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Throughout the exercises G is a group. We let Z; = Z,(G) and Z = Z(G).

Let H and K be two subgroups of finite index of G. Show that H m K has also
finite index in G. Show that H has finitely many conjugates in G. Conclude that if a
group has a subgroup of finite index, then it has a normal subgroup of finite index.
(See also Exercise 49).

1. (P. Hall)

a. Show that for x, y, z € G, [x, yz] = [x, zl[x, yI° and [xy, z] = [x, 2I'[y, z].
Conclude that if H, K < G, then H and K normalize the subgroup [H, K]. Conclude
also that if A < G is an abelian subgroup and if g € Ng(A), then ad(g) : A > Ais a
group homomorphism whose kernel is C4(g).

b. Let x, y, z be three elements of G. Show that

[l y™' 1 2Py, 2711, 2Tz 7'y = 1
Conclude that if H and K are two subgroups of a group G and if [[H, K], K] = 1, then
[H, K] =1.

c. (Three Subgroup Lemma of P. Hall) Let H, K, L be three normal subgroups
of G. Using part b, show that [[H, K], L] < [[K, L], H][[L, H], K].

d. Conclude from part (c) that

[G i’ Gj] <G i+j+1’
G"< G,
[G'.Z]1<Z"™",
[Zi+1, Gi] ~1.

e. Show that a nilpotent group is solvable. Show that the converse of this
statement is false.

2. Let A < G be an abelian subgroup and let g € G. By Exercise 1.a, ad(g): A
— A is a group homomorphism. Assume that [G', A] = 1. Show the following:

a. Ca(g) < G.
b. [g, A] = ad(g)(A).
c. [, Al < G.

3a. Let G be nilpotent of class n. Show that G" T Z;. Conclude that G = Z,.

b. Conversely, assume that G = Z,. Show that G < Z,.—;.. Conclude that G is
nilpotent of class n.

¢. Show that G is nilpotent of class n if and only if Z, = G and Z,_, # G.

4.letH< Gand K, L<LG.
a. Show that [KH/H, LH/H] = [K, L]H/H.

' From Borovik-Nesin, “Groups of Finite Morley Rank”, chapter 1.



b. Conclude that if G is solvable (resp. nilpotent), then so are H and G/H.

¢. Show that if G/H and H are solvable, then so is G.

d. Find an example where the previous result fails if we replace the word
“solvable” by “nilpotent”.

e. Deduce from part c that if A and B are solvable subgroups of G and if one of
them normalizes the other, then ( A, B ) = AB is also solvable.

S. Let X £Z, be a normal subgroup of G. Show that G is nilpotent if and only if
G/X is. Let i be fixed integer. Show that G is nilpotent of class » if and only if G/Z; is
nilpotent of class n — i. Show that Z; is nilpotent of class i. Find a (nilpotent) group
where Z, # Z and Z, is abelian. (See also Exercise 41).

6. Show that a nilpotent group G satisfies the normalizer condition (i.e. if H < G
then H < Ng(H)).

7. (Hirsch) Let G be a nilpotent group. Show that if G = HN ' for some H < G,
then H = G.

8. (Hirsch) Let G be a nilpotent group. Show thatif 1 #H < G,then HNZ # 1.

9. Let A and B be two normal nilpotent subgroups of G. Show that the subgroup
(A, B) = AB is also normal and nilpotent.

10. a. Show that the subgroup G " is generated by the elements of the form [xi,
[x2, ..., [X4, Xne1] ...]], Where x; € G. Find a similar statement for G™.

b. Show that an abelian group is locally finite if and only if it is a torsion group.
Conclude that a solvable group is locally finite if and only if it is a torsion group.

¢. Let p be a prime. Show that a nilpotent-by-finite p-group is solvable and hence
locally finite.

n

11. Show that for x, y € G and n a positive integer, [x", y] =
ERT RN R RN Y |

12a. Let g € G and H < G be such that [g, H] <Z. Show that the map ad(g): H
— Z is a group homomorphism. Show that forallh e H,n € Z,

[g’ h]n = [gn’ h] = [g’ hn]

b. Using Exercise 11, show that if z € Z, and 7" € Z, then [z, G] is a central
subgroup of finite exponent and that exp([z, G]) divides n.

