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Throughout the exercises G is a group. We let Zi = Zi(G) and Z = Z(G). 

Let H and K be two subgroups of finite index of G. Show that H ∩ K has also 

finite index in G. Show that H has finitely many conjugates in G. Conclude that if a 

group has a subgroup of finite index, then it has a normal subgroup of finite index. 

(See also Exercise 49). 

 

1. (P. Hall)  

a. Show that for x, y, z ∈ G, [x, yz] = [x, z][x, y]
z
 and [xy, z] = [x, z]

y
[y, z]. 

Conclude that if H, K  ≤ G, then H and K normalize the subgroup [H, K]. Conclude 

also that if A ≤ G is an abelian subgroup and if g ∈ NG(A), then ad(g) : A → A is a 

group homomorphism whose kernel is CA(g). 

b. Let x, y, z be three elements of G. Show that  

[[x, y
−1

], z]
y
[[y, z

−1
], x]

z
[[z, x

−1
], y]

x
 = 1. 

Conclude that if H and K are two subgroups of a group G and if [[H, K], K] = 1, then 

[H, K'] = 1. 

c. (Three Subgroup Lemma of P. Hall) Let H, K, L be three normal subgroups 

of G. Using part b, show that [[H, K], L] ≤  [[K, L], H][[L, H], K]. 

d. Conclude from part (c) that  

[G 
i
, G 

j
] ≤ G 

i+j+1
,  

G
(i)

 ≤  
i

G
2 ,  

[G 
i
, Zj] ≤ Z 

j−i−1
,  

[Z 
i+1

, G 
i
] = 1. 

e. Show that a nilpotent group is solvable. Show that the converse of this 

statement is false. 

 

2. Let A � G be an abelian subgroup and let g ∈ G. By Exercise 1.a, ad(g): A 

→ A is a group homomorphism. Assume that [G', A] = 1. Show the following: 

a. CA(g) � G. 

b. [g, A] = ad(g)(A). 

c. [g, A] � G. 

 

3a. Let G be nilpotent of class n. Show that G
n − i

 ≤  Zi. Conclude that G = Zn. 

b. Conversely, assume that G = Zn. Show that G
i
 ≤  Zn−i. Conclude that G is 

nilpotent of class n. 

c. Show that G is nilpotent of class n if and only if Zn = G and Zn−1 ≠ G. 

 

4. Let H � G and K, L ≤ G. 

a. Show that [KH/H, LH/H] = [K, L]H/H. 
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 From Borovik-Nesin, “Groups of Finite Morley Rank”, chapter 1. 



b. Conclude that if G is solvable (resp. nilpotent), then so are H and G/H. 

c. Show that if G/H and H are solvable, then so is G. 

d. Find an example where the previous result fails if we replace the word 

“solvable” by “nilpotent”. 

e. Deduce from part c that if A and B are solvable subgroups of G and if one of 

them normalizes the other, then 〈 A, B 〉 = AB is also solvable. 

 

5. Let X ≤ Zn be a normal subgroup of G. Show that G is nilpotent if and only if 

G/X is. Let i be fixed integer. Show that G is nilpotent of class n if and only if G/Zi is 

nilpotent of class n − i. Show that Zi is nilpotent of class i. Find a (nilpotent) group 

where Z2 ≠ Z and Z2 is abelian. (See also Exercise 41). 

 

6. Show that a nilpotent group G satisfies the normalizer condition (i.e. if H < G 

then H < NG(H)).  

 

7. (Hirsch) Let G be a nilpotent group. Show that if G = HN ' for some H ≤ G, 

then H = G. 

 

8. (Hirsch) Let G be a nilpotent group. Show that if 1 ≠ H � G, then H ∩ Z ≠ 1. 

 

9. Let A and B be two normal nilpotent subgroups of G. Show that the subgroup 

〈A, B〉 = AB is also normal and nilpotent. 

 

10. a. Show that the subgroup G 
n
 is generated by the elements of the form [x1, 

[x2, ..., [xn, xn+1] ...]], where xi ∈ G. Find a similar statement for G
(n)

. 

b. Show that an abelian group is locally finite if and only if it is a torsion group. 

Conclude that a solvable group is locally finite if and only if it is a torsion group.  

c. Let p be a prime. Show that a nilpotent-by-finite p-group is solvable and hence 

locally finite.  

