Group Theory (Math 311) First Midterm

Fall 2002
Ali Nesin
December 1, 2002

Throughout G stands for a group.

1. Let $H, K \leq G$. Show that $\{H x K: x \in G\}$ is a partition of G.

Proof: The relation $x \equiv y$ defined by " $H x K=H y K$ " is certainly reflexive and symmetric. Let us prove the transitivity. It is clear that $H x K=H y K$ if and only if $x \in H y K$. Thus if $x \in H y K$ and $y \in H z K$, then $x \in H H z K K \subseteq H z K$.
2. Let $H \leq G$. Show that there is a natural one to one correspondence between the left coset space of H in G and the right coset space of H in G.
Proof: Consider the map $x H \mapsto H x^{-1}$. This is well defined and one to one because $x H=y H$ if and only if $y^{-1} x \in H$ if and only if $y^{-1} \in H x^{-1}$ if and only if $H y^{-1}=H x^{-1}$. It is also onto.
3. Let $H, K \leq G$. Show that $x H \cap y K$ is either empty or of the form $z(H \cap K)$ for some $z \in G$.
Proof: Assume $x H \cap y K \neq \emptyset$. Let $z \in x H \cap y K$. Then $x H=z H$ and $y K=z K$. So $x H \cap y K=z H \cap z K=z(H \cap K)$.
4. a) Show that the intersection of two subgroups of finite index is finite.

Proof: Let H and K be two subgroups of index n and m of a group G. Then for any $x \in G, x(H \cap K)=x H \cap x K$ and there are at most n choices for $x H$ and m choices for $x K$. Hence $[G: H \cap K] \leq n m$.
b) If $[G: H]=n$ and $[G: K]=m$, what can you say about $[G: H \cap K]$?

Proof: If $C \leq B \leq A$ and if the indices are finite then $[A: C]=[A:$ $B][B: C]$ because cosets of C partition B and cosets of B partition A, i.e. if $B=\sqcup_{i=1}^{r} b_{i} C$ and $A=\sqcup_{j=1}^{s} a_{j} B$, then $A=\sqcup_{i=1}^{r} \sqcup_{j=1}^{s} b_{i} a_{j} C$.

Thus $[G: K \cap H]=[G: H][H: H \cap K]=[G: K][K: H \cap K]$. It follows that n and m both divide $[G: K \cap H]$, hence $\operatorname{lcm}(n, m)$ divides $[G: K \cap H]$. Further in part (a) we have seen that $[G: K \cap H] \leq m n$.
5. Let G be a group and $H \leq G$ a subgroup of index n. Let $X=G / H$ be the left coset space. For $g \in G$, define $\tilde{g}: G / H \longrightarrow G / H$ by $\tilde{g}(x H)=g x H$ for $x \in G$.
a) Show that $\tilde{g} \in \operatorname{Sym}(X)$.

Proof: Nothing can be clearer.
b) Show that ${ }^{\sim}: G \longrightarrow \operatorname{Sym}(X)$ is a homomorphism of groups.

Proof: Nothing can be clearer.
c) Show that $\operatorname{Ker}\left(^{\sim}\right)$ is the largest normal subgroup of G contained in H.

Proof: $\operatorname{Ker}\left({ }^{\sim}\right)$ is certainly a normal subgroup of G. Also $\operatorname{Ker}(\sim)=\{g \in$ $G: \tilde{g}=\mathrm{Id}\}=\{g \in G: g x H=x H$ for all $x \in G\}=\left\{g \in G: x^{-1} g x \in\right.$ H for all $x \in G\}=\left\{g \in G: g \in x H x^{-1}\right.$ for all $\left.x \in G\right\}=\cap_{x \in G} H^{x}$. It is now clear that $\operatorname{Ker}\left(^{\sim}\right)$ is the largest normal subgroup of G contained in H.
d) Show that $[G: \operatorname{Ker}(\sim)]$ divides $n!$.

Proof: By above $G / \operatorname{Ker}(\sim)$ embeds in $\operatorname{Sym}(G / H) \simeq \operatorname{Sym}(n)$.
e) Conclude that there is an $m \in \mathbb{N} \backslash\{0\}$ such that for every $g \in G$, $g^{m} \in H$.
Proof: Take $m=n$!.
f) Conclude that a divisible group cannot have a proper subgroup of finite index.
Proof: Let G be a divisible group and $H \leq G$ a subgroup of index n. Let $g \in G$. Let $h \in G$ be such that $g=h^{n!}$. By the above, $g=h^{n!} \in H$. So $G=H$.
6. Let $a \in G$. Show that there is a one to one correspondence between the left coset space $G / C_{G}(a)$ and the conjugacy class a^{G}.
Proof: By question 2, we may assume that $G / C_{G}(a)$ stands for the right coset space $\left\{C_{G}(a) g: g \in G\right\}$. It is easy to check that the map $C_{G}(a) g \mapsto$ a^{g} is a well-defined bijection between $G / C_{G}(a)$ and a^{G}.
7. a) Let X be any set. Show that in $\operatorname{Sym}(X)$ two elements are conjugate if and only if they have the same cycle structures.
Proof: Suppose α and β have the same cycle structures. Write α and β as the product of disjoint cycles one under another in such a way that the cycles of the same length are one on top of another:

$$
\begin{aligned}
\alpha & =\left(\ldots a_{1} a_{2} a_{3} \ldots\right) \ldots \\
\beta & =\left(\ldots b_{1} b_{2} b_{3} \ldots\right) \ldots
\end{aligned}
$$

