A regular binary tree \(\Gamma_n \) of height \(n \) is the finite graph on the set \(\{1, 2, \ldots, 2^n-1\} \) where two vertices \(a \) and \(b \) are connected if and only if \(2^n \) divides either \((a - 2b)\) or \((b - 2a)\) and \(b \neq a \). The purpose of this exercise is to obtain some information about the automorphism group of this tree.

1. Draw \(\Gamma_1, \Gamma_2, \Gamma_3 \) and \(\Gamma_4 \). (To visualize better this tree, start by putting \(2^n-1 \) to the bottom of the page and go upwards).

2. Show that the vertex \(2^n-1 \) (called the root) is the only vertex connected to exactly two vertices, namely to \(a := 2^{n-2} \) and \(b := 2^{n-2} + 2^{n-1} \). It follows that any automorphism of \(\Gamma_n \) fixes \(2^n-1 \) and hence either fixes or swaps \(a \) and \(b \).

3. Show that the odd numbers (called extremities) are the only vertices connected to only one vertex.

 It follows that any automorphism of \(\Gamma_n \) sends extremities to extremities.

4. Let \(H := \{ \gamma \in \text{Aut}(\Gamma_n) : \gamma(a) = a \} \) and \(H_1 := \text{Aut}(\Gamma_n) \setminus H \). Show that for any \(\alpha \in H_1 \), \(\alpha H = H_1 \).

5. Noting that \(\Gamma_n \setminus \{2^n-1\} \) is the union of two disjoint isomorphic copies of \(\Gamma_{n-1} \) (the ones above \(a \) and \(b \)), show that any \(H \simeq \text{Aut}(\Gamma_{n-1}) \times \text{Aut}(\Gamma_{n-1}) \).

6. Conclude that \(|\text{Aut}(\Gamma_n)| = 2 |\text{Aut}(\Gamma_{n-1})|^2 \).

7. Conclude that \(\text{Aut}(\Gamma_n) \) has \(2^{2n-1} \) elements.

8. Show that \(Z(\text{Aut}(\Gamma_n)) \) consists of two elements \(\text{Id} \) and the automorphism that swaps all extremities of distance 2.
9. Show that Γ_{n-1} is isomorphic to the subtree $\Gamma_n \setminus \{\text{odd numbers}\}$ via the map $x \mapsto x/2$. From now on we identify them.

10. Conclude that the map from $\text{Aut}(\Gamma_n)$ into $\text{Aut}(\Gamma_{n-1})$ that sends γ to the restriction of γ to the set of non-extremities of Γ_n ($\simeq \Gamma_{n-1}$) is a surjection. What is its kernel?