 

11. Show that for x, y ∈ G and n a positive integer, [x
n
, y] = 

[ ] [ ] [ ]yxyxyx
nn

xx
,...,,

21 −−

. 

 

12a. Let g ∈ G and H ≤ G be such that [g, H] ⊆Z. Show that the map ad(g): H 

→ Z is a group homomorphism. Show that for all h ∈ H, n ∈ Z,  

[g, h]
n
 = [g

n
, h] = [g, h

n
].  

b. Using Exercise 11, show that if z ∈ Z2 and z
n
 ∈ Z, then [z, G] is a central 

subgroup of finite exponent and that exp([z, G]) divides n. 

c. (Mal'cev, McLain) Use part b to prove, by induction on the nilpotency class, 

that if a nilpotent group has an element of order p where p is a prime, then it has 

central elements of order p.  

d. Let G be a nilpotent group and D a p-divisible subgroup of G. Show that D 

commutes with all the p-elements of G. Deduce that in a divisible nilpotent group, 

elements of finite order form a central subgroup. 

 

13. p-Divisible Nilpotent Groups. (Chernikov) Let p be a prime and let G be a 

p-divisible nilpotent group.  

a. Show that if g
p
 ∈ Z, then g ∈ Z. 



b. Conclude that Z is p-divisible, contains all the p-elements and that G/Z is p-

torsion-free and p-divisible. 

c. Show that G/Zi is p-torsion-free for all i ≥ 1. 

d. Conclude that Zi+1/Zi is p-torsion-free and p-divisible for i ≥ 1. 

 

14. Let G be a nilpotent group. 

a. Let i ≥ 1 be an integer. Show that G/G 
i
 is p-divisible if and only if G/G 

i+1
 is p-

divisible.  

b. Conclude that G is p-divisible if and only if G/G' is p-divisible. 

c. Show that G has a unique maximal p-divisible subgroup D.  

d. Assume that for some D � G, D and G/D are p-divisible. Show that G is p-

divisible. 

 

15. (Dixmier). Let G be nilpotent and assume that exp(G/G') = n. 

a. Show that exp(G
i
/G

i+1
) | n for all i. 

b. Conclude that exp(G) | n
c
 where c is the nilpotency class of G. 

 

16. Let P be a Sylow p-subgroup of G. Show that P is characteristic in NG(P). 

Conclude that NG(NG(P)) = NG(P). By Exercise 6, if G is nilpotent, NG(P) = G, i.e. P 

� G.  

Conclude that, for a given prime p, a nilpotent group G has a unique Sylow p-

subgroup, and that if G is torsion, then G is the direct sum of its Sylow p-subgroups. 

 

17. Let t ∈ G be an involution. Let X = {[t, g]: g ∈ G} 

a. Show that for x ∈ X, x
t
 = x

−1
 and that t ∉ X. Conclude that the elements of tX 

are involutions. 

b. Show that the map ϕ : G/CG(t) → X defined by ϕ(gCG(t)) = [t, g
−1

] is a well-

defined bijection. 

c. Assume from now on that G is finite and that CG(t) = {1, t}. We will show that 

X is an abelian 2'-subgroup and G = X � {1, t}. By part b, |X| = |G|/2. By part a and by 

assumption, X has no involutions. Therefore X ∩ tX = ∅. Conclude that G = X � tX 

and that X is the set of elements of order ≠ 2 of G. Therefore, X is a characteristic 

subset of G. Let x ∈ X \ {1} be a fixed element. Conclude that t
x
 inverts X as well 

(replace t by t
x
). Conclude that 1 ≠ x2

 = tt
x
 centralizes X. Therefore X = CG(x

2
) ≤  G. 

Since t inverts X, X is an abelian group without involutions.  

 

18. Let G be a finite group with an involutive automorphism α without nontrivial 

fixed points. Show that G is inverted by α. 

 

19a. Let G be a group of prime exponent p. Show that for g ∈ G*
, no two distinct 

elements of 〈 g 〉 can be conjugated in G. 

b. Show that if exp(G) = p, then G has at least p conjugacy classes. 

c. (Reineke) Let G be a group and assume that for some x ∈ G of finite order, we 

have G = x
G
 ∪ {1}. Show that |G| = 1 or 2.  

 

20. Let G be an arbitrary torsion group without involutions. Note that G is 2-

divisible (see Exercise 36). Assume G has an involutive automorphism α that does 



not fix any nontrivial elements of G. We will show that G is abelian and is inverted by 

α. 

a. Show that for a, b ∈ G, if a
2 

= b
2
 then a = b. 