¢. (Mal'cev, McLain) Use part b to prove, by induction on the nilpotency class,
that if a nilpotent group has an element of order p where p is a prime, then it has
central elements of order p.

d. Let G be a nilpotent group and D a p-divisible subgroup of G. Show that D
commutes with all the p-elements of G. Deduce that in a divisible nilpotent group,
elements of finite order form a central subgroup.

13. p-Divisible Nilpotent Groups. (Chernikov) Let p be a prime and let G be a
p-divisible nilpotent group.
a. Show that if g’ € Z, then g € Z.



b. Conclude that Z is p-divisible, contains all the p-elements and that G/Z is p-
torsion-free and p-divisible.

¢. Show that G/Z; is p-torsion-free for all i > 1.

d. Conclude that Z;,1/Z; is p-torsion-free and p-divisible for i > 1.

14. Let G be a nilpotent group.

a. Let i > 1 be an integer. Show that G/G ' is p-divisible if and only if G/G *' is p-
divisible.

b. Conclude that G is p-divisible if and only if G/G' is p-divisible.

¢. Show that G has a unique maximal p-divisible subgroup D.

d. Assume that for some D < G, D and G/D are p-divisible. Show that G is p-
divisible.

15. (Dixmier). Let G be nilpotent and assume that exp(G/G') = n.
a. Show that exp(G/G™") | n for all i.
b. Conclude that exp(G) | n“ where c is the nilpotency class of G.

16. Let P be a Sylow p-subgroup of G. Show that P is characteristic in Ng(P).
Conclude that Ng(Ng(P)) = Ng(P). By Exercise 6, if G is nilpotent, Ng(P) = G, i.e. P
< G.

Conclude that, for a given prime p, a nilpotent group G has a unique Sylow p-
subgroup, and that if G is torsion, then G is the direct sum of its Sylow p-subgroups.

17. Let t € G be an involution. Let X = {[7, g]: g € G}

a. Show that for x € X, x' = x ' and that r ¢ X. Conclude that the elements of X
are involutions.

b. Show that the map ¢ : G/Cq(f) — X defined by @(gCq(?)) = [t, g_l] is a well-
defined bijection.

¢. Assume from now on that G is finite and that C(¢) = {1, t}. We will show that

X is an abelian 2'-subgroup and G = X X {1, t}. By part b, IX| = IGl/2. By part a and by

assumption, X has no involutions. Therefore X N tX = &. Conclude that G = X U tX
and that X is the set of elements of order # 2 of G. Therefore, X is a characteristic
subset of G. Let x € X \ {1} be a fixed element. Conclude that 7" inverts X as well
(replace ¢ by r°). Conclude that 1 #x” = #* centralizes X. Therefore X = Co(x*) < G.
Since ¢ inverts X, X is an abelian group without involutions.

18. Let G be a finite group with an involutive automorphism o without nontrivial
fixed points. Show that G is inverted by .

19a. Let G be a group of prime exponent p. Show that for g € G, no two distinct
elements of ( g ) can be conjugated in G.

b. Show that if exp(G) = p, then G has at least p conjugacy classes.

¢. (Reineke) Let G be a group and assume that for some x € G of finite order, we
have G =x% U {1}. Show that IGl = 1 or 2.

20. Let G be an arbitrary torsion group without involutions. Note that G is 2-
divisible (see Exercise 36). Assume G has an involutive automorphism o that does



not fix any nontrivial elements of G. We will show that G is abelian and is inverted by
Q.

a. Show that fora, b € G, if a*= b* then a = b.

Letg e G. Let h € G be such that h* = g%.

b. Show that (h*)* = (h™")*. Conclude that h*=h"".

¢. Show that (gh™")* = gh™'. Deduce that g = h. This proves the result.