Now let $g \in \operatorname{Sym}(X)$ send a 's to b 's in that order. Now $g \alpha g^{-1}\left(b_{i}\right)=$ $g \alpha\left(a_{i}\right)=g\left(a_{i+1}\right)=b_{i+1}$, hence $g \alpha g^{-1}=\beta$.
Conversely, suppose that $g \alpha g^{-1}=\beta$. Suppose for example that $\left(a_{1} \ldots, a_{n}\right)$ is a cycle of α. It follows easily that $\left(g\left(a_{1}\right) \ldots, g\left(a_{n}\right)\right)$ is a cycle of β.
b) Show that the elements $(01)(23)(45) \ldots$ and $(12)(34)(56) \ldots$ of $\operatorname{Sym}(\omega)$ are not conjugate.
Proof: They do not have the same cycle structure. The first one has no cycles of length 1 , the second one has one cycle of length 1.
c) Can $(01)(23)(45) \ldots$ and $(12)(34)(56) \ldots$ of $\operatorname{Sym}(\omega)$ be conjugate in a larger group?
Answer: Yes! In $\operatorname{Sym}(\mathbb{Z}) \ldots$ Because in $\operatorname{Sym}(\mathbb{Z})$ they have the same cycle.
8. Compute $\left|C_{\operatorname{Sym}(n)}(g)\right|$ for $g \in \operatorname{Sym}(n)$ and $n=2,3,4,5,6$.

Answer: We compute the sizes of conjugacy classes. This is enough by part 6.

n	2	3	4	5	6
Id_{n}	1	1	1	1	1
(12)	1	3	6	10	15
(123)		2	8	20	40
$(12)(34)$			3	15	45
(1234)			6	30	90
$(12)(345)$				20	120
(12345)				24	144
$(12)(34)(56)$					15
$(12)(3456)$					90
$(123)(456)$					40
(123456)					120
Total	2	6	24	120	720

9. Show that $C_{\operatorname{Sym}(n)}(12 \ldots n)$ is cyclic of order n.

Proof: Clearly $\langle(12 \ldots n)\rangle \leq C_{\operatorname{Sym}(n)}(12 \ldots n)$. By parts 6 and $7,\left|C_{\operatorname{Sym}(n)}(12 \ldots n)\right|=$ $n!/(12 \ldots n)^{G} \mid=n!/(n-1)!=n$. It follows that $\langle(12 \ldots n)\rangle=C_{\operatorname{Sym}(n)}(12 \ldots n)$.
10. Let X be a set and $g \in \operatorname{Sym}(X)$. let $Y=\{x \in X: g(x) \neq x\}$. Show that $C_{\operatorname{Sym}(X)}(g) \simeq C_{\operatorname{Sym}(Y)}(g) \times \operatorname{Sym}(X \backslash Y)$.
Proof: We view $\operatorname{Sym}(Y)$ and $\operatorname{Sym}(X \backslash Y)$ as subgroups of $\operatorname{Sym}(X)$ in the obvious way.
We certainly have $C_{\operatorname{Sym}(Y)}(g), \operatorname{Sym}(X \backslash Y) \leq C_{\operatorname{Sym}(X)}(g)$. Also $C_{\operatorname{Sym}(Y)}(g) \cap$ $\operatorname{Sym}(X \backslash Y)=1$ and the elements of $C_{\mathrm{Sym}(Y)}(g)$ commute with the elements of $\operatorname{Sym}(X \backslash Y)$. Thus $C_{\operatorname{Sym}(Y)}(g) \times \operatorname{Sym}(X \backslash Y)=\left\langle C_{\operatorname{Sym}(Y)}(g), \operatorname{Sym}(X \backslash\right.$ $Y) \leq C_{\operatorname{Sym}(X)}(g)$.
Conversely, let $c \in C_{\operatorname{Sym}(X)}(g)$. Then $g c=c g$. If $x \in X \backslash Y$, we get $g(x)=g c(x)=c g(x)$, so that c fixes $g(x)$ and hence g sends $X \backslash Y$ into
$X \backslash Y$. Similarly, if $x \in Y$, then $g(x) \neq g c(x)=c g(x)$, so that $g(x) \in Y$ and hence g sends Y into Y. Now we can write $g=a b$ where $a \in \operatorname{Sym}(X \backslash Y)$ and $b \in \operatorname{Sym}(Y)$. Now $b=a^{-1} g \in \operatorname{Sym}(X \backslash Y) C_{\operatorname{Sym}(X)}(g) \leq C_{\operatorname{Sym}(X)}(g)$. It follows that $b \in C_{\operatorname{Sym}(Y)}(g)$.
11. Let $g=(01)(234)(5678)(910111213) \ldots$. What is the group structure of $C_{\text {Sym }(\omega)}(g)$?
Answer: By parts 9 and $10, C_{\operatorname{Sym}(\omega)}(g) \simeq \oplus_{n=2}^{\infty} \mathbb{Z} / n \mathbb{Z}$.
12. Let $a=(123)(456)(789)(101112)$ Show that $C_{\operatorname{Sym}(12)}(a) \simeq(\mathbb{Z} / 3 \mathbb{Z})^{4} \rtimes \operatorname{Sym}(4)$.

Proof: We embed $\operatorname{Sym}(4)$ in $\operatorname{Sym}(12)$ via

$$
\begin{array}{lll}
\mathrm{Id}_{3} & \mapsto & \mathrm{Id}_{12} \\
(12) & \mapsto & (14)(25)(36) \\
(13) & \mapsto & (17)(28)(39) \\
(23) & \mapsto & (47)(58)(79) \\
(123) & \mapsto & (147)(258)(369) \\
\text { etc } & &
\end{array}
$$

In other words, we view $\operatorname{Sym}(4)$ as the permutations of the four cycles (123), (456), (789), (10 1112).

It is clear that the image of $\operatorname{Sym}(4)$ in $\operatorname{Sym}(12)$ is in $C_{\operatorname{Sym}(12)}(a)$.
Let $g \in C_{\operatorname{Sym}(12)}(a)$. Then g permutes the four cycles (123), (456), (789), (101112). Hence there is an $h \in \operatorname{Sym}(4)$ (or in its image) such that $h^{-1} g$ preserves the four cycles. Hence $h^{-1} g$ is in the centralizer of these four cycles, which is equal to $\langle(123),(456),(789),(101112)\rangle$ and to

$$
\langle(123)\rangle \oplus\langle(456)\rangle \oplus\langle(789)\rangle \oplus\langle(101112)\rangle
$$

hence isomorphic to $(\mathbb{Z} / 3 \mathbb{Z})^{3}$.
Thus $C_{\operatorname{Sym}(12)}(a)=\left(C_{\operatorname{Sym}(12)}((123),(456),(789),(101112))\right) \operatorname{Sym}(4) \simeq$ $(\mathbb{Z} / 3 \mathbb{Z})^{3} \rtimes \operatorname{Sym}(4)$.
13. Show that, except for $n=4$, the centralizer of a transposition is the smallest centralizer of involutions (\equiv elements of order 2) in $\operatorname{Sym}(n)$.
Proof: An involution is a product of disjoint transpositions. For $2 \leq 2 i \leq$ n, let $a_{i}=(12)(34) \ldots(2 i-1,2 i)$. We want to show that $\left|C_{\operatorname{Sym}(n)}\left(a_{i}\right)\right| \geq$ $\left|C_{\operatorname{Sym}(n)}\left(a_{1}\right)\right|$ for all i and all $n \neq 4$. By part 8 , we may assume that $n \geq 5$. By part 6 , it is enough to show that $\left|a_{i}^{\operatorname{Sym}(n)}\right| \geq\left|a_{1}^{\operatorname{Sym}(n)}\right|$ for all i and all $n \geq 5$. By part 7 ,

$$
\begin{aligned}
\left|a_{i}^{\operatorname{Sym}(n)}\right| & =\binom{n}{2}\binom{n-2}{2} \cdots\binom{n-2 i+2}{2} / i! \\
& =\frac{n!}{2^{i}(n-2 i)!i!} .
\end{aligned}
$$

Hence we have to show that

$$
\frac{n!}{2^{i}(n-2 i)!i!} \geq \frac{n!}{2(n-2)!},
$$

i.e. that

$$
(n-2)!\geq 2^{i-1}(n-2 i)!i!
$$

for all $n \geq 5$ and all i such that $2 \leq 2 i \leq n$. We proceed by induction on n. We know that the inequality must hold for $n=5$ (by part 8). Assume for n. We have to show that

$$
(n-1)!\geq 2^{i-1}(n+1-2 i)!i!
$$

for all i such that $2 \leq 2 i \leq n+1$. Then for all i such that $2 \leq 2 i \leq n$, we have

$$
\begin{aligned}
(n-1)! & =(n-1)(n-2)! \\
& \geq(n+1-2 i) 2^{i-1}(n-2 i)!i!
\end{aligned}
$$

It remains to prove the case $2 i=n+1$, or $n=2 i-1$, i.e. we have to show that $(2 i-2)!\geq 2^{i-1} i$! for $i \geq 3$. This is easy to show.
14. Find and prove a similar statement for $\operatorname{Alt}(n)$.

Proof: We will do this in class.

