Math 211 Algebra – Basic Group Theory Fall 2002 Quiz I

Ali Nesin

November 9, 2002

A regular binary tree Γ_n of height n is the finite graph on the set $\{1, 2, \ldots, 2^{n-1}\}$ where two vertices a and b are connected if and only if 2^n divides either (a - 2b) or (b - 2a) and $b \neq a$. The purpose of this exercise is to obtain some information about the automorphism group of this tree.

- 1. Draw Γ_1 , Γ_2 , Γ_3 and Γ_4 . (To visualize better this tree, start by putting 2^{n-1} to the bottom of the page and go upwards).
- 2. Show that the vertex 2^{n-1} (called the **root**) is the only vertex connected to exactly two vertices, namely to $a := 2^{n-2}$ and $b := 2^{n-2} + 2^{n-1}$.

It follows that any automorphism of Γ_n fixes 2^{n-1} and hence either fixes or swaps a and b.

3. Show that the odd numbers (called **extremities**) are the only vertices connected to only one vertex.

It follows that any automorphism of Γ_n sends extremities to extremities.

- 4. Let $H := \{\gamma \in \operatorname{Aut}(\Gamma_n) : \gamma(a) = a\}$ and $H_1 := \operatorname{Aut}(\Gamma_n) \setminus H$. Show that for any $\alpha \in H_1$, $\alpha H = H_1$.
- 5. Noting that $\Gamma_n \setminus \{2^{n-1}\}$ is the union of two disjoint isomorphic copies of Γ_{n-1} (the ones above *a* and *b*), show that any $H \simeq \operatorname{Aut}(\Gamma_{n-1}) \times \operatorname{Aut}(\Gamma_{n-1})$.
- 6. Conclude that $|\operatorname{Aut}(\Gamma_n)| = 2|\operatorname{Aut}(\Gamma_{n-1})|^2$.
- 7. Conclude that $\operatorname{Aut}(\Gamma_n)$ has 2^{2^n-1} elements.
- 8. Show that $Z(\operatorname{Aut}(\Gamma_n))$ consists of two elements Id and the automorphism that swaps all extremities of distance 2.

- 9. Show that Γ_{n-1} is isomorphic to the subtree $\Gamma_n \setminus \{ \text{odd numbers} \}$ via the map $x \mapsto x/2$. From now on we identify them.
- 10. Conclude that the map from $\operatorname{Aut}(\Gamma_n)$ into $\operatorname{Aut}(\Gamma_{n-1})$ that sends γ to the restriction of γ to the set of non-extremities of $\Gamma_n (\simeq \Gamma_{n-1})$ is a surjection. What is its kernel?