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Throughout G stands for a group.

1. Let H, K ≤ G. Show that {HxK : x ∈ G} is a partition of G.

Proof: The relation x ≡ y defined by “HxK = HyK” is certainly re-
flexive and symmetric. Let us prove the transitivity. It is clear that
HxK = HyK if and only if x ∈ HyK. Thus if x ∈ HyK and y ∈ HzK,
then x ∈ HHzKK ⊆ HzK.

2. Let H ≤ G. Show that there is a natural one to one correspondence
between the left coset space of H in G and the right coset space of H in
G.

Proof: Consider the map xH 7→ Hx−1. This is well defined and one to
one because xH = yH if and only if y−1x ∈ H if and only if y−1 ∈ Hx−1

if and only if Hy−1 = Hx−1. It is also onto.

3. Let H,K ≤ G. Show that xH∩yK is either empty or of the form z(H∩K)
for some z ∈ G.

Proof: Assume xH ∩ yK 6= ∅. Let z ∈ xH ∩ yK. Then xH = zH and
yK = zK. So xH ∩ yK = zH ∩ zK = z(H ∩K).

4. a) Show that the intersection of two subgroups of finite index is finite.

Proof: Let H and K be two subgroups of index n and m of a group G.
Then for any x ∈ G, x(H∩K) = xH∩xK and there are at most n choices
for xH and m choices for xK. Hence [G : H ∩K] ≤ nm.

b) If [G : H] = n and [G : K] = m, what can you say about [G : H ∩K]?

Proof: If C ≤ B ≤ A and if the indices are finite then [A : C] = [A :
B][B : C] because cosets of C partition B and cosets of B partition A, i.e.
if B = tr

i=1biC and A = ts
j=1ajB, then A = tr

i=1 ts
j=1 biajC.
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Thus [G : K ∩ H] = [G : H][H : H ∩ K] = [G : K][K : H ∩ K]. It
follows that n and m both divide [G : K ∩ H], hence lcm(n,m) divides
[G : K ∩H]. Further in part (a) we have seen that [G : K ∩H] ≤ mn.

5. Let G be a group and H ≤ G a subgroup of index n. Let X = G/H be the
left coset space. For g ∈ G, define g̃ : G/H −→ G/H by g̃(xH) = gxH
for x ∈ G.

a) Show that g̃ ∈ Sym(X).

Proof: Nothing can be clearer.

b) Show that˜ : G −→ Sym(X) is a homomorphism of groups.

Proof: Nothing can be clearer.

c) Show that Ker(̃ ) is the largest normal subgroup of G contained in H.

Proof: Ker(̃ ) is certainly a normal subgroup of G. Also Ker(̃ ) = {g ∈
G : g̃ = Id} = {g ∈ G : gxH = xH for all x ∈ G} = {g ∈ G : x−1gx ∈
H for all x ∈ G} = {g ∈ G : g ∈ xHx−1 for all x ∈ G} = ∩x∈GHx. It is
now clear that Ker(̃ ) is the largest normal subgroup of G contained in H.

d) Show that [G : Ker(̃ )] divides n!.

Proof: By above G/ Ker(̃ ) embeds in Sym(G/H) ' Sym(n).

e) Conclude that there is an m ∈ N \ {0} such that for every g ∈ G,
gm ∈ H.

Proof: Take m = n!.

f) Conclude that a divisible group cannot have a proper subgroup of finite
index.

Proof: Let G be a divisible group and H ≤ G a subgroup of index n. Let
g ∈ G. Let h ∈ G be such that g = hn!. By the above, g = hn! ∈ H. So
G = H.

6. Let a ∈ G. Show that there is a one to one correspondence between the
left coset space G/CG(a) and the conjugacy class aG.

Proof: By question 2, we may assume that G/CG(a) stands for the right
coset space {CG(a)g : g ∈ G}. It is easy to check that the map CG(a)g 7→
ag is a well-defined bijection between G/CG(a) and aG.

7. a) Let X be any set. Show that in Sym(X) two elements are conjugate if
and only if they have the same cycle structures.

Proof: Suppose α and β have the same cycle structures. Write α and β
as the product of disjoint cycles one under another in such a way that the
cycles of the same length are one on top of another:

α = (. . . a1 a2 a3 . . .) . . .

β = (. . . b1 b2 b3 . . .) . . .
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Now let g ∈ Sym(X) send a’s to b’s in that order. Now gαg−1(bi) =
gα(ai) = g(ai+1) = bi+1, hence gαg−1 = β.

Conversely, suppose that gαg−1 = β. Suppose for example that (a1 . . . , an)
is a cycle of α. It follows easily that (g(a1) . . . , g(an)) is a cycle of β.

b) Show that the elements (01)(23)(45) . . . and (12)(34)(56) . . . of Sym(ω)
are not conjugate.

Proof: They do not have the same cycle structure. The first one has no
cycles of length 1, the second one has one cycle of length 1.

c) Can (01)(23)(45) . . . and (12)(34)(56) . . . of Sym(ω) be conjugate in a
larger group?

Answer: Yes! In Sym(Z)... Because in Sym(Z) they have the same cycle.

