$

Thus

$$|C_{\operatorname{Sym}(n)}(z_i)| = |\operatorname{Sym}(n)|/|z_i^{\operatorname{Sym}(n)}| = p^i i!$$

The maximal power of p that divides $p^i i!$ is $p^i p^{[i/p] + [i/p^2] + \dots} = p^{i + [i/p] + [i/p^2] + \dots}$. Thus if we take i = k, then $C_{\text{Sym}(n)}(z_i)$ will be large enough to contain P.

We now find $C_{\text{Sym}(n)}(z_k)$. Recall that it has $p^k k!$ elements. Let

$$\sigma_i = ((i-1)p+1, \dots, ip)$$

for $i = 1, \ldots, k$. Then

$$(\mathbb{Z}/p\mathbb{Z})^k \simeq \langle \sigma_1, \sigma_2, \dots \sigma_k \rangle = \langle \sigma_1 \rangle \oplus \langle \sigma_2 \rangle \oplus \dots \oplus \langle \sigma_k \rangle \le C_{\mathrm{Sym}(n)}(z_k).$$

Also the elements of $\operatorname{Sym}(n)$ that permute the cycles of σ_i are in $C_{\operatorname{Sym}(n)}(z_k)$. Consider the ones of the form $\{\sigma : \text{ for all } i = 1, \ldots, k, \sigma(ip) = jp \text{ for some } j \text{ and } \sigma(ip - \ell) = \sigma(ip) - \ell \text{ for all } \ell = 1, \ldots, p - 1\} \simeq \operatorname{Sym}(k)$. It is easy to see that $C_{\operatorname{Sym}(n)}(z_k) \simeq (\mathbb{Z}/p\mathbb{Z})^k \rtimes \operatorname{Sym}(k)$, where $\operatorname{Sym}(k)$ permutes the components. Thus P is isomorphic to a Sylow p-subgroup of $(\mathbb{Z}/p\mathbb{Z})^k \rtimes \operatorname{Sym}(k)$, which is $(\mathbb{Z}/p\mathbb{Z})^k \rtimes Q$ for some Sylow p-subgroup Q of $\operatorname{Sym}(k)$. The last statements are easy to prove. \Box

Corollary 2 If $p \neq 2$ then Sylow p-subgroup of Sym(n) are in Alt(n).

If p = 2, then with the notation of the theorem above, a Sylow 2-subgroup of Alt(n) is isomorphic to

$$\{(a_0,\ldots,a_{k-1}):\sum_{i=0}^{k-1}a_i \text{ is even}\}\rtimes P$$

where P is a Sylow 2-subgroup of Sym(k) and it acts on the normal part by permuting the components.

Corollary 3 Let G be a finite p-group. Then there is a finite p-subgroup P such that $G \leq P$ and $Z(P) \simeq \mathbb{Z}/p\mathbb{Z}$.