21. (L. Schurz). Assume that G/Z is finite. We will show that G' is finite. Let |G/Z|

a. Show that the set X = {[g, &]: g, h € G} has cardinality n.
b. Let X = {xy, ..., x¢}. Show that G' = { x," ... x,"* : n; € N}.
c. Show that forall g, h € G,

Lg. A1 = ¢ 7'lg. h1"glg. b = g '[g. 1 g2 ] .
d. Conclude from parts (b) and (c) that every element of G' is a product of at most
n® elements of X and so G' is finite.

22. (R. Baer). Let A, B be subgroups of G that normalize each other. Assume that
the set X = {[a, b]: a € A, b € B} is finite. We will show that [A, B] is finite. Note
first that, without loss of generality, we may assume that G = AB. With this

assumption A and B are normal subgroups of G. Let U = [A, B] <A N B. Clearly U <
G.

a. Show that Cg(X) is a normal subgroup of finite index in G. Show that Cg(X)
centralizes U.

b. Deduce from part (a) that Cg(X) m U is a central subgroup of U and has finite
index in U. Exercise 21 implies that U' is finite.

¢. Show that, without loss of generality, we may assume that U' = 1.

d. Clearly the subset {[a, u] : a € A, u € U} of X is finite and these elements
commute with each other. Show that [a, u]2 = |a, uz]. Conclude that [A, U] is finite.
Show that, without loss of generality, we may assume that [A, U] = 1. Conclude that,
without loss of generality U is central in G.

e. Show that X is closed under the squaring map x — x°. Conclude that [A, B] is
finite.

23. Completely Reducible Groups. A group is said to be completely reducible
if it is the direct sum of finitely many nonabelian simple groups. A subgroup H of a

group G is called subnormal if there is a finite chain H =H; < ... < H , = G. We
assume in this exercise that G is a completely reducible group and we let G =
®,_, ,A;where each A, is a simple nonabelian group.

a. We first want to show that any simple, nontrivial and normal subgroup H of G
is one of the subgroups A;. This will show that the subgroups A; are uniquely
determined. Let 1 #h = a; ... a, € H where a; € A;. Assume a; # 1. Let b; € A; \
CAi (a;).Show that 1 # [h, b;] € A; N H, conclude that A; = H.

b. Show that every normal subgroup of G is a direct sum of the subgroups A;.

Conclude that every normal subgroup of G is completely reducible and has a
complement.

21f T am not mistaken, this exercise, the way it intends to lead to the result, contains a mistake.



¢. Conclude from (a) that a subnormal subgroup of G is a normal subgroup.

24. Let G be a finite group. Let A be a minimal normal subgroup of G.

a. Show that if A has a nontrivial normal solvable subgroup, then A is an
elementary abelian subgroup.

From now on we assume that A has no nontrivial normal solvable subgroup. We
will show that A is completely reducible. Let B be a minimal A-normal subgroup of A.

b. Show that for any g € G, B® is also a minimal A-normal subgroup of A.

Conclude that if C < A, then either B* < C or C " B® = 1. Deduce that A = B @ ...

@ B* for some gy, ..., g, € G.
¢. Show that B is simple.

25. (Generalized Quaternions) Let G be the group generated by the elements x

and y subject to the relations x” = y* and ¥’ = x”' where m > 0. Show that (x) < G.
Note that x ™ = ¥™ = y* = y* = ¥". Conclude that |Gl < 4m. In fact |G| = 4m. When m
is even, G is called a generalized quaternion group. When m = 2, G is called the
quaternion group.