Let g ∈ G. Let h ∈ G be such that h
2
 = g

α
g. 

b. Show that (h
α
)
2
 = (h

−1
)
2
. Conclude that h

α
=h

−1
. 

c. Show that (gh
−1

)
α
 = gh

−1
. Deduce that g = h. This proves the result. 

 

21. (I. Schur
2
). Assume that G/Z is finite. We will show that G' is finite. Let |G/Z| 

= n. 

a. Show that the set X = {[g, h]: g, h ∈ G} has cardinality n
2
. 

b. Let X = {x1, ..., xk}. Show that G' = { 1

1

n
x ... kn

kx : ni ∈ N}. 

c. Show that for all g, h ∈ G,  

[g, h]
n+1

 = g
−1

[g, h]
n
g[g, h] = g

−1
[g, h]

n−1 [ ]
1

,2
−

g
hg g. 

d. Conclude from parts (b) and (c) that every element of G' is a product of at most 

n
3
 elements of X and so G' is finite. 

 

22. (R. Baer). Let A, B be subgroups of G that normalize each other. Assume that 

the set X = {[a, b]: a ∈ A, b ∈ B} is finite. We will show that [A, B] is finite. Note 

first that, without loss of generality, we may assume that G = AB. With this 

assumption A and B are normal subgroups of G. Let U = [A, B] ≤ A ∩ B. Clearly U � 

G. 

a. Show that CG(X) is a normal subgroup of finite index in G. Show that CG(X) 

centralizes U. 

b. Deduce from part (a) that CG(X) ∩ U is a central subgroup of U and has finite 

index in U. Exercise 21 implies that U' is finite. 

c. Show that, without loss of generality, we may assume that U' = 1. 

d. Clearly the subset {[a, u] : a ∈ A, u ∈ U} of X is finite and these elements 

commute with each other. Show that [a, u]
2
 = [a, u

2
]. Conclude that [A, U] is finite. 

Show that, without loss of generality, we may assume that [A, U] = 1. Conclude that, 

without loss of generality U is central in G. 

e. Show that X is closed under the squaring map x � x
2
. Conclude that [A, B] is 

finite. 

 

23. Completely Reducible Groups. A group is said to be completely reducible 

if it is the direct sum of finitely many nonabelian simple groups. A subgroup H of a 

group G is called subnormal if there is a finite chain H = H1 � ... � H_n = G. We 

assume in this exercise that G is a completely reducible group and we let G = 

ni ,...,1=⊕ Ai where each Ai is a simple nonabelian group. 

a. We first want to show that any simple, nontrivial and normal subgroup H of G 

is one of the subgroups Ai. This will show that the subgroups Ai are uniquely 

determined. Let 1 ≠ h = a1 ... an ∈ H where ai ∈ Ai. Assume ai ≠ 1. Let bi ∈ Ai \ 

)( iA a
i

C . Show that 1 ≠ [h, bi] ∈ Ai ∩ H, conclude that Ai = H. 

b. Show that every normal subgroup of G is a direct sum of the subgroups Ai. 

Conclude that every normal subgroup of G is completely reducible and has a 

complement. 
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c. Conclude from (a) that a subnormal subgroup of G is a normal subgroup. 

 

24. Let G be a finite group. Let A be a minimal normal subgroup of G. 

a. Show that if A has a nontrivial normal solvable subgroup, then A is an 

elementary abelian subgroup. 

From now on we assume that A has no nontrivial normal solvable subgroup. We 

will show that A is completely reducible. Let B be a minimal A-normal subgroup of A. 

b. Show that for any g ∈ G, B
g
 is also a minimal A-normal subgroup of A. 

Conclude that if C � A, then either B
g
 ≤ C or C ∩ Bg

 = 1. Deduce that A = 1g
B ⊕ ... 

⊕ ng
B for some g1, ..., gn ∈ G. 

c. Show that B is simple. 

 

25. (Generalized Quaternions) Let G be the group generated by the elements x 

and y subject to the relations x
m
 = y

2
 and x

y
 = x

−1
 where m > 0. Show that 〈x〉 � G. 

Note that x
−m

 = x
my

 = y
2y

 = y
2
 = x

m
. Conclude that |G| ≤ 4m. In fact |G| = 4m. When m 

is even, G is called a generalized quaternion group. When m = 2, G is called the 

quaternion group.  

