Group Theory

Summer School, Exam 2 Gümüşlük, August 3, 2001 Ali Nesin

I. General.

1. Let $g \in G$ have order *n*. Let $d \mid n$ and q = n/d. Show that g^q has order *d* and g^d has order *q*.

2. Let *A* be an abelian group. Let $A[r] = \{a \in A : a^r = 1\}$. Show that $A[r] \le A$.

3. Let *A* be an abelian group. Let $A^r = \{a^r : a \in A\}$. Show that $A^r \leq A$.

4. Let *A* be an abelian group of exponent¹ nm where (n, m) = 1. Show that

- $A^n = A[m],$
- $A^m = A[n]$
- $A = A[n] \oplus A[m]$

5. Let *A* and *B* be cyclic groups of order *n* and *m* respectively. Assume (n, m) = 1. Show that $A \oplus B$ is cyclic.

6. Find all subgroups of $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ (*p* is a prime).

7. How many subgroups does $\mathbb{Z}/n\mathbb{Z}$ have?

8. Find a finite group *G* and an endomorphism φ of *G* such that $\varphi(Z(G)) \neq Z(G)$.

9. Let *G* be a finite *p*-group and Φ a *p*-group of automorphisms of *G*. Show that there is a nontrivial element $g \in G$ such that $\varphi(g) = g$ for all $\varphi \in \Phi$.

10. Are there simple nonabelian groups of order ≥ 61 and < 120?

II. Divisible Groups.

1. Show that a quotient of a divisible² group by a normal subgroup is divisible.

2. Show that a divisible group has no proper subgroups of finite index.

3. Show that $A \oplus B$ is divisible iff A and B are divisible.

4. Show that the group \mathbb{Q} has no proper, nontrivial divisible subgroups. Conclude that \mathbb{Q}

and $\mathbb{Q} \oplus \mathbb{Q}$ are not isomorphic. Generalize this to $\oplus_{i=1, \dots, n} \mathbb{Q}$.

5. Let *G* be an abelian group and $A \le G$. Show that if *A* and *G*/*A* are divisible, then *G* is divisible.

 6^* . Show that the statement above is false if *G* is nonabelian.

7. Show that an abelian group has a unique maximal divisible subgroup.

7^{*}. Let G be an abelian group and D a divisible subgroup of G. Show that every subgroup K of G disjoint from D can be extended to a complement of D. (**Hint:** Using Zorn's Lemma, find a subgroup H containing K, disjoint from D and maximal for these properties. The maximality of H insures that $G = D \oplus H$.)

8. Show that a (not necessarily abelian) torsion group that has no elements of order p where p is a prime is p-divisible³. Show that a group which is p-divisible for all primes p is divisible.

¹ A group *G* has exponent *n* if $g^n = 1$ for all $g \in G$ and if *n* is the least such integer > 0.

² A group *G* is said to be divisible if for all $g \in G$ and n > 0 there is an $h \in G$ such that $h^n = g$.

³ A group is said to be *p*-divisible if for all $g \in G$ there is an $h \in G$ such that $h^p = g$.