Semidirect Products
Let U and T be two groups and let @: T — Aut(U), t — ¢, be a group

homomorphism. We will construct a new group denoted by U X T, or justby U X T
for short. The set on which the group operation is defined is the Cartesian product U X
T, and the operation is defined as follows: (u, 1)(u', t') = (u.@(u"), t¢'). The reader will
have no difficulty in checking that this is a group with (1, 1) as the identity element.
The inverse is given by the rule: (u, zf)_1 =(9,, w™), t_l). Let G denote this group. G

is called the semidirect product of U and T (in this order; we also omit to mention @).
U can be identified with U X {1} and hence can be regarded as a normal subgroup of
G. T can be identified with {1} X T and can be regarded as a subgroup of G. Then the

subgroups U and T of G have the following properties: U < G, T<G, U NT =1 and
G=UT.
Conversely, whenever a group G has subgroups U and T satisfying these

properties, G is isomorphic to a semidirect product U Xy T where @ : T — Aut(U) is
given by @(u) = tut™,

When G = U X T, one says that the group G is split®; then the subgroups U and T
are called each other's complements. We also say that T (or U) splits in G. Note that
T is not the only complement of U in G: for example, any conjugate of T is still a
complement of U.

When the subgroup U is abelian, it is customary to denote the group operation of
U additively. In this case, it is suggestive to let tu = @4(u). Then the group operation
can be written as: (u, 1)(u', t') = (tu' + u, tt'). The reader should compare this with the
following formal matrix multiplication:

e

’ This is an abuse of language: every group G is split, for example as G=G X {1}.
When we use the term “split”, we have either U or T around.




Examples.
1. Let V be a vector space and GL(V) be the group of all vector space

automorphisms of V. The group V X GL(V) (where ¢ = 1d) is a subgroup of Sym(V)
as follows: (v, g)(w) = gw + v.

2. The subgroup B,(K) that consists of all the invertible n X n upper triangular
matrices over a field K is the semidirect product of UT,(K) (upper-triangular matrices
with ones on the diagonal) and T,(K) (invertible diagonal matrices).

Exercises.
26. Let K be any field. Show that the group

t u .
G= :te K, ue K

is a semidirect product of the form G' X T for some subgroup 7. This group is called
the affine group.

27. Show that the direct product of two groups is a special case of semidirect
product.

28. letG=UXT.
a.letU <H<G.Showthat H=U X (HNT).

b. Let T<H<G. Show that H=(UNH) X T.
c. Show that if T is abelian then G' < U.
d. Show that if 71 < T, then Ny(T) = C(T)).

29.Let G=U X T. Lett € T and x € U. Show that xt is G-conjugate to an
element of T if and only if xz is conjugate to ¢ if and only (xr)" = ¢ for some u € U if
and only if x € [U, t_l].

30. Let G = U X T and let V < U be a G-normal subgroup of U. Show that G/V
= U/V X T in a natural way.

31. Let G=U X T and let V < U be a G-normal subgroup of U. By Exercise 30,

G/V=U/V X T. Lett € T be such that V = ad(¢)(V) and U/V = ad(¢)(U/V). Show that
U = ad(r)(U).

32. Let K be a field and let n be a positive integer. For ¢ € K and x € K, let O(x)

=7x.Set G=K" Xo K. What is the center of G? Show that Z>(G) = Z(G). What is
the condition on K that insures G' = K*? Show that G is isomorphic to a subgroup of

GL(K).

Abelian Groups
We will need the following fact several times:



Fact 1. Let G be an abelian group. Let D be a divisible subgroup of G. Then D
has a complement in G, i.e. G = D @H for some H G. Furthermore every subgroup
disjoint from D can be extended to a complement of D.

Sketch of the proof: It is enough to prove the second statement. Let K be a
subgroup disjoint from D. Using Zorn's Lemma, find a subgroup H containing K,
disjoint from D and maximal for these properties. The maximality of H insures that G
=D®H.

From this fact it follows that, for some subgroup H, G = D(G) @ H where D(G)
is the unique maximal divisible subgroup of G. Clearly H has no nontrivial, divisible
subgroups.

We will also make use of the following elementary result:

Fact 2. A finitely generated abelian group is a direct sum of finitely many cyclic
groups.

