Field Theory HW

Ali Nesin
October 19, 2008

1. Let K be any field and $n, m \in \mathbb{N} \backslash\{0\}$. Show that the polynomial $X^{m}-1$ divides $X^{n}-1$ in $K[X]$ iff m divides n in \mathbb{Z}.
2. Find a relationship between the irreducible polynomials of $\mathbb{Z}[X]$ and the irreducible polynomials of $\mathbb{Q}[X]$.
3. Show that there is an algorithm that decides whether or not a polynomial in $\mathbb{Z}[X]$ is irreducible.
4. Let R be a commutative ring.

4a. Let $a \in R^{*}$ and $b \in R$. Show that the map $\varphi_{a, b}(f(X))=f(a X+b)$ is a ring automorphism of $R[X]$ which is identity on R, i.e. $\varphi_{a, b} \in \operatorname{Aut}_{R}(R[X],+,$.$) .$
4 b . Show that the set of all such automorphisms is a group isomorphic to $R^{+} \rtimes R^{*}$ (under composition of course).
4c. Show that $\operatorname{Aut}_{R}(R[X],+,)=.\left\{\varphi_{a, b}: a \in R^{*}\right.$ and $\left.b \in R\right\}$.
5. Let $p \in \mathbb{Z}$ be a prime, $f, g, h \in \mathbb{Z}[X]$ and $n \in \mathbb{N}$ be such that $g h=X^{n}+p f$.

5a. Show that p divides $f(0)$ in \mathbb{Z}. (Hint: Work modulo p. This is Einsenstein's Criterion)
5 b. Conclude that the polynomial $X^{p-1}+X^{p-2}+\ldots+X+1$ is irreducible over \mathbb{Q} and over \mathbb{Z}. (Hint: Make change of variable: $Y=X-1$ and use \#4 and \#2).
6. Let n be a positive integer, d a divisor of n and ζ_{d} a primitive $d^{\text {th }}$ root of unity.

6a. Show that the map φ_{d} from $\mathbb{Q}[X] /\left\langle X^{n}-1\right\rangle$ into $\mathbb{Q}\left[\zeta_{d}\right]$ defined by $\varphi_{d}(f(X))=f\left(\zeta_{d}\right)$ is welldefined.

6b. Show that the map $\varphi=\left.\oplus_{d}\right|_{n} \varphi_{d}$ from $\mathbb{Q}[X] /\left\langle X^{n}-1\right\rangle$ into $\left.\oplus_{d}\right|_{n} \mathbb{Q}\left[\zeta_{d}\right]$ defined by

$$
\varphi(f)=\left(\left.\oplus_{d}\right|_{n} \varphi_{d}\right)(f)=\left.\left(\varphi_{d}(f)\right)_{d}\right|_{n}
$$

is well-defined and an isomorphism of \mathbb{Q}-algebras.
$6 c$. Show that $\varphi\left(\mathbb{Z}[X] /\left\langle X^{n}-1\right\rangle\right) \leq\left.\oplus_{d}\right|_{n} \mathbb{Z}\left[\zeta_{d}\right]$, but that the equality almost never arises.

