Group Theory

Summer School, Exam 2
Gümüşlük, August 3, 2001
Ali Nesin

I. General.

1. Let $g \in G$ have order n. Let $d \mid n$ and $q=n / d$. Show that g^{q} has order d and g^{d} has order q.
2. Let A be an abelian group. Let $A[r]=\left\{a \in A: a^{r}=1\right\}$. Show that $A[r] \leq A$.
3. Let A be an abelian group. Let $A^{r}=\left\{a^{r}: a \in A\right\}$. Show that $A^{r} \leq A$.
4. Let A be an abelian group of exponent ${ }^{1} n m$ where $(n, m)=1$. Show that

$$
\begin{aligned}
& A^{n}=A[m], \\
& A^{m}=A[n] \\
& A=A[n] \oplus A[m]
\end{aligned}
$$

5. Let A and B be cyclic groups of order n and m respectively. Assume $(n, m)=1$. Show that $A \oplus B$ is cyclic.
6. Find all subgroups of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ (p is a prime).
7. How many subgroups does $\mathbb{Z} / n \mathbb{Z}$ have?
8. Find a finite group G and an endomorphism φ of G such that $\varphi(Z(G)) \neq \mathrm{Z}(G)$.
9. Let G be a finite p-group and Φ a p-group of automorphisms of G. Show that there is a nontrivial element $g \in G$ such that $\varphi(g)=g$ for all $\varphi \in \Phi$.
10. Are there simple nonabelian groups of order ≥ 61 and <120 ?

II. Divisible Groups.

1. Show that a quotient of a divisible ${ }^{2}$ group by a normal subgroup is divisible.
2. Show that a divisible group has no proper subgroups of finite index.
3. Show that $A \oplus B$ is divisible iff A and B are divisible.
4. Show that the group \mathbb{Q} has no proper, nontrivial divisible subgroups. Conclude that \mathbb{Q} and $\mathbb{Q} \oplus \mathbb{Q}$ are not isomorphic. Generalize this to $\oplus_{i=1, \ldots, n} \mathbb{Q}$.
5. Let G be an abelian group and $A \leq G$. Show that if A and G / A are divisible, then G is divisible.
$\mathbf{6}^{*}$. Show that the statement above is false if G is nonabelian.
6. Show that an abelian group has a unique maximal divisible subgroup.
7^{*}. Let G be an abelian group and D a divisible subgroup of G. Show that every subgroup K of G disjoint from D can be extended to a complement of D. (Hint: Using Zorn's Lemma, find a subgroup H containing K, disjoint from D and maximal for these properties. The maximality of H insures that $G=D \oplus H$.)
7. Show that a (not necessarily abelian) torsion group that has no elements of order p where p is a prime is p-divisible ${ }^{3}$. Show that a group which is p-divisible for all primes p is divisible.
[^0]
[^0]: ${ }^{1}$ A group G has exponent n if $g^{n}=1$ for all $g \in G$ and if n is the least such integer >0.
 ${ }^{2}$ A group G is said to be divisible if for all $g \in G$ and $n>0$ there is an $h \in G$ such that $h^{n}=g$.
 ${ }^{3}$ A group is said to be p-divisible if for all $g \in G$ there is an $h \in G$ such that $h^{p}=g$.

