Throughout, G is a group.

I. Basics.
1. Let $H, K \leq G$. Assume that for all $k \in K$, $kHk^{-1} \subseteq H$. Show that $kHk^{-1} \subseteq H$, i.e. that $K \leq N_G(H)$.
2. Show that a group of prime order is abelian.
3. Show that an abelian group is simple\(^1\) iff it has prime order.
4. Classify all groups without nontrivial proper subgroups.
5. Let $g \in G$, $H \leq G$ and n and m two integers prime to each other.
 5a. Assume that $g^m, g^n \in H$. Show that $g \in H$.
 5b. Assume that $g^m = g^n = 1$. Show that $g = 1$.
6. If $|G|$ is finite and divisible by n, is it true that G necessarily has an element of order n?
7. Let G be a group
 7a. Show that if $A \subseteq B \subseteq G$, then $C_G(B) \leq C_G(A)$.
 7b. Show that for any $A \subseteq G$, $A \subseteq C_G(C_G(A))$.
 7c. Show that for any $A \subseteq G$, $C_G(A) = C_G(C_G(C_G(A)))$.
8. Let H, K be normal subgroups of G. Show that if $H \cap K = 1$ then $hk = kh$ for all $h \in H$ and $k \in K$.
9. Let $H \triangleleft G$, $\overline{G} = G/H$ and $x \in G$. We know that $C_{\overline{G}}(x) = C/H$ for some unique subgroup C containing H. Define C in terms of x and H.
10. Let $H \leq G$. Let G/H denote the left coset space. For $g \in G$ and $xH \in G/H$, let $g^*(xH) = gxH$.
 10a. Show that $g^* \in \text{Sym}(G/H)$.
 10b. Show that the map $g \to g^*$ is a homomorphism from G into $\text{Sym}(G/H)$.
 10c. What is the kernel of the homomorphism *?
 10d. Assuming that $[G : H] = n < \infty$, show that $[G : \cap_{g \in G} g^{-1}Hg]$ divides $n!$.

II. Small Groups.
11. Show that a group of order 20 has a normal subgroup of order 5.
12. Show that groups of order 28 or 40 are not simple.
13. Let p and q be two distinct primes and G have order pq^n for some $n \geq 0$. Assume that $q > p$. Show that G has a normal subgroup A such that G/A is abelian.
14. Let p be a prime, m a natural number such that $(m, p) = 1$ and $m < p$. Let G have order pm. Show that G has a normal subgroup of order p.
15. Assume $G/Z(G)$ is cyclic. Show that G is abelian.
16. Let p be a prime and G have order p^n for some n.
 16a. Show that for any $g \in G$, $[g^i] = p^i$ for some $i = 0, 1, ..., n - 1$.
 16b. Conclude that $Z(G) \neq 1$.
 16c. Conclude that a group of order p^2 is necessarily abelian.

\(^1\) A group with no proper, nontrivial normal subgroups is called simple.
16d. Conclude that for any \(i = 0, \ldots, n-1 \), \(G \) has a normal subgroup of order \(p^i \).

17. Assuming all the above, except may be for \(n = 24, 36, 48 \) and \(56 \), a simple group of order \(n < 60 \) must be abelian.

18. Show that there are no simple groups of order 24, 36, 48 or 56.

III. Nilpotent Groups.

19. Let \(Z_0(G) = 1 \) and define
\[
Z_{i+1}(G) = \{ z \in G : g^{-1}z^{-1}gz \in Z_i(G) \text{ all } g \in G \}
\]
inductively. Show that \(Z_i(G) \) is a characteristic subgroup of \(G \) for all \(i \). Conclude that \(Z_i(G) \triangleleft G \). Show that \(Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G)) \). Show that if \(G \) is a finite \(p \)-group then \(Z_k(G) = G \) for some \(k \). Such a group is called nilpotent.

20. Assume \(G \) is nilpotent and let \(1 \neq H \triangleleft G \). Show that \(H \cap Z(G) \neq 1 \).

21. Assume \(G \) is nilpotent and let \(H < G \). Show that \(H \triangleleft N_G(H) \).