Group Theory

Summer School, Gümüşlük, Exam 1
August 2, 2001
Ali Nesin
Throughout, G is a group.

I. Basics.

1. Let $H, K \leq G$. Assume that for all $k \in K, k H k^{-1} \subseteq H$. Show that $k H k^{-1} \subseteq H$, i.e. that K $\leq \mathrm{N}_{G}(H)$.
2. Show that a group of prime order is abelian.
3. Show that an abelian group is simple ${ }^{1}$ iff it has prime order.
4. Classify all groups without nontrivial proper subgroups.
5. Let $g \in G, H \leq G$ and n and m two integers prime to each other.

5a. Assume that $g^{m}, g^{n} \in H$. Show that $g \in H$.
5 b . Assume that $g^{m}=g^{n}=1$. Show that $g=1$.
6. If $|G|$ is finite and divisible by n, is it true that G necessarily has an element of order n ?
7. Let G be a group

7a. Show that if $A \subseteq B \subseteq G$, then $\mathrm{C}_{G}(B) \leq \mathrm{C}_{G}(A)$.
7 b Show that for any $A \subseteq G, A \subseteq \mathrm{C}_{G}\left(\mathrm{C}_{G}(A)\right)$.
7c. Show that for any $A \subseteq G, \mathrm{C}_{G}(A)=\mathrm{C}_{G}\left(\mathrm{C}_{G}\left(\mathrm{C}_{G}(A)\right)\right)$.
8. Let H, K be normal subgroups of G. Show that if $H \cap K=1$ then $h k=k h$ for all $h \in H$ and $k \in K$.
9. Let $H \triangleleft G, \bar{G}=G / H$ and $x \in G$. We know that $C_{\bar{G}}(\bar{x})=C / H$ for some unique subgroup C containing H. Define C in terms of x and H.
10. Let $H \leq G$. Let G / H denote the left coset space. For $g \in G$ and $x H \in G / H$, let

$$
g^{*}(x H)=g x H .
$$

10a. Show that $g^{*} \in \operatorname{Sym}(G / H)$.
10b. Show that the map $g \rightarrow g^{*}$ is a homomorphism from G into $\operatorname{Sym}(G / H)$.
10 c . What is the kernel of the homomorphism *?
10d. Assuming that $[G: H]=n<\infty$, show that $\left[G: \cap_{g \in G} g^{-1} H g\right]$ divides $n!$.

II. Small Groups.

11. Show that a group of order 20 has a normal subgroup of order 5.
12. Show that groups of order 28 or 40 are not simple.
13. Let p and q be two distinct primes and G have order $p q^{n}$ for some $n \geq 0$. Assume that q $>p$. Show that G has a normal subgroup A such that G / A is abelian.
14. Let p be a prime, m a natural number such that $(m, p)=1$ and $m<p$. Let G have order $p m$. Show that G has a normal subgroup of order p.
15. Assume $G / Z(G)$ is cyclic. Show that G is abelian.
16. Let p be a prime and G have order p^{n} for some n.

16a. Show that for any $g \in G,\left|g^{G}\right|=p^{i}$ for some $i=0,1, \ldots, n-1$.
16b. Conclude that $Z(G) \neq 1$.
16 c . Conclude that a group of order p^{2} is necessarily abelian.

[^0]$$
16 \mathrm{~d} \text {. Conclude that for any } i=0, \ldots, n-1, G \text { has a normal subgroup of order } p^{i} \text {. }
$$
17. Assuming all the above, except may be for $n=24,36,48$ and 56 , a simple group of order $n<60$ must be abelian.
18. Show that there are no simple groups of order $24,36,48$ or 56.

III. Nilpotent Groups.

19. Let $\mathrm{Z}_{0}(G)=1$ and define

$$
\mathrm{Z}_{i+1}(G)=\left\{\mathrm{z} \in G: g^{-1} z^{-1} g z \in Z_{i}(G) \text { all } g \in G\right\}
$$

inductively. Show that $\mathrm{Z}_{i}(G)$ is a characteristic subgroup of G for all i. Conclude that $\mathrm{Z}_{i}(G) \triangleleft G$. Show that $\mathrm{Z}_{i+1}(G) / Z_{i}(G)=Z\left(G / Z_{i}(G)\right)$. Show that if G is a finite p-group then $Z_{k}(G)=G$ for some k. Such a group is called nilpotent.
20. Assume G is nilpotent and let $1 \neq H \triangleleft G$. Show that $H \cap \mathrm{Z}(G) \neq 1$.
21. Assume G is nilpotent and let $H<G$. Show that $H<\mathrm{N}_{G}(H)$.

[^0]: ${ }^{1}$ A group with no proper, nontrivial normal subgroups is called simple.

