Algebra I (Math 221) Final

Fall 2002 Ali Nesin

February 5, 2003

Let G be a group.

1 Characteristic Subgroups

A subgroup H of G is called **characteristic** if for any automorphism ϕ of G, $\phi(H) \leq H$; in this case, one writes H char G.

- 1. Show that if H char G, then $\phi(H) = H$ for all $\phi \in Aut(G)$.
- 2. Show that if $H \operatorname{char} G$, then $\operatorname{Aut}(G)_H := \{ \phi \in \operatorname{Aut}(G) : \phi_{|H} = Id_H \} \triangleleft \operatorname{Aut}(G).$
- 3. Show that if $H \operatorname{char} G$ then $H \triangleleft G$.
- 4. Show that if $K \operatorname{char} H \lhd G$ then $K \lhd G$.
- 5. Let $X \subseteq G$, Suppose that $\phi(X) \subseteq X$ for all $\phi \in \operatorname{Aut}(G)$. Show that $\langle X \rangle \operatorname{char} G$.
- 6. Show that for any subset X of G there is a unique smallest characteristic subgroup of G that contains X.
- 7. Let p be a prime. Can a group of order p^3 have a characteristic subgroup of order p^2 ?
- 8. Let H char G. Show that there is a canonical group homomorphism from $\operatorname{Aut}(G)$ into $\operatorname{Aut}(G/H)$.

2 Derived Subgroups

For $x, y \in G$, let $[x, y] = x^{-1}y^{-1}xy$. For $X, Y \subseteq G$, let $[X, Y] : \langle [x, y] : x \in X, y \in Y \rangle$.

For $n \in \mathbb{N}$, define G^n and $G^{(n)}$ by induction on n as follows:

$$\begin{array}{l} G^0 = G^{(0)} = G \\ G' = G^1 = G^{(1)} = [G,G] \\ G^{n+1} = [G,G^n] \\ G^{(n+1)} = [G^{(n)},G^{(n)}] = (G^{(n)})' \end{array}$$

1. Let $X, Y \subseteq G$. Show that [X, Y] = [Y, X].

~

- 2. Let X, $Y \subseteq G$. Show that if $\phi(X) \subseteq X$ and $\phi(Y) \subseteq Y$ for all $\phi \in Aut(G)$, then [X, Y] char G.
- 3. Show that $G^{(n+1)} \leq G^{(n)}$.
- 4. Show that for all $n \in \mathbb{N}$, $G^n \operatorname{char} G$ and $G^{(n)} \operatorname{char} G$.
- 5. Show that $G^{n+1} \leq G^n$.
- 6. Show that $G^n/G^{n+1} \le Z(G/G^{n+1})$.
- 7. Show that G/G' is an abelian group.
- 8. Show that if $H \triangleleft G$ is such that G/H is abelian, then $G' \leq H$. Conclude that G' is the smallest normal subgroup of G such that G/G' is abelian.
- 9. Suppose $G' \leq H \leq G$. Show that $H \lhd G$ and that G/H is abelian.
- 10. Let $H \lhd G$. Show (carefully, in full details) that $(G/H)^n = G^n H/H$ and $(G/H)^{(n)} = G^{(n)} H/H$.