Field Theory HW Ali Nesin October 19, 2008

- 1. Let *K* be any field and $n, m \in \mathbb{N} \setminus \{0\}$. Show that the polynomial $X^m 1$ divides $X^n 1$ in K[X] iff *m* divides *n* in \mathbb{Z} .
- 2. Find a relationship between the irreducible polynomials of $\mathbb{Z}[X]$ and the irreducible polynomials of $\mathbb{Q}[X]$.
- 3. Show that there is an algorithm that decides whether or not a polynomial in $\mathbb{Z}[X]$ is irreducible.
- 4. Let *R* be a commutative ring.

4a. Let $a \in R^*$ and $b \in R$. Show that the map $\varphi_{a,b}(f(X)) = f(aX + b)$ is a ring automorphism of R[X] which is identity on R, i.e. $\varphi_{a,b} \in \text{Aut}_R(R[X], +, .)$.

4b. Show that the set of all such automorphisms is a group isomorphic to $R^+ \rtimes R^*$ (under composition of course).

4c. Show that $\operatorname{Aut}_{R}(R[X], +, .) = \{\varphi_{a, b} : a \in R^{*} \text{ and } b \in R\}.$

5. Let $p \in \mathbb{Z}$ be a prime, $f, g, h \in \mathbb{Z}[X]$ and $n \in \mathbb{N}$ be such that $gh = X^n + pf$.

5a. Show that *p* divides f(0) in \mathbb{Z} . (Hint: Work modulo *p*. This is Einsenstein's Criterion) 5b. Conclude that the polynomial $X^{p-1} + X^{p-2} + ... + X + 1$ is irreducible over \mathbb{Q} and over \mathbb{Z} . (Hint: Make change of variable: Y = X - 1 and use #4 and #2).

6. Let *n* be a positive integer, *d* a divisor of *n* and ζ_d a primitive d^{th} root of unity.

6a. Show that the map φ_d from $\mathbb{Q}[X]/\langle X^n - 1 \rangle$ into $\mathbb{Q}[\zeta_d]$ defined by $\varphi_d(\underline{f(X)}) = f(\zeta_d)$ is well-defined.

6b. Show that the map $\varphi = \bigoplus_{d \mid n} \varphi_d$ from $\mathbb{Q}[X]/\langle X^n - 1 \rangle$ into $\bigoplus_{d \mid n} \mathbb{Q}[\zeta_d]$ defined by $\varphi(\underline{f}) = (\bigoplus_{d \mid n} \varphi_d)(\underline{f}) = (\varphi_d(\underline{f}))_d|_n$

is well-defined and an isomorphism of \mathbb{Q} -algebras.

6c. Show that $\varphi(\mathbb{Z}[X]/\langle X^n - 1 \rangle) \leq \bigoplus_{d|n} \mathbb{Z}[\zeta_d]$, but that the equality almost never arises.