Priifer p-group. Let p be any prime and consider the subset
pr ={xe C: x” =1 forsomen e N}
of complex numbers of norm 1. With the usual multiplication of complex numbers,

me is an infinite countable abelian group. It is called the Priifer p-group. Every

element of me has finite order p" for some n. Given a natural number n, there are
exactly p" elements of me that satisfy the equation x” = 1 (namely the elements

™' where k=0, ..., p" — 1).

Note that me is the union of the ascending chain of finite subgroups

(xe C: x"'=1)
which are isomorphic to the cyclic groups Z/p"Z. Thus every finite subset of
me generates a finite cyclic group (isomorphic to Z/p"Z for some n € N), i.e. pr is

a locally cyclic group.

Exercises.

33. Let G and H be two abelian groups of the same prime exponent p (such
groups are called elementary abelian p-groups) and of the same cardinality. Noting
the fact that G and H are vector spaces over the field F,, show that these groups are
isomorphic to each other. (See also Exercise 34).

34. Let G and H be two torsion-free abelian divisible groups of the same
uncountable cardinality. Noting the fact that G and H are vector spaces over Q, show
that G = H. (Compare this with Exercise 35).

35. Show that the group Q has no proper, nontrivial divisible subgroups.

36. Show that a (not necessarily abelian) torsion group that has no elements of
order p where p is a prime is p-divisible. Show that a group which is p-divisible for all
primes p is divisible. Deduce that me is a divisible abelian group.



37. Show that if a divisible abelian group contains an element of order p, then it
contains a subgroup isomorphic to me .

38. Let G be a divisible abelian group and p a prime. Let G, be the set of
elements of order p of G together with 1. G, is an elementary abelian p-group and so
it can be considered as a vector space over the field F, of p elements. Let k be the
dimension of G, over F,. Show that G contains a direct sum of k copies of pr . K1s

called the Priifer p-rank of G.

39. Let G be a divisible abelian group. Show that G = T(G) @ F where T(G) is the
set of torsion elements and F is some divisible torsion-free subgroup. Conclude that a
divisible abelian group is isomorphic to a group of the form:
(®,72.)9(®,Q

®pprime
for some sets I, and 1.

40. Let K be an algebraically closed field. First assume that char(K) = 0. Show

that
K = (-Bppﬂmezp°° @ (®,Q)
for some 1. Now assume that char(K) = p > 0. Show that
K = ®q¢p, g prime Zp‘” @ (@I Q)
for some 1.

41. Let G = pr X Z/2Z where Z/2Z acts on pr by inversion (i.e. if 1 #i
€ Z/27 then @ig) = g for all g € me. Show that G is solvable of class 2,

nonnilpotent but that the chain (Z ,(G)), <~ is strictly increasing. Show that G is
isomorphic to a Sylow 2-subgroup of PSL,(K) where K is an algebraically closed field
of characteristic # 2. (Recall that SL»(K) is the group consisting of 2 X 2 matrices of
determinant 1 over K, and PSL,(K) is the factor group of SL,(K) modulo its center

that consists of the two scalar matrices *1). What is the Sylow 2-subgroup of SL,(K)
when char(K) = 2?

42. Let G be the direct sum of finitely many copies of pr . Show that if H< G is

an infinite subgroup then H contains a nontrivial divisible subgroup.

43. This exercise will show the advantages of the additive notation over the
multiplicative one. Let G be a group and let A <G be an abelian subgroup. Let g
€ Ng(A). Thus g acts on A by conjugation. Let g € Aut(A) denote the automorphism
of A induced by g. We can view g as an element of the ring End(A) and, denoting A
additively, we can consider the endomorphism g — 1. (For a € A, (g — 1)(a) translates
into [g, a”'] when the group operation of A is denoted multiplicatively). Let p be a
prime number and assume that g’ € Cg(A). Show that either g € Cg(A) or g is an
automorphism of order p. Assume now that exp(A) = p. Show that (¢ - 1)’ = 0.
Conclude that C4(g) # 0. Conclude also that if A is infinite then C4(g) is also infinite.



44a. Conclude from the preceding exercise that if H < G is a normal subgroup of
finite index with a nontrivial center and if G is a p-group for a prime p, then G has a
nontrivial center. Deduce that a nilpotent-by-finite p-group has a nontrivial center.

b. Let G be a nilpotent-by-finite p-group. Let 1 #H < G. Show that H N Z(G)
# 1.

¢. Show that if G is a nilpotent-by-finite p-group and X < G, then X < Ng(X). This
property is called the normalizer condition.

Permutation Groups.

Let G be a group and X a set. We say that G acts on X or that (G, X) is a
permutation group if there is a map G X X — X (denoted by (g, x) — g«x or gx) that
satisfies the following properties:

1Forall g, he Gandall x € X, g(hx) =(gh)x.

2Forallxe X, lx=x.

This is saying that there is a group homomorphism @: G — Sym(X) where Sym(X) is
the group of all bijections of X. The kernel of ¢ is called the kernel of the action.
When ¢ is one-to-one, the action is called faithful. In other words, G acts faithfully
on X when gx = x for all x € X implies g = 1. Note that G/ker(¢) acts on X in a natural
way: gx = gx, and this action is faithful.

Two permutation groups (G, X) and (H, Y) are called equivalent if there are a
group isomorphism f: G — H and a bijection ¢ : X — Y such that forallge G,xe X
we have @(gx) = f(g)p(x).

Let (G, X) be a permutation group. For any Y c X, we let

Gy={ge G:gy=yforallye Y}.
Gy is called the pointwise stabilizer of Y. Note that Gy < G is a subgroup. When Y =
{x1, .., x,}, we write G,  instead of Gy. Clearly Gy is the intersection of the

subgroups G, fory € Y.
For g € G and Y < X we define gY = {gy: y € Y} and the setwise stabilizer G(Y)
={ge G:gY=Y}of Y. We have Gy < G(Y). Finally for A ¢ G, we define
F(A)={xe X:ax=xforallae A},
the set of fixed points of A.

Exercise.

45.Let A, BcG and Y, Z < X. Then the following hold:
1. A c GF(A)-

ii. Y < F(Gy).

iii. If A < B then F(B) cF(A).

iv. If Y c Z, then G < Gy.

v. F(Grw)) = F(A).

Vi. GF(GY) = Gy.

We say that G acts n-transitively on X if [X| = and if for any pairwise distinct
X1, ..., X, € X and any pairwise distinct yy, ..., y, € X, there is a g € G such that gx; = y;
for all i = 1, ..., n. Transitive means 1-transitive. We say that (G, X) is sharply n-
transitive if it is n-transitive and if the stabilizer of n distinct points is reduced to {1};
in other words, if for any distinct xy, ..., x, € X and any distinct yy, ..., y, € X, there is
a unique g € G such that gx; = y; € X for all i = 1, ..., n. Sharply 1-transitive actions



are also called regular actions. Up to equivalence, each group has only one regular
action (see Exercise 46). Clearly, for every n and IX| = n, (Sym(X), X) is sharply n and
also sharply (n—1)-transitive. If for g € G, x € X, gx = x implies g = 1, we say that the
action of G is free or that G acts freely on X.

Let X be a group and G < Aut(X). Then (G, X) is a permutation group. By
abuse of language, one says that G acts freely (resp. regularly) on X if G acts freely
(resp. regularly) on X"

Now we give the most important and, up to equivalence, the only example of
transitive group actions:

Left-Coset Representation. Let G be a group and B < G a subgroup. Set X =
G/B, the left-coset space. We can make G act on X by left multiplication: h(gB) =
hgB. This action is called the left-coset action, or the the left-coset representation.
The kernel of this action is the core Mg B® of B in G, which is the maximal G-
normal subgroup of B.

Exercises

46. Let (G, X) be a transitive permutation group. Let x € X be any point and let B
= G,. Then the permutation group (G, X) is equivalent to the left-coset representation
(G, G/B). (Hint: Let f= Idg and @: G/B — X be defined by @(gB) = gx.)

