Group Theory

(Exercises on Commutators)

Ali Nesin

3 Kasım 1999

G always stands for a group.

1. Show that "to be a characteristic subgroup" is a transitive relation. Conclude that Z(G') is a characteristic subgroup of G.

2. Let $A \triangleleft G$. Find a condition so that $G/C_G(A)$ is an abelian group. Conclude that $G/C_G(Z(G'))$ is an abelian group.

3. Show that a minimal normal subgroup of a solvable group (in case it exists) is abelian.

4. Let *G* be a centerless group. Let *A* be a minimal normal subgroup of *G* contained in Z(G'). Show that for every $g \in G \setminus C_G(A)$, the set

 $ad(g)(A) = \{[g, a] : a \in A\}$

is either A or $\{1\}$.

5. Show that if *H* is an abelian group, then $Hom(G, H) \approx Hom(G/G', H)$.

6. Let A and B be two subgroups of G. Show that if [[A, B], B] = 1, then [A, B] is abelian.

7. Show that if G = G'H and $H \cap G' = 1$, then [G, G'] = G'.

8. Show that if G is generated by a subset S, then G' is the smallest normal subgroup containing $\{[s, t] : s, t \in S\}$.