Group Theory Summer School, Gümüşlük, Exam 1 August 2, 2001 Ali Nesin

Throughout, *G* is a group.

I. Basics.

- 1. Let $H, K \leq G$. Assume that for all $k \in K$, $kHk^{-1} \subseteq H$. Show that $kHk^{-1} \subseteq H$, i.e. that K $\leq N_G(H).$
- 2. Show that a group of prime order is abelian.
- 3. Show that an abelian group is simple¹ iff it has prime order.
- 4. Classify all groups without nontrivial proper subgroups.
- 5. Let $g \in G$, $H \leq G$ and *n* and *m* two integers prime to each other. 5a. Assume that g^m , $g^n \in H$. Show that $g \in H$. 5b. Assume that $g^m = g^n = 1$. Show that g = 1.
- 6. If |G| is finite and divisible by *n*, is it true that G necessarily has an element of order *n*?
- 7. Let *G* be a group 7a. Show that if $A \subseteq B \subseteq G$, then $C_G(B) \leq C_G(A)$. 7b Show that for any $A \subseteq G$, $A \subseteq C_G(C_G(A))$. 7c. Show that for any $A \subseteq G$, $C_G(A) = C_G(C_G(C_G(A)))$.
- 8. Let H, K be normal subgroups of G. Show that if $H \cap K = 1$ then hk = kh for all $h \in H$ and $k \in K$.
- 9. Let $H \triangleleft G$, $\overline{G} = G/H$ and $x \in G$. We know that $C_{\overline{G}}(\overline{x}) = C/H$ for some unique subgroup C containing H. Define C in terms of x and H.
- 10. Let $H \leq G$. Let G/H denote the left coset space. For $g \in G$ and $xH \in G/H$, let

 $g^*(xH) = gxH.$

- 10a. Show that $g^* \in \text{Sym}(G/H)$.
- 10b. Show that the map $g \to g^*$ is a homomorphism from G into Sym(G/H).
- 10c. What is the kernel of the homomorphism *?

10d. Assuming that $[G:H] = n < \infty$, show that $[G: \bigcap_{g \in G} g^{-1}Hg]$ divides n!.

II. Small Groups.

- 11. Show that a group of order 20 has a normal subgroup of order 5.
- 12. Show that groups of order 28 or 40 are not simple.
- 13. Let p and q be two distinct primes and G have order pq^n for some $n \ge 0$. Assume that q > p. Show that G has a normal subgroup A such that G/A is abelian.
- 14. Let p be a prime, m a natural number such that (m, p) = 1 and m < p. Let G have order *pm*. Show that *G* has a normal subgroup of order *p*.
- 15. Assume G/Z(G) is cyclic. Show that G is abelian.
- 16. Let *p* be a prime and *G* have order p^n for some *n*.

16a. Show that for any $g \in G$, $|g^G| = p^i$ for some i = 0, 1, ..., n - 1. 16b. Conclude that $Z(G) \neq 1$.

- 16c. Conclude that a group of order p^2 is necessarily abelian.

¹ A group with no proper, nontrivial normal subgroups is called simple.

16d. Conclude that for any i = 0, ..., n-1, G has a normal subgroup of order p^{i} .

- 17. Assuming all the above, except may be for n = 24, 36, 48 and 56, a simple group of order n < 60 must be abelian.
- 18. Show that there are no simple groups of order 24, 36, 48 or 56.

III. Nilpotent Groups.

19. Let $Z_0(G) = 1$ and define

 $Z_{i+1}(G) = \{ z \in G : g^{-1}z^{-1}gz \in Z_i(G) \text{ all } g \in G \}$

inductively. Show that $Z_i(G)$ is a characteristic subgroup of *G* for all *i*. Conclude that $Z_i(G) \triangleleft G$. Show that $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$. Show that if *G* is a finite *p*-group then

 $Z_k(G) = G$ for some k. Such a group is called nilpotent.

20. Assume *G* is nilpotent and let $1 \neq H \triangleleft G$. Show that $H \cap Z(G) \neq 1$.

21. Assume *G* is nilpotent and let H < G. Show that $H < N_G(H)$.