Group Theory Problems

Ali Nesin ${ }^{1}$

October 1999

Throughout the exercises G is a group. We let $Z_{i}=\mathrm{Z}_{i}(G)$ and $Z=\mathrm{Z}(G)$.
Let H and K be two subgroups of finite index of G. Show that $H \cap K$ has also finite index in G. Show that H has finitely many conjugates in G. Conclude that if a group has a subgroup of finite index, then it has a normal subgroup of finite index. (See also Exercise 49).

1. (P. Hall)
a. Show that for $x, y, z \in G,[x, y z]=[x, z][x, y]^{z}$ and $[x y, z]=[x, z]^{y}[y, z]$. Conclude that if $H, K \leq G$, then H and K normalize the subgroup [H, K]. Conclude also that if $A \leq G$ is an abelian subgroup and if $g \in \mathrm{~N}_{G}(A)$, then $\operatorname{ad}(g): A \rightarrow A$ is a group homomorphism whose kernel is $\mathrm{C}_{A}(g)$.
b. Let x, y, z be three elements of G. Show that

$$
\left[\left[x, y^{-1}\right], z\right]^{y}\left[\left[y, z^{-1}\right], x\right]^{z}\left[\left[z, x^{-1}\right], y\right]^{x}=1 .
$$

Conclude that if H and K are two subgroups of a group G and if $[[H, K], K]=1$, then $\left[H, K^{\prime}\right]=1$.
c. (Three Subgroup Lemma of P. Hall) Let H, K, L be three normal subgroups of G. Using part b, show that $[[H, K], L] \leq[[K, L], H][[L, H], K]$.
d. Conclude from part (c) that

$$
\begin{aligned}
& {\left[G^{i}, G^{j}\right] \leq G^{i+j+1}} \\
& G^{(i)} \leq G^{2^{i}} \\
& {\left[G^{i}, Z_{j}\right] \leq Z^{j-i-1}} \\
& {\left[Z^{i+1}, G^{i}\right]=1}
\end{aligned}
$$

e. Show that a nilpotent group is solvable. Show that the converse of this statement is false.
2. Let $A \triangleleft G$ be an abelian subgroup and let $g \in G$. By Exercise 1.a, $\operatorname{ad}(g)$: A $\rightarrow A$ is a group homomorphism. Assume that $\left[G^{\prime}, A\right]=1$. Show the following:
a. $\mathrm{C}_{A}(g) \triangleleft G$.
b. $[g, A]=\operatorname{ad}(g)(A)$.
c. $[g, A] \triangleleft G$.

3a. Let G be nilpotent of class n. Show that $G^{n-i} \leq Z_{i}$. Conclude that $G=Z_{n}$.
b. Conversely, assume that $G=\mathrm{Z}_{n}$. Show that $G^{i} \leq \mathrm{Z}_{n-i}$. Conclude that G is nilpotent of class n.
c. Show that G is nilpotent of class n if and only if $\mathrm{Z}_{n}=G$ and $Z_{n-1} \neq G$.
4. Let $H \triangleleft G$ and $K, L \leq G$.
a. Show that $[K H / H, L H / H]=[K, L] H / H$.

[^0]b. Conclude that if G is solvable (resp. nilpotent), then so are H and G / H.
c. Show that if G / H and H are solvable, then so is G.
d. Find an example where the previous result fails if we replace the word "solvable" by "nilpotent".
e. Deduce from part c that if A and B are solvable subgroups of G and if one of them normalizes the other, then $\langle A, B\rangle=A B$ is also solvable.
5. Let $X \leq \mathrm{Z}_{n}$ be a normal subgroup of G. Show that G is nilpotent if and only if G / X is. Let i be fixed integer. Show that G is nilpotent of class n if and only if G / Z_{i} is nilpotent of class $n-i$. Show that Z_{i} is nilpotent of class i. Find a (nilpotent) group where $Z_{2} \neq Z$ and Z_{2} is abelian. (See also Exercise 41).
6. Show that a nilpotent group G satisfies the normalizer condition (i.e. if $H<G$ then $H<\mathrm{N}_{G}(H)$).
7. (Hirsch) Let G be a nilpotent group. Show that if $G=H N^{\prime}$ for some $H \leq G$, then $H=G$.
8. (Hirsch) Let G be a nilpotent group. Show that if $1 \neq \mathrm{H} \triangleleft G$, then $H \cap \mathrm{Z} \neq 1$.
9. Let A and B be two normal nilpotent subgroups of G. Show that the subgroup $\langle A, B\rangle=A B$ is also normal and nilpotent.
10. a. Show that the subgroup G^{n} is generated by the elements of the form $\left[x_{1}\right.$, $\left.\left[x_{2}, \ldots,\left[x_{n}, x_{n+1}\right] \ldots\right]\right]$, where $x_{i} \in G$. Find a similar statement for $G^{(n)}$.
b. Show that an abelian group is locally finite if and only if it is a torsion group. Conclude that a solvable group is locally finite if and only if it is a torsion group.
c. Let p be a prime. Show that a nilpotent-by-finite p-group is solvable and hence locally finite.
11. Show that for $x, y \in G$ and n a positive integer, $\left[x^{n}, y\right]=$ $[x, y]^{n^{n-1}}[x, y]^{]^{n-2}} \ldots[x, y]$.