 

Semidirect Products 

Let U and T be two groups and let ϕ: T → Aut(U), t → ϕ t be a group 

homomorphism. We will construct a new group denoted by U �ϕ T, or just by U � T 

for short. The set on which the group operation is defined is the Cartesian product U × 

T, and the operation is defined as follows: (u, t)(u', t') = (u.ϕt(u'), tt'). The reader will 

have no difficulty in checking that this is a group with (1, 1) as the identity element. 

The inverse is given by the rule: (u, t)
−1

 = ( )( 1
1

−
−ϕ u

t
, t

−1
). Let G denote this group. G 

is called the semidirect product of U and T (in this order; we also omit to mention ϕ). 

U can be identified with U × {1} and hence can be regarded as a normal subgroup of 

G. T can be identified with {1} × T and can be regarded as a subgroup of G. Then the 

subgroups U and T of G have the following properties: U � G, T ≤ G, U ∩ T = 1 and 

G = UT.  

Conversely, whenever a group G has subgroups U and T satisfying these 

properties, G is isomorphic to a semidirect product U �ϕ T where ϕ : T → Aut(U) is 

given by ϕt(u) = tut
−1

.  

When G = U � T, one says that the group G is split
3
; then the subgroups U and T 

are called each other's complements. We also say that T (or U) splits in G. Note that 

T is not the only complement of U in G: for example, any conjugate of T is still a 

complement of U.  

When the subgroup U is abelian, it is customary to denote the group operation of 

U additively. In this case, it is suggestive to let tu = ϕt(u). Then the group operation 

can be written as: (u, t)(u', t') = (tu' + u, tt'). The reader should compare this with the 

following formal matrix multiplication:  








 +
=

















10

''

10

''

10

ututtutut
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 This is an abuse of language: every group G is split, for example as G = G � {1}. 

When we use the term “split”, we have either U or T around. 



 

Examples. 
1. Let V be a vector space and GL(V) be the group of all vector space 

automorphisms of V. The group V � GL(V) (where ϕ = Id) is a subgroup of Sym(V) 

as follows: (v, g)(w) = gw + v. 

 

2. The subgroup Bn(K) that consists of all the invertible n × n upper triangular 

matrices over a field K is the semidirect product of UTn(K) (upper-triangular matrices 

with ones on the diagonal) and Tn(K) (invertible diagonal matrices).  

 

Exercises. 
26. Let K be any field. Show that the group  

G = 








∈∈







KuKt

ut
,:

10

*  

is a semidirect product of the form G' � T for some subgroup T. This group is called 

the affine group.  

 

27. Show that the direct product of two groups is a special case of semidirect 

product. 

 

28. Let G = U � T. 

a. Let U  ≤ H ≤ G. Show that H = U � (H ∩ T). 

b. Let T ≤ H ≤ G. Show that H = (U ∩ H) � T. 

c. Show that if T is abelian then G' ≤ U. 

d. Show that if T1 ≤ T, then NU(T1) = CU(T1). 

 

29. Let G = U � T. Let t ∈ T and x ∈ U. Show that xt is G-conjugate to an 

element of T if and only if xt is conjugate to t if and only (xt)
u
 = t for some u ∈ U if 

and only if x ∈ [U, t
−1

].  

 

30. Let G = U � T and let V ≤ U be a G-normal subgroup of U. Show that G/V 

≈ U/V � T in a natural way. 

 

31. Let G = U � T and let V ≤ U be a G-normal subgroup of U. By Exercise 30, 

G/V ≈ U/V � T. Let t ∈ T be such that V = ad(t)(V) and U/V = ad(t)(U/V). Show that 

U = ad(t)(U). 

 

32. Let K be a field and let n be a positive integer. For t ∈ K*
 and x ∈ K, let ϕt(x) 

= t
n
x. Set G = K

+
 �ϕ K

*
. What is the center of G? Show that Z2(G) = Z(G). What is 

the condition on K that insures G' ≈ K+
? Show that G is isomorphic to a subgroup of 

GL2(K). 

 

Abelian Groups 

We will need the following fact several times: 



Fact 1. Let G be an abelian group. Let D be a divisible subgroup of G. Then D 

has a complement in G, i.e. G = D ⊕ H for some H   G. Furthermore every subgroup 

disjoint from D can be extended to a complement of D.  

Sketch of the proