Group Theory

Summer School, Exam 2
Gümüşlük, August 3, 2001
Ali Nesin

1. Let G be a set together with an associative binary operation $(x, y) \mapsto x y$.

1a. Assume that for all $a, b \in G$ there are unique $x, y \in G$ such that $a x=y a=b$. Show that G is a group under this binary operation.

1b. Assume that for all $a, b \in G$ there is a unique $x \in G$ such that $a x=b$. Is G necessarily a group under this binary operation?
2. Let H and K be two subgroups of G. Show that for x and y in $G, x H \cap y K$ either is empty or a coset of $H \cap K$.
3. Let H and K be two subgroups of G. An $H-K$-coset of G is a subset of G of the form $H x K$ for some $x \in G$. Show that the $H-K$-cosets of G partition G.
4. Let A and B be two simple nonabelian groups ${ }^{1}$. Find all normal subgroups of $A \times B$.
5. Find a group G that has a proper subgroup isomorphic to itself.
6. Let G be a group generated by x_{1}, \ldots, x_{n} and let $m \in \mathbb{N}$. Show that the set

$$
G[m]=\left\{x_{i_{1}}^{r_{1}} \ldots x_{i_{k}}^{r_{k}}: k \in \mathrm{~N}, \sum_{j=1}^{k} r_{j} \equiv 0(\bmod m)\right\}
$$

is a normal subgroup of index at most m of G. Show that $G / G[m]$ is a cyclic group whose order divides m.
7. Classify all abelian groups which satisfy DCC on subgroups ${ }^{2}$.

8a. Let A and B be two groups. Assume B is abelian. Let $\operatorname{Hom}(A, B)$ be the set of group homomorphisms from A into B. For $f, g \in \operatorname{Hom}(A, B)$ define $f \cdot g$ by the rule

$$
(f \cdot g)(a)=f(a) g(a) \quad(a \in A)
$$

Show that the set of group endomorphisms $\operatorname{Hom}(A, B)$ from A into B form an abelian group under the addition of functions.

8b. Let n and m be two integers >0. Show that $\operatorname{Hom}(\mathbf{Z} / n \mathbf{Z}, \mathbf{Z} / m \mathbf{Z}) \approx m^{\prime} \mathbf{Z} / m \mathbf{Z} \approx \mathbf{Z} / d \mathbf{Z}$ where $m^{\prime}=m / d$ and $d=\operatorname{gcd}(m, n)$.
9. Find $\mathrm{C}_{\mathrm{Sym}(n)}(12)$.
10. Let H and K be two subgroups of finite index of G. Show that $H \cap K$ has also finite index in G. Show that H has finitely many conjugates in G. Conclude that if a group has a subgroup of finite index, then it has a normal subgroup of finite index.

[^0]11. Show that \mathbb{Q}^{+}and \mathbb{Q}^{*} are not finitely generated.
12. Let P be a Sylow p-subgroup of G. Show that P is characteristic in $\mathrm{N}_{G}(P)$. Conclude that $\mathrm{N}_{G}\left(\mathrm{~N}_{G}(P)\right)=\mathrm{N}_{G}(P)$. Show that if G is nilpotent, $\mathrm{N}_{G}(P)=G$, i.e. $P \triangleleft G$.
13. Let $t \in G$ be an involution ${ }^{3}$. Let $X=\{[t, g]: g \in G\}$
a. Show that for $x \in X, x^{t}=x^{-1}$ and that $t \notin X$. Conclude that the elements of $t X$ are involutions.
b. Show that the map $\varphi: G / \mathrm{C}_{G}(t) \rightarrow X$ defined by $\varphi\left(g \mathrm{C}_{G}(t)\right)=\left[t, g^{-1}\right]$ is a well-defined bijection.
c. Assume from now on that G is finite and that $\mathrm{C}_{G}(t)=\{1, t\}$. We will show that X is an abelian 2^{\prime}-subgroup ${ }^{4}$ and $G=X \rtimes\{1, t\}$. By part $\mathrm{b},|X|=|G| / 2$. By part a and by assumption, X has no involutions. Therefore $X \cap t X=\varnothing$. Conclude that $G=X \sqcup \mathrm{t} X$ and that X is the set of elements of order $\neq 2$ of G. Therefore, X is a characteristic subset of G. Let $x \in X \backslash\{1\}$ be a fixed element. Conclude that t^{x} inverts X as well (replace t by t^{x}). Conclude that $1 \neq x^{2}=t t^{x}$ centralizes X. Therefore $X=\mathrm{C}_{G}\left(x^{2}\right) \leq G$. Since t inverts X, X is an abelian group without involutions.
14. Let G be a finite group with an involutive automorphism ${ }^{5} \alpha$ without nontrivial fixed points. Show that G is inverted by α.

15a. Let G be a group of prime exponent p. Show that for $g \in G^{*}$, no two distinct elements of $\langle\mathrm{g}\rangle$ can be conjugated in G.
b. Show that if $\exp (G)=p$, then G has at least p conjugacy classes.
c. (Reineke) Let G be a group and assume that for some $x \in G$ of finite order, we have G $=x^{G} \cup\{1\}$. Show that $|G|=1$ or 2 .
16. Let G be an arbitrary torsion group without involutions. Show that G is 2-divisible. Assume G has an involutive automorphism α that does not fix any nontrivial elements of G. We will show that G is abelian and is inverted by α.
a. Show that for $a, b \in G$, if $a^{2}=b^{2}$ then $a=b$.

Let $g \in G$. Let $h \in G$ be such that $h^{2}=g^{\alpha} g$.
b. Show that $\left(h^{\alpha}\right)^{2}=\left(h^{-1}\right)^{2}$. Conclude that $h^{\alpha}=h^{-1}$.
c. Show that $\left(g h^{-1}\right)^{\alpha}=g h^{-1}$. Deduce that $g=h$. This proves the result.

[^1]
[^0]: ${ }^{1}$ A group G is called simple if 1 and G are the only normal subgroups of G.
 ${ }^{2}$ A group is said to satisfy descending chain condition (DCC) on subgroups, if there is no infinite descending chain of distinct subgroups.

[^1]: ${ }^{3}$ An involution of a group is an element of order 2.
 ${ }^{4}$ I.e. has no elements of order 2.
 ${ }^{5} \alpha \in \operatorname{Aut}(G)$ is an involutive automorphism if $\mathrm{o}(\alpha)=2$.

