Algebra (Math 222) March 2nd, 2000

March 2nd, 2000 Classwork on general linear groups Ali Nesin

Let *K* be a field. Define the **general linear group** over *K* as

 $GL_n(K) = \{A \in M_{n \times n} : A \text{ is invertible}\} = \{A \in M_{n \times n}(K) : \det(A) \in K^*\}.$

1. Show that $GL_n(K)$ is a group.

2. Show that there is a one-to-one correspondance between $GL_n(K)$ and the set of basis of the vector space K^n .

3. Show that $|GL_n(\mathbf{F}_q)| = (q^n - 1)(q^n - q) \dots (q^n - q^{n-1}).$

4. Show that $Z(GL_n(K)) = {\lambda Id : \lambda \in K^*} \approx K^*$.

Define the **projective general linear group** $PGL_n(K)$ over K as $GL_n(K)/Z(GL_n(K))$.

5. Show that $|\operatorname{PGL}_n(\mathbf{F}_q)| = (q^n - 1)(q^n - q) \dots (q^n - q^{n-1})/(q - 1).$

Consider the group homomorphism det: $GL_n(K) \to K^*$. Note that the kernel of det is $\{A \in M_{n \times n} : det(A) = 1\}$. We denote this by $SL_n(K)$ and call it the **special linear group** over *K*.

6. Show that det is onto.

7. Show that $SL_n(K)$ is a normal subgroup of $GL_n(K)$.

8. Show that $GL_n(K)/SL_n(K) \approx K^*$.

9. Show that

$$|SL_n(\mathbf{F}_q)| = |PGL_n(\mathbf{F}_q)| = (q^n - 1)(q^n - q) \dots (q^n - q^{n-1})/(q - 1).$$

10. Show that $Z(SL_n(K)) = Z(GL_n(K)) \cap SL_n(K) = \{\lambda Id : \lambda^n = 1\}.$

Define the **projective special linear group** $PSL_n(K)$ over K as $SL_n(K)/Z(SL_n(K))$.

11. For a prime *p* find $|SL_p(\mathbf{F}_q)|$. What can you say about $|SL_n(\mathbf{F}_q)|$ for a general *n*?

12. Consider the composition α of the canonical homomorphisms

 $SL_n(K) \rightarrow GL_n(K) \rightarrow PGL_n(K)$

Show that $\text{Ker}(\alpha) = Z(SL_n(K))$.

13. Conclude that there is a canonical injection from $PSL_n(K)$ into $PGL_n(K)$.

14. Find conditions on *K* for this injection to be onto (i.e. an isomorphism.)

15. Let *B* be the subgroup of upper triangular matrices of $GL_2(K)$. Show that the keft coset space $GL_n(K)/B$ is naturally in one-to-one correspondance with the set $K \cup \{\infty\}$ where ∞ is a new element not in *K*.

16. Show that if K is algebraically closed, then any element $g \in GL_n(\mathbf{F}_q)$ is conjugate to an upper triangular matrix. (Hint: Jordan canonical form).

17. If $K \leq L$, there is a natural injection of $GL_n(K)$ into $GL_n(L)$. Show that any any element $g \in GL_n(\mathbf{F}_q)$ can be conjugated to an upper triangular matrix in $GL_n(\mathbf{F}_{q'})$ for some q'. (Hint: Jordan canonical form).

18. Define $SL_n(\mathbb{Z})$ in a similar way. For each $n \in \mathbb{Z}$, find a normal subgroup of index n^2 of $SL_n(\mathbb{Z})$.

20. Can you show that $PSL_n(K)$ is simple except for a few exceptions? (Reference: Suzuki or Scott, **Group Theory**).

21. Can $PSL_n(\mathbf{F}_q)$ be isomorphic to Alt(m) for some *m*?

22. $\operatorname{SL}_n(\mathbb{Z})$ is known to have a normal subgroup F which is a free subgroup generated by two elements such that $\operatorname{SL}_n(\mathbb{Z})/F \approx \operatorname{Sym}(3)$. Can you find it? (Reference: J.-P. Serre, **Trees**).