47. If Ng(B) = B, then the left-coset action of G on G/B is equivalent to the
conjugation action of G on {B%: g € G}.

48. Let (G, X) be a 2-transitive group and B = G,. Then G = B LI BgB for every g
€ G\ B. In particular B is a maximal subgroup of G. Conversely, if G is a group with
a proper subgroup B satisfying the property G = B U BgB for every (equivalently
some) g € G \ B, then the permutation group (G, G/B) is 2-transitive. (Hint: Assume
G is 2-transitive, and let x and B as in the statement. Let g € G \ B be a fixed element
of G. Let h € G\ B be any element. Since G is 2-transitive, there is an element b € G
that sends the pair of distinct points (x, gx) to the pair of distinct points (x, 4x). Thus b
€ B and bgx = hx, implying h 'bg € B and h € BgB.)

49. Let G be a group and let H <G be a subgroup. Assume [G:H] = n. By
considering the coset action G — Sym(G/H) show that [G : Mge H®] divides n!. The
subgroup NM,e HE is called the core of H in G.

50. Let (G, X) be a permutation group. Assume G has a regular normal subgroup
A (i.e. the permutation group (A, X) is regular). Show that G = A X G, for any x € X.
Show that (G, X) is equivalent to the permutation group (G, A) where G = A X G, acts
on A as follows: Fora e A, h € G, and b € A, (ah).b = ab” . Show that G is faithful

if and only if Cx(A) = 1.
51 Let (G, X) be a permutation group. Show that Gg,lx = G,*® for any x € X. Show

that if G is an n-transitive group, then for any 1<i <n, all the i-point stabilizers are
conjugate to each other.



52. Let (G, X) be a transitive permutation group. Show that if G is abelian then,
for any x € X, G is the kernel of the action and (G/G,, X) is a regular permutation
group.

53. Let n = 2 be an integer. Show that (G, X) is n-transitive if and only if (G, X \
{x}) is (n—1)-transitive for any (equivalently some) x € X. State and prove a similar
statement for sharply n-transitive groups.

54. Let (G, X) be a permutation group. A subset ¥ < X is called a set of
imprimitivity if for all g, h € G, either gY = hY or gY n hY = . If the only sets of
imprimitivity are the singleton sets and X, then (G, X) is called a primitive
permutation group. Show that a 2-transitive group is primitive. Assume that (G, X) is
transitive. Show that (G, X) is primitive if and only if G, is a maximal subgroup for
some (equiv. all) x € X. Conclude that if G is a 2-transitive group, then G, is a
maximal subgroup. (This also follows from Exercise 48).

55. Let G be a group and B < G be a proper subgroup with the following
properties: There is a g € G such that G = B U BgB and if agb = a'gb' for a, a', b, b'
€ B then a = a' and b = b'. Show that (G, G/B) is a sharply 2-transitive permutation
group.

56. Let G=A X H be a group where H acts regularly on A by conjugation (i.e.
on A ). Show that G is a sharply 2-transitive group.

57. Let (G, X) be a sharply 2-transitive permutation group, and for a fixed x € X,

set B = G,. Show that for any fixed g € G\ B, G = B Ll BgB and if agb = a'gb' for a,
b, a', b' € B, then a = a' and b = b'. Show also that the conjugates of B are disjoint
from each other. Show that there are involutions that swap given any two points.
Conclude that there are involutions outside of B.

58. Show that the group

t u .
G= :te K, ue K

acts sharply 2-transitively on the set

59. Show that G = PGL,(K) = GL,(K)/Z where Z is the set of scalar matrices (which is
exactly the center of GL,(K)) acts sharply 3-transitively on G/B where B = B,(K). Show that
there is a natural correspondence between G/B and the set K U {eo}. Transport the action of G
on K U {e} and describe it algebraically.

60. Let V be a vector space over a field K. Show that V X GL(V) acts 2-
transitively on V (see Example 1). Show that, when dimg(V) = 1, we find the example
of Exercise 58.