8. Compute |CSym(n)(g)| for g ∈ Sym(n) and n = 2, 3, 4, 5, 6.

Answer: We compute the sizes of conjugacy classes. This is enough by
part 6.

n 2 3 4 5 6
Idn 1 1 1 1 1
(12) 1 3 6 10 15
(123) 2 8 20 40
(12)(34) 3 15 45
(1234) 6 30 90
(12)(345) 20 120
(12345) 24 144
(12)(34)(56) 15
(12)(3456) 90
(123)(456) 40
(123456) 120
Total 2 6 24 120 720

9. Show that CSym(n)(12 . . . n) is cyclic of order n.

Proof: Clearly 〈(12 . . . n)〉 ≤ CSym(n)(12 . . . n). By parts 6 and 7, |CSym(n)(12 . . . n)| =
n!/(12 . . . n)G| = n!/(n−1)! = n. It follows that 〈(12 . . . n)〉 = CSym(n)(12 . . . n).

10. Let X be a set and g ∈ Sym(X). let Y = {x ∈ X : g(x) 6= x}. Show that
CSym(X)(g) ' CSym(Y )(g)× Sym(X \ Y ).

Proof: We view Sym(Y ) and Sym(X \ Y ) as subgroups of Sym(X) in
the obvious way.

We certainly have CSym(Y )(g), Sym(X\Y ) ≤ CSym(X)(g). Also CSym(Y )(g)∩
Sym(X \ Y ) = 1 and the elements of CSym(Y )(g) commute with the ele-
ments of Sym(X\Y ). Thus CSym(Y )(g)×Sym(X\Y ) = 〈CSym(Y )(g), Sym(X\
Y ) ≤ CSym(X)(g).

Conversely, let c ∈ CSym(X)(g). Then gc = cg. If x ∈ X \ Y , we get
g(x) = gc(x) = cg(x), so that c fixes g(x) and hence g sends X \ Y into
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X\Y . Similarly, if x ∈ Y , then g(x) 6= gc(x) = cg(x), so that g(x) ∈ Y and
hence g sends Y into Y . Now we can write g = ab where a ∈ Sym(X \ Y )
and b ∈ Sym(Y ). Now b = a−1g ∈ Sym(X \ Y )CSym(X)(g) ≤ CSym(X)(g).
It follows that b ∈ CSym(Y )(g). ¤

11. Let g = (01)(234)(5678)(9 10 11 12 13) . . .. What is the group structure of
CSym(ω)(g)?

Answer: By parts 9 and 10, CSym(ω)(g) ' ⊕∞n=2Z/nZ.

12. Let a = (123)(456)(789)(10 11 12) Show that CSym(12)(a) ' (Z/3Z)4o Sym(4).

Proof: We embed Sym(4) in Sym(12) via

Id3 7→ Id12

(12) 7→ (14)(25)(36)
(13) 7→ (17)(28)(39)
(23) 7→ (47)(58)(79)
(123) 7→ (147)(258)(369)
etc

In other words, we view Sym(4) as the permutations of the four cycles
(123), (456), (789), (10 11 12).

It is clear that the image of Sym(4) in Sym(12) is in CSym(12)(a).

Let g ∈ CSym(12)(a). Then g permutes the four cycles (123), (456), (789),
(10 11 12). Hence there is an h ∈ Sym(4) (or in its image) such that h−1g
preserves the four cycles. Hence h−1g is in the centralizer of these four
cycles, which is equal to 〈(123), (456), (789), (10 11 12)〉 and to

〈(123)〉 ⊕ 〈(456)〉 ⊕ 〈(789)〉 ⊕ 〈(10 11 12)〉,

hence isomorphic to (Z/3Z)3.

Thus CSym(12)(a) = (CSym(12)((123), (456), (789), (10 11 12))) Sym(4) '
(Z/3Z)3o Sym(4). ¤

13. Show that, except for n = 4, the centralizer of a transposition is the
smallest centralizer of involutions (≡ elements of order 2) in Sym(n).

Proof: An involution is a product of disjoint transpositions. For 2 ≤ 2i ≤
n, let ai = (12)(34) . . . (2i− 1, 2i). We want to show that |CSym(n)(ai)| ≥
|CSym(n)(a1)| for all i and all n 6= 4. By part 8, we may assume that n ≥ 5.
By part 6, it is enough to show that |aSym(n)

i | ≥ |aSym(n)
1 | for all i and all

n ≥ 5. By part 7,

|aSym(n)
i | =

(
n
2

)(
n− 2

2

)
. . .

(
n− 2i + 2

2

)
/i!

= n!
2i(n−2i)!i! .
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Hence we have to show that

n!
2i(n− 2i)!i!

≥ n!
2(n− 2)!

,

i.e. that
(n− 2)! ≥ 2i−1(n− 2i)!i!

for all n ≥ 5 and all i such that 2 ≤ 2i ≤ n. We proceed by induction on
n. We know that the inequality must hold for n = 5 (by part 8). Assume
for n. We have to show that

(n− 1)! ≥ 2i−1(n + 1− 2i)!i!

for all i such that 2 ≤ 2i ≤ n + 1. Then for all i such that 2 ≤ 2i ≤ n, we
have

(n− 1)! = (n− 1)(n− 2)! ≥ (n− 1)2i−1(n− 2i)!i!
≥ (n + 1− 2i)2i−1(n− 2i)!i! ≥ 2i−1(n + 1− 2i)!i!

It remains to prove the case 2i = n+1, or n = 2i−1, i.e. we have to show
that (2i− 2)! ≥ 2i−1i! for i ≥ 3. This is easy to show.

14. Find and prove a similar statement for Alt(n).

Proof: We will do this in class.
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