Group Theory

Summer School, Exam 2 Gümüşlük, August 3, 2001 Ali Nesin

1. Let *G* be a set together with an associative binary operation $(x, y) \mapsto xy$.

1a. Assume that for all $a, b \in G$ there are unique $x, y \in G$ such that ax = ya = b. Show that *G* is a group under this binary operation.

1b. Assume that for all $a, b \in G$ there is a unique $x \in G$ such that ax = b. Is G necessarily a group under this binary operation?

2. Let *H* and *K* be two subgroups of *G*. Show that for *x* and *y* in *G*, $xH \cap yK$ either is empty or a coset of $H \cap K$.

3. Let *H* and *K* be two subgroups of *G*. An *H*–*K*-coset of *G* is a subset of *G* of the form HxK for some $x \in G$. Show that the *H*–*K*-cosets of *G* partition *G*.

4. Let A and B be two simple nonabelian groups¹. Find all normal subgroups of $A \times B$.

5. Find a group G that has a proper subgroup isomorphic to itself.

6. Let *G* be a group generated by $x_1, ..., x_n$ and let $m \in \mathbb{N}$. Show that the set

$$G[m] = \left\{ x_{i_1}^{r_1} \dots x_{i_k}^{r_k} : k \in \mathbb{N}, \ \sum_{j=1}^k r_j \equiv 0 \, (\text{mod } m) \right\}$$

is a normal subgroup of index at most m of G. Show that G/G[m] is a cyclic group whose order divides m.

7. Classify all abelian groups which satisfy DCC on subgroups².

8a. Let *A* and *B* be two groups. Assume *B* is abelian. Let Hom(*A*, *B*) be the set of group homomorphisms from *A* into *B*. For $f, g \in \text{Hom}(A, B)$ define $f \cdot g$ by the rule

$$f \cdot g(a) = f(a)g(a)$$
 $(a \in A).$

Show that the set of group endomorphisms Hom(A, B) from A into B form an abelian group under the addition of functions.

8b. Let *n* and *m* be two integers > 0. Show that Hom $(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \approx m'\mathbb{Z}/m\mathbb{Z} \approx \mathbb{Z}/d\mathbb{Z}$ where m' = m/d and $d = \gcd(m, n)$.

9. Find $C_{Sym(n)}(1 \ 2)$.

10. Let *H* and *K* be two subgroups of finite index of *G*. Show that $H \cap K$ has also finite index in *G*. Show that *H* has finitely many conjugates in *G*. Conclude that if a group has a subgroup of finite index, then it has a normal subgroup of finite index.

¹ A group G is called simple if 1 and G are the only normal subgroups of G.

 $^{^{2}}$ A group is said to satisfy descending chain condition (DCC) on subgroups, if there is no infinite descending chain of distinct subgroups.

11. Show that \mathbb{Q}^+ and \mathbb{Q}^* are not finitely generated.

12. Let *P* be a Sylow *p*-subgroup of *G*. Show that *P* is characteristic in $N_G(P)$. Conclude that $N_G(N_G(P)) = N_G(P)$. Show that if *G* is nilpotent, $N_G(P) = G$, i.e. $P \triangleleft G$.

13. Let $t \in G$ be an involution³. Let $X = \{[t, g]: g \in G\}$

a. Show that for $x \in X$, $x^t = x^{-1}$ and that $t \notin X$. Conclude that the elements of tX are involutions.

b. Show that the map $\varphi : G/C_G(t) \to X$ defined by $\varphi(gC_G(t)) = [t, g^{-1}]$ is a well-defined bijection.

c. Assume from now on that *G* is finite and that $C_G(t) = \{1, t\}$. We will show that *X* is an abelian 2'-subgroup⁴ and $G = X \rtimes \{1, t\}$. By part b, |X| = |G|/2. By part a and by assumption, *X* has no involutions. Therefore $X \cap tX = \emptyset$. Conclude that $G = X \sqcup tX$ and that *X* is the set of elements of order $\neq 2$ of *G*. Therefore, *X* is a characteristic subset of *G*. Let $x \in X \setminus \{1\}$ be a fixed element. Conclude that t^x inverts *X* as well (replace *t* by t^x). Conclude that $1 \neq x^2 = tt^x$ centralizes *X*. Therefore $X = C_G(x^2) \leq G$. Since *t* inverts *X*, *X* is an abelian group without involutions.

14. Let G be a finite group with an involutive automorphism⁵ α without nontrivial fixed points. Show that G is inverted by α .

15a. Let G be a group of prime exponent p. Show that for $g \in G^*$, no two distinct elements of $\langle g \rangle$ can be conjugated in G.

b. Show that if exp(G) = p, then G has at least p conjugacy classes.

c. (Reineke) Let *G* be a group and assume that for some $x \in G$ of finite order, we have $G = x^G \cup \{1\}$. Show that |G| = 1 or 2.

16. Let *G* be an arbitrary torsion group without involutions. Show that *G* is 2-divisible. Assume *G* has an involutive automorphism α that does not fix any nontrivial elements of *G*. We will show that *G* is abelian and is inverted by α .

a. Show that for $a, b \in G$, if $a^2 = b^2$ then a = b.

Let $g \in G$. Let $h \in G$ be such that $h^2 = g^{\alpha}g$.

b. Show that $(h^{\alpha})^2 = (h^{-1})^2$. Conclude that $h^{\alpha} = h^{-1}$.

c. Show that $(gh^{-1})^{\alpha} = gh^{-1}$. Deduce that g = h. This proves the result.

³ An involution of a group is an element of order 2.

⁴ I.e. has no elements of order 2.

⁵ $\alpha \in Aut(G)$ is an involutive automorphism if $o(\alpha) = 2$.