12a. Let $g \in G$ and $H \leq G$ be such that $[g, H] \subseteq Z$. Show that the map $\operatorname{ad}(g)$: H $\rightarrow Z$ is a group homomorphism. Show that for all $h \in H, n \in Z$,
$[g, h]^{n}=\left[g^{n}, h\right]=\left[g, h^{n}\right]$.
b. Using Exercise 11 , show that if $z \in Z_{2}$ and $z^{n} \in Z$, then $[z, G]$ is a central subgroup of finite exponent and that $\exp ([z, G])$ divides n.
c. (Mal'cev, McLain) Use part b to prove, by induction on the nilpotency class, that if a nilpotent group has an element of order p where p is a prime, then it has central elements of order p.
d. Let G be a nilpotent group and D a p-divisible subgroup of G. Show that D commutes with all the p-elements of G. Deduce that in a divisible nilpotent group, elements of finite order form a central subgroup.
13. \boldsymbol{p}-Divisible Nilpotent Groups. (Chernikov) Let p be a prime and let G be a p-divisible nilpotent group.
a. Show that if $g^{p} \in Z$, then $g \in Z$.
b. Conclude that Z is p-divisible, contains all the p-elements and that G / Z is p -torsion-free and p-divisible.
c. Show that G / Z_{i} is p-torsion-free for all $i \geq 1$.
d. Conclude that Z_{i+1} / Z_{i} is p-torsion-free and p-divisible for $i \geq 1$.
14. Let G be a nilpotent group.
a. Let $i \geq 1$ be an integer. Show that G / G^{i} is p-divisible if and only if G / G^{i+1} is p divisible.
b. Conclude that G is p-divisible if and only if G / G^{\prime} is p-divisible.
c. Show that G has a unique maximal p-divisible subgroup D.
d. Assume that for some $D \triangleleft G, D$ and G / D are p-divisible. Show that G is p divisible.
15. (Dixmier). Let G be nilpotent and assume that $\exp \left(G / G^{\prime}\right)=n$.
a. Show that $\exp \left(G^{i} / G^{i+1}\right) \mid n$ for all i.
b. Conclude that $\exp (G) \mid n^{c}$ where c is the nilpotency class of G.
16. Let P be a Sylow p-subgroup of G. Show that P is characteristic in $\mathrm{N}_{G}(P)$. Conclude that $\mathrm{N}_{G}\left(\mathrm{~N}_{G}(P)\right)=\mathrm{N}_{G}(P)$. By Exercise 6, if G is nilpotent, $\mathrm{N}_{G}(P)=G$, i.e. P $\triangleleft G$.

Conclude that, for a given prime p, a nilpotent group G has a unique Sylow p subgroup, and that if G is torsion, then G is the direct sum of its Sylow p-subgroups.
17. Let $t \in G$ be an involution. Let $X=\{[t, g]: g \in G\}$
a. Show that for $x \in X, x^{t}=x^{-1}$ and that $t \notin X$. Conclude that the elements of $t X$ are involutions.
b. Show that the map $\varphi: G / \mathrm{C}_{G}(t) \rightarrow X$ defined by $\varphi\left(g \mathrm{C}_{G}(t)\right)=\left[t, g^{-1}\right]$ is a welldefined bijection.
c. Assume from now on that G is finite and that $\mathrm{C}_{G}(t)=\{1, t\}$. We will show that X is an abelian 2'-subgroup and $G=X \rtimes\{1, t\}$. By part b, $|X|=|G| / 2$. By part a and by assumption, X has no involutions. Therefore $X \cap t X=\varnothing$. Conclude that $G=X \sqcup \mathrm{t} X$ and that X is the set of elements of order $\neq 2$ of G. Therefore, X is a characteristic subset of G. Let $x \in X \backslash\{1\}$ be a fixed element. Conclude that t^{x} inverts X as well (replace t by t^{x}). Conclude that $1 \neq x^{2}=t t^{x}$ centralizes X. Therefore $X=\mathrm{C}_{G}\left(x^{2}\right) \leq G$. Since t inverts X, X is an abelian group without involutions.
18. Let G be a finite group with an involutive automorphism α without nontrivial fixed points. Show that G is inverted by α.

19a. Let G be a group of prime exponent p. Show that for $g \in G^{*}$, no two distinct elements of $\langle\mathrm{g}\rangle$ can be conjugated in G.
b. Show that if $\exp (G)=p$, then G has at least p conjugacy classes.
c. (Reineke) Let G be a group and assume that for some $x \in G$ of finite order, we have $G=x^{G} \cup\{1\}$. Show that $|G|=1$ or 2 .
20. Let G be an arbitrary torsion group without involutions. Note that G is 2 divisible (see Exercise 36). Assume G has an involutive automorphism α that does
not fix any nontrivial elements of G. We will show that G is abelian and is inverted by α.
a. Show that for $a, b \in G$, if $a^{2}=b^{2}$ then $a=b$.

Let $g \in G$. Let $h \in G$ be such that $h^{2}=g^{\alpha} g$.
b. Show that $\left(h^{\alpha}\right)^{2}=\left(h^{-1}\right)^{2}$. Conclude that $h^{\alpha}=h^{-1}$.
c. Show that $\left(g h^{-1}\right)^{\alpha}=g h^{-1}$. Deduce that $g=h$. This proves the result.
21. (I. Schur ${ }^{2}$). Assume that G / Z is finite. We will show that G^{\prime} is finite. Let $|G / Z|$ $=n$.
a. Show that the set $X=\{[g, h]: g, h \in G\}$ has cardinality n^{2}.
b. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$. Show that $G^{\prime}=\left\{x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}: n_{i} \in \mathbf{N}\right\}$.
c. Show that for all $g, h \in G$,
$[g, h]^{n+1}=g^{-1}[g, h]^{n} g[g, h]=g^{-1}[g, h]^{n-1}\left[g^{2}, h\right]^{]^{-1}} g$.
d. Conclude from parts (b) and (c) that every element of G^{\prime} is a product of at most n^{3} elements of X and so G^{\prime} is finite.
22. (R. Baer). Let A, B be subgroups of G that normalize each other. Assume that the set $X=\{[a, b]: a \in A, b \in B\}$ is finite. We will show that $[A, B]$ is finite. Note first that, without loss of generality, we may assume that $G=A B$. With this assumption A and B are normal subgroups of G. Let $U=[A, B] \leq A \cap B$. Clearly $U \triangleleft$ G.
a. Show that $\mathrm{C}_{G}(X)$ is a normal subgroup of finite index in G. Show that $\mathrm{C}_{G}(X)$ centralizes U.
b. Deduce from part (a) that $\mathrm{C}_{G}(X) \cap U$ is a central subgroup of U and has finite index in U. Exercise 21 implies that U^{\prime} is finite.
c. Show that, without loss of generality, we may assume that $U^{\prime}=1$.
d. Clearly the subset $\{[a, u]: a \in A, u \in U\}$ of X is finite and these elements commute with each other. Show that $[a, u]^{2}=\left[a, u^{2}\right]$. Conclude that $[A, U]$ is finite. Show that, without loss of generality, we may assume that $[A, U]=1$. Conclude that, without loss of generality U is central in G.
e. Show that X is closed under the squaring map $x \mapsto x^{2}$. Conclude that $[A, B]$ is finite.
23. Completely Reducible Groups. A group is said to be completely reducible if it is the direct sum of finitely many nonabelian simple groups. A subgroup H of a group G is called subnormal if there is a finite chain $H=\mathrm{H}_{1} \triangleleft \ldots \triangleleft \mathrm{H}_{n}=G$. We assume in this exercise that G is a completely reducible group and we let $G=$ $\oplus_{i=1, \ldots, n} \mathrm{~A}_{i}$ where each A_{i} is a simple nonabelian group.
a. We first want to show that any simple, nontrivial and normal subgroup H of G is one of the subgroups A_{i}. This will show that the subgroups A_{i} are uniquely determined. Let $1 \neq h=a_{1} \ldots a_{n} \in H$ where $a_{i} \in \mathrm{~A}_{i}$. Assume $a_{i} \neq 1$. Let $b_{i} \in \mathrm{~A}_{i} \backslash$ $\mathbf{C}_{A_{i}}\left(a_{i}\right)$. Show that $1 \neq\left[h, b_{i}\right] \in A_{i} \cap H$, conclude that $A_{i}=H$.
b. Show that every normal subgroup of G is a direct sum of the subgroups A_{i}. Conclude that every normal subgroup of G is completely reducible and has a complement.

[^1]c. Conclude from (a) that a subnormal subgroup of G is a normal subgroup.
24. Let G be a finite group. Let A be a minimal normal subgroup of G.
a. Show that if A has a nontrivial normal solvable subgroup, then A is an elementary abelian subgroup.

From now on we assume that A has no nontrivial normal solvable subgroup. We will show that A is completely reducible. Let B be a minimal A-normal subgroup of A.
b. Show that for any $g \in G, B^{g}$ is also a minimal A-normal subgroup of A. Conclude that if $C \triangleleft A$, then either $B^{g} \leq C$ or $C \cap B^{g}=1$. Deduce that $A=B^{g_{1}} \oplus \ldots$ $\oplus B^{g_{n}}$ for some $g_{1}, \ldots, \mathrm{~g}_{n} \in G$.
c. Show that B is simple.
25. (Generalized Quaternions) Let G be the group generated by the elements x and y subject to the relations $x^{m}=y^{2}$ and $x^{y}=x^{-1}$ where $m>0$. Show that $\langle x\rangle \triangleleft G$. Note that $x^{-m}=x^{m y}=y^{2 y}=y^{2}=x^{m}$. Conclude that $|G| \leq 4 m$. In fact $|G|=4 m$. When m is even, G is called a generalized quaternion group. When $m=2, G$ is called the quaternion group.

Semidirect Products

Let U and T be two groups and let $\varphi: T \rightarrow \operatorname{Aut}(U), t \rightarrow \varphi_{t}$ be a group homomorphism. We will construct a new group denoted by $U \rtimes_{\varphi} T$, or just by $U \rtimes T$ for short. The set on which the group operation is defined is the Cartesian product $U \times$ T, and the operation is defined as follows: $(u, t)\left(u^{\prime}, t^{\prime}\right)=\left(u . \varphi_{t}\left(u^{\prime}\right), t t^{\prime}\right)$. The reader will have no difficulty in checking that this is a group with $(1,1)$ as the identity element. The inverse is given by the rule: $(u, t)^{-1}=\left(\varphi_{t^{-1}}\left(u^{-1}\right), \mathrm{t}^{-1}\right)$. Let G denote this group. G is called the semidirect product of U and T (in this order; we also omit to mention φ). U can be identified with $U \times\{1\}$ and hence can be regarded as a normal subgroup of G. T can be identified with $\{1\} \times T$ and can be regarded as a subgroup of G. Then the subgroups U and T of G have the following properties: $U \triangleleft G, T \leq G, U \cap \mathrm{~T}=1$ and $G=U T$.

Conversely, whenever a group G has subgroups U and T satisfying these properties, G is isomorphic to a semidirect product $U \rtimes_{\varphi} T$ where $\varphi: T \rightarrow \operatorname{Aut}(U)$ is given by $\varphi_{t}(u)=$ tut $^{-1}$.

When $G=U \rtimes T$, one says that the group G is split ${ }^{3}$; then the subgroups U and T are called each other's complements. We also say that T (or U) splits in G. Note that T is not the only complement of U in G : for example, any conjugate of T is still a complement of U.

When the subgroup U is abelian, it is customary to denote the group operation of U additively. In this case, it is suggestive to let $t u=\varphi_{t}(u)$. Then the group operation can be written as: $(u, t)\left(u^{\prime}, t^{\prime}\right)=\left(t u^{\prime}+u, t t^{\prime}\right)$. The reader should compare this with the following formal matrix multiplication:

$$
\left(\begin{array}{ll}
t & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t^{\prime} & u^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
t t^{\prime} & t u^{\prime}+u \\
0 & 1
\end{array}\right)
$$

[^2]
Examples.

1. Let V be a vector space and $\mathrm{GL}(V)$ be the group of all vector space automorphisms of V. The group $V \rtimes \operatorname{GL}(V)$ (where $\varphi=\mathrm{Id}$) is a subgroup of $\operatorname{Sym}(V)$ as follows: $(v, g)(w)=g w+v$.
2. The subgroup $B_{n}(K)$ that consists of all the invertible $n \times n$ upper triangular matrices over a field K is the semidirect product of $\mathrm{UT}_{n}(K)$ (upper-triangular matrices with ones on the diagonal) and $\mathrm{T}_{n}(K)$ (invertible diagonal matrices).

Exercises.

26. Let K be any field. Show that the group

$$
G=\left\{\left(\begin{array}{ll}
t & u \\
0 & 1
\end{array}\right): t \in K^{*}, u \in K\right\}
$$

is a semidirect product of the form $G^{\prime} \rtimes T$ for some subgroup T. This group is called the affine group.
27. Show that the direct product of two groups is a special case of semidirect product.
28. Let $G=U \rtimes T$.
a. Let $U \leq \mathrm{H} \leq G$. Show that $H=U \rtimes(\mathrm{H} \cap \mathrm{T})$.
b. Let $T \leq \mathrm{H} \leq G$. Show that $H=(\mathrm{U} \cap \mathrm{H}) \rtimes T$.
c. Show that if T is abelian then $G^{\prime \prime} \leq U$.
d. Show that if $T_{1} \leq T$, then $\mathrm{N}_{U}\left(T_{1}\right)=\mathrm{C}_{U}\left(T_{1}\right)$.
29. Let $G=U \rtimes T$. Let $t \in T$ and $x \in U$. Show that $x t$ is G-conjugate to an element of T if and only if $x t$ is conjugate to t if and only $(x t)^{u}=t$ for some $u \in U$ if and only if $x \in\left[U, t^{-1}\right]$.
30. Let $G=U \rtimes T$ and let $V \leq U$ be a G-normal subgroup of U. Show that G / V $\approx U / V \rtimes T$ in a natural way.
31. Let $G=U \rtimes T$ and let $V \leq U$ be a G-normal subgroup of U. By Exercise 30, $G / V \approx U / V \rtimes T$. Let $t \in T$ be such that $V=\operatorname{ad}(t)(V)$ and $U / V=\operatorname{ad}(t)(U / V)$. Show that $U=\operatorname{ad}(t)(U)$.
32. Let K be a field and let n be a positive integer. For $t \in K^{*}$ and $x \in K$, let $\varphi_{t}(x)$ $=t^{n} x$. Set $G=K^{+} \rtimes_{\varphi} K^{*}$. What is the center of G ? Show that $\mathrm{Z}_{2}(G)=\mathrm{Z}(G)$. What is the condition on K that insures $G^{\prime} \approx K^{+}$? Show that G is isomorphic to a subgroup of $\mathrm{GL}_{2}(K)$.

Abelian Groups

We will need the following fact several times:

Fact 1. Let G be an abelian group. Let D be a divisible subgroup of G. Then D has a complement in G, i.e. $G=D \oplus H$ for some $H \quad$ G. Furthermore every subgroup disjoint from D can be extended to a complement of D.

Sketch of the proof: It is enough to prove the second statement. Let K be a subgroup disjoint from D. Using Zorn's Lemma, find a subgroup H containing K, disjoint from D and maximal for these properties. The maximality of H insures that G $=D \oplus H$.

From this fact it follows that, for some subgroup $H, G=\mathrm{D}(G) \oplus H$ where $D(G)$ is the unique maximal divisible subgroup of G. Clearly H has no nontrivial, divisible subgroups.

We will also make use of the following elementary result:
Fact 2. A finitely generated abelian group is a direct sum of finitely many cyclic groups.

Prüfer \boldsymbol{p}-group. Let p be any prime and consider the subset

$$
\mathbf{Z}_{p^{\infty}}=\left\{x \in \mathbf{C}: x^{p^{n}}=1 \text { for some } n \in \mathbf{N}\right\}
$$

of complex numbers of norm 1. With the usual multiplication of complex numbers, $\mathbf{Z}_{p^{\infty}}$ is an infinite countable abelian group. It is called the Prüfer \boldsymbol{p}-group. Every element of $\mathbf{Z}_{p^{\infty}}$ has finite order p^{n} for some n. Given a natural number n, there are exactly p^{n} elements of $\mathbf{Z}_{p^{0}}$ that satisfy the equation $x^{p^{n}}=1$ (namely the elements $e^{2 k \pi i / p^{n}}$ where $k=0, \ldots, p^{n}-1$).

Note that $\mathbf{Z}_{p^{\infty}}$ is the union of the ascending chain of finite subgroups

$$
\left\{x \in \mathbf{C}: x^{p^{n}}=1\right\}
$$

which are isomorphic to the cyclic groups $\mathbf{Z} / p^{n} \mathbf{Z}$. Thus every finite subset of $\mathbf{Z}_{p^{\infty}}$ generates a finite cyclic group (isomorphic to $\mathbf{Z} / p^{n} \mathbf{Z}$ for some $n \in \mathbf{N}$), i.e. $\mathbf{Z}_{p^{\infty}}$ is a locally cyclic group.

Exercises.

33. Let G and H be two abelian groups of the same prime exponent p (such groups are called elementary abelian \boldsymbol{p}-groups) and of the same cardinality. Noting the fact that G and H are vector spaces over the field \mathbf{F}_{p}, show that these groups are isomorphic to each other. (See also Exercise 34).
34. Let G and H be two torsion-free abelian divisible groups of the same uncountable cardinality. Noting the fact that G and H are vector spaces over \mathbf{Q}, show that $G \approx H$. (Compare this with Exercise 35).
35. Show that the group \mathbf{Q} has no proper, nontrivial divisible subgroups. Conclude that \mathbf{Q} and $\mathbf{Q} \oplus \mathbf{Q}$ are not isomorphic. Generalize this to $\oplus_{i=1, \ldots, n} \mathbf{Q}$.
36. Show that a (not necessarily abelian) torsion group that has no elements of order p where p is a prime is p-divisible. Show that a group which is p-divisible for all primes p is divisible. Deduce that $\mathbf{Z}_{p^{\circ}}$ is a divisible abelian group.
37. Show that if a divisible abelian group contains an element of order p, then it contains a subgroup isomorphic to $\mathbf{Z}_{p^{\infty}}$.
38. Let G be a divisible abelian group and p a prime. Let G_{p} be the set of elements of order p of G together with 1. G_{p} is an elementary abelian p-group and so it can be considered as a vector space over the field \mathbf{F}_{p} of p elements. Let κ be the dimension of G_{p} over \mathbf{F}_{p}. Show that G contains a direct sum of κ copies of $\mathbf{Z}_{p^{\infty}} \kappa \kappa$ is called the Prüfer \boldsymbol{p}-rank of G.
39. Let G be a divisible abelian group. Show that $G=\mathrm{T}(G) \oplus F$ where $T(G)$ is the set of torsion elements and F is some divisible torsion-free subgroup. Conclude that a divisible abelian group is isomorphic to a group of the form:

$$
\oplus_{p \text { prime }}\left(\oplus_{I_{p}} \mathrm{Z}_{p^{\infty}}\right) \oplus\left(\oplus_{I} \mathrm{Q}\right)
$$

for some sets I_{p} and I.
40. Let K be an algebraically closed field. First assume that $\operatorname{char}(K)=0$. Show that

$$
K^{*}=\oplus_{p \text { prime }} \mathrm{Z}_{p^{\infty}} \oplus\left(\oplus_{I} \mathrm{Q}\right)
$$

for some I. Now assume that $\operatorname{char}(K)=p>0$. Show that

$$
K^{*}=\oplus_{q \neq p, q \text { prime }} \mathrm{Z}_{p^{\infty}} \oplus\left(\oplus_{I} \mathrm{Q}\right)
$$

for some I.
41. Let $G=\mathbf{Z}_{p^{\infty}} \rtimes \mathbf{Z} / 2 \mathbf{Z}$ where $\mathbf{Z} / 2 \mathbf{Z}$ acts on $\mathbf{Z}_{p^{\infty}}$ by inversion (i.e. if $1 \neq i$ $\in \mathbf{Z} / 2 \mathbf{Z}$ then $\varphi_{i}(g)=g^{-1}$ for all $g \in \mathbf{Z}_{p^{\infty}}$. Show that G is solvable of class 2 , nonnilpotent but that the chain $\left(\mathrm{Z}_{-n}(G)\right)_{n} \in \mathbf{N}$ is strictly increasing. Show that G is isomorphic to a Sylow 2-subgroup of $\mathrm{PSL}_{2}(K)$ where K is an algebraically closed field of characteristic $\neq 2$. (Recall that $\mathrm{SL}_{2}(K)$ is the group consisting of 2×2 matrices of determinant 1 over K, and $\mathrm{PSL}_{2}(K)$ is the factor group of $\mathrm{SL}_{2}(K)$ modulo its center that consists of the two scalar matrices $\pm 1)$. What is the Sylow 2-subgroup of $\mathrm{SL}_{2}(K)$ when $\operatorname{char}(K)=2$?
42. Let G be the direct sum of finitely many copies of $\mathbf{Z}_{p^{\infty}}$. Show that if $H \leq G$ is an infinite subgroup then H contains a nontrivial divisible subgroup.
43. This exercise will show the advantages of the additive notation over the multiplicative one. Let G be a group and let $A \leq G$ be an abelian subgroup. Let g $\in \mathrm{N}_{G}(A)$. Thus g acts on A by conjugation. Let $\breve{g} \in \operatorname{Aut}(A)$ denote the automorphism of A induced by g. We can view \breve{g} as an element of the ring $\operatorname{End}(A)$ and, denoting A additively, we can consider the endomorphism $\breve{g}-1$. (For $a \in A$, $(\breve{g}-1)(a)$ translates into $\left[g, a^{-1}\right.$] when the group operation of A is denoted multiplicatively). Let p be a prime number and assume that $g^{p} \in \mathrm{C}_{G}(A)$. Show that either $g \in \mathrm{C}_{G}(A)$ or \breve{g} is an automorphism of order p. Assume now that $\exp (A)=p$. Show that $(\breve{g}-1)^{p}=0$. Conclude that $\mathrm{C}_{A}(g) \neq 0$. Conclude also that if A is infinite then $\mathrm{C}_{A}(g)$ is also infinite.

44a. Conclude from the preceding exercise that if $H \triangleleft G$ is a normal subgroup of finite index with a nontrivial center and if G is a p-group for a prime p, then G has a nontrivial center. Deduce that a nilpotent-by-finite p-group has a nontrivial center.
b. Let G be a nilpotent-by-finite p-group. Let $1 \neq \mathrm{H} \triangleleft G$. Show that $H \cap \mathrm{Z}(G)$ $\neq 1$.
c. Show that if G is a nilpotent-by-finite p-group and $X<G$, then $X<\mathrm{N}_{G}(X)$. This property is called the normalizer condition.

Permutation Groups.

Let G be a group and X a set. We say that G acts on X or that (G, X) is a permutation group if there is a map $G \times X \rightarrow X$ (denoted by $(g, x) \rightarrow \mathrm{g}_{*} x$ or $g x$) that satisfies the following properties:

1 For all $g, h \in G$ and all $x \in X, g(h x)=(g h) x$.
2 For all $x \in X, 1 x=x$.
This is saying that there is a group homomorphism $\varphi: G \rightarrow \operatorname{Sym}(X)$ where $\operatorname{Sym}(X)$ is the group of all bijections of X. The kernel of φ is called the kernel of the action. When φ is one-to-one, the action is called faithful. In other words, G acts faithfully on X when $g x=x$ for all $x \in X$ implies $g=1$. Note that $G / \operatorname{ker}(\varphi)$ acts on X in a natural way: $\breve{g} x=g x$, and this action is faithful.

Two permutation groups (G, X) and (H, Y) are called equivalent if there are a group isomorphism $f: G \rightarrow H$ and a bijection $\varphi: X \rightarrow Y$ such that for all $g \in G, x \in X$ we have $\varphi(g x)=f(g) \varphi(x)$.

Let (G, X) be a permutation group. For any $Y \subseteq X$, we let

$$
G_{Y}=\{g \in G: g y=y \text { for all } y \in Y\} .
$$

G_{Y} is called the pointwise stabilizer of Y. Note that $G_{Y} \leq G$ is a subgroup. When $Y=$ $\left\{x_{1}, \ldots, x_{n}\right\}$, we write $G_{x_{1}, \ldots, x_{n}}$ instead of G_{Y}. Clearly G_{Y} is the intersection of the subgroups G_{y} for $y \in Y$.

For $g \in G$ and $Y \subseteq X$ we define $g Y=\{g y: y \in Y\}$ and the setwise stabilizer $G(Y)$ $=\{g \in G: g Y=Y\}$ of Y. We have $G_{Y} \leq G(Y)$. Finally for $A \subseteq G$, we define

$$
\mathrm{F}(A)=\{x \in X: a x=x \text { for all } a \in A\},
$$

the set of fixed points of A.

Exercise.

45. Let $A, B \subseteq G$ and $Y, Z \subseteq X$. Then the following hold:
i. $A \subseteq G_{F(\mathrm{~A})}$.
ii. $Y \subseteq \mathrm{~F}\left(\mathrm{G}_{A}\right)$.
iii. If $A \subseteq B$ then $\mathrm{F}(\mathrm{B}) \subseteq \mathrm{F}(A)$.
iv. If $Y \subseteq Z$, then $G_{Z} \leq G_{Y}$.
v. $\mathrm{F}\left(G_{\mathrm{F}(A)}\right)=\mathrm{F}(A)$.
vi. $G_{F\left(G_{Y}\right)}=\mathrm{G}_{Y}$.

We say that G acts \boldsymbol{n}-transitively on X if $|X| \geq n$ and if for any pairwise distinct $x_{1}, \ldots, x_{n} \in X$ and any pairwise distinct $y_{1}, \ldots, y_{n} \in X$, there is a $g \in G$ such that $g x_{i}=y_{i}$ for all $i=1, \ldots, n$. Transitive means 1 -transitive. We say that (G, X) is sharply n transitive if it is n-transitive and if the stabilizer of n distinct points is reduced to $\{1\}$; in other words, if for any distinct $x_{1}, \ldots, x_{n} \in X$ and any distinct $y_{1}, \ldots, y_{n} \in X$, there is a unique $g \in G$ such that $g x_{i}=y_{i} \in X$ for all $i=1, \ldots, n$. Sharply 1-transitive actions
are also called regular actions. Up to equivalence, each group has only one regular action (see Exercise 46). Clearly, for every n and $|X|=n,(\operatorname{Sym}(X), X)$ is sharply n and also sharply ($n-1$)-transitive. If for $g \in G, x \in X, g x=x$ implies $g=1$, we say that the action of G is free or that G acts freely on X.

Let X be a group and $G \leq \operatorname{Aut}(X)$. Then (G, X) is a permutation group. By abuse of language, one says that G acts freely (resp. regularly) on X if G acts freely (resp. regularly) on X^{*}.

Now we give the most important and, up to equivalence, the only example of transitive group actions:

Left-Coset Representation. Let G be a group and $B \leq G$ a subgroup. Set $X=$ G / B, the left-coset space. We can make G act on X by left multiplication: $h(g B)=$ $h g B$. This action is called the left-coset action, or the the left-coset representation. The kernel of this action is the core $\cap_{g \in G} B^{g}$ of B in G, which is the maximal G normal subgroup of B.

Exercises

46. Let (G, X) be a transitive permutation group. Let $x \in X$ be any point and let B $=G_{x}$. Then the permutation group (G, X) is equivalent to the left-coset representation $(G, G / B)$. (Hint: Let $f=\operatorname{Id}_{G}$ and $\varphi: G / B \rightarrow X$ be defined by $\varphi(g B)=g x$.)
47. If $\mathrm{N}_{G}(B)=B$, then the left-coset action of G on G / B is equivalent to the conjugation action of G on $\left\{B^{g}: g \in G\right\}$.
48. Let (G, X) be a 2-transitive group and $B=G_{x}$. Then $G=B \sqcup B g B$ for every g $\in G \backslash B$. In particular B is a maximal subgroup of G. Conversely, if G is a group with a proper subgroup B satisfying the property $G=B \cup B g B$ for every (equivalently some) $g \in G \backslash B$, then the permutation group $(G, G / B)$ is 2-transitive. (Hint: Assume G is 2-transitive, and let x and B as in the statement. Let $g \in G \backslash B$ be a fixed element of G. Let $h \in G \backslash B$ be any element. Since G is 2-transitive, there is an element $b \in G$ that sends the pair of distinct points $(x, g x)$ to the pair of distinct points $(x, h x)$. Thus b $\in B$ and $b g x=h x$, implying $h^{-1} b g \in B$ and $h \in B g B$.)
49. Let G be a group and let $H \leq G$ be a subgroup. Assume [$G: H$] $=n$. By considering the coset action $G \rightarrow \operatorname{Sym}(G / H)$ show that $\left[G: \cap_{g \in G} H^{\mathrm{g}}\right]$ divides n !. The subgroup $\cap_{g \in G} H^{\mathrm{g}}$ is called the core of H in G.
50. Let (G, X) be a permutation group. Assume G has a regular normal subgroup A (i.e. the permutation group (A, X) is regular). Show that $G=\mathrm{A} \rtimes \mathrm{G}_{x}$ for any $x \in X$. Show that (G, X) is equivalent to the permutation group (G, A) where $G=A \rtimes G_{x}$ acts on A as follows: For $a \in A, h \in G_{x}$ and $b \in A,(a h) \cdot b=a b^{h^{-1}}$. Show that G is faithful if and only if $\mathrm{C}_{H}(A)=1$.

51 Let (G, X) be a permutation group. Show that $G_{g^{-1} x}=G_{x}{ }^{g}$ for any $x \in X$. Show that if G is an n-transitive group, then for any $1 \leq i \leq n$, all the i-point stabilizers are conjugate to each other.
52. Let (G, X) be a transitive permutation group. Show that if G is abelian then, for any $x \in X, G_{x}$ is the kernel of the action and $\left(G / G_{x}, X\right)$ is a regular permutation group.
53. Let $n \geq 2$ be an integer. Show that (G, X) is n-transitive if and only if ($G_{x}, X \backslash$ $\{x\}$) is ($n-1$)-transitive for any (equivalently some) $x \in X$. State and prove a similar statement for sharply n-transitive groups.
54. Let (G, X) be a permutation group. A subset $Y \subseteq X$ is called a set of imprimitivity if for all $g, h \in G$, either $g Y=h Y$ or $g Y \cap h Y=\varnothing$. If the only sets of imprimitivity are the singleton sets and X, then (G, X) is called a primitive permutation group. Show that a 2 -transitive group is primitive. Assume that (G, X) is transitive. Show that (G, X) is primitive if and only if G_{x} is a maximal subgroup for some (equiv. all) $x \in X$. Conclude that if G is a 2 -transitive group, then G_{x} is a maximal subgroup. (This also follows from Exercise 48).
55. Let G be a group and $B<G$ be a proper subgroup with the following properties: There is a $g \in G$ such that $G=B \cup B g B$ and if $a g b=a^{\prime} g b^{\prime}$ for $a, a^{\prime}, b, b^{\prime}$ $\in B$ then $a=a^{\prime}$ and $b=b^{\prime}$. Show that $(G, G / B)$ is a sharply 2-transitive permutation group.
56. Let $G=A \rtimes H$ be a group where H acts regularly on A by conjugation (i.e. on A^{*}). Show that G is a sharply 2 -transitive group.
57. Let (G, X) be a sharply 2 -transitive permutation group, and for a fixed $x \in X$, set $B=G_{x}$. Show that for any fixed $g \in G \backslash B, G=B \sqcup B g B$ and if $a g b=a^{\prime} g b^{\prime}$ for a, $b, a^{\prime}, b^{\prime} \in B$, then $a=a^{\prime}$ and $b=b^{\prime}$. Show also that the conjugates of B are disjoint from each other. Show that there are involutions that swap given any two points. Conclude that there are involutions outside of B.
58. Show that the group

$$
G=\left\{\left(\begin{array}{ll}
t & u \\
0 & 1
\end{array}\right): t \in K^{*}, u \in K\right\}
$$

acts sharply 2-transitively on the set

$$
\mathrm{X}=\left\{\binom{x}{1}: x \in K\right\} .
$$

59. Show that $G=\mathrm{PGL}_{2}(K)=\mathrm{GL}_{2}(K) / Z$ where Z is the set of scalar matrices (which is exactly the center of $\mathrm{GL}_{2}(K)$) acts sharply 3-transitively on G / B where $B=\mathrm{B}_{2}(K)$. Show that there is a natural correspondence between G / B and the set $K \cup\{\infty\}$. Transport the action of G on $K \cup\{\infty\}$ and describe it algebraically.
60. Let V be a vector space over a field K. Show that $V \rtimes \mathrm{GL}(V)$ acts 2transitively on V (see Example 1). Show that, when $\operatorname{dim}_{K}(\mathrm{~V})=1$, we find the example of Exercise 58.

[^0]: ${ }^{1}$ From Borovik-Nesin, "Groups of Finite Morley Rank", chapter 1.

[^1]: ${ }^{2}$ If I am not mistaken, this exercise, the way it intends to lead to the result, contains a mistake.

[^2]: ${ }^{3}$ This is an abuse of language: every group G is split, for example as $G=\mathrm{G} \rtimes\{1\}$. When we use the term "split", we have either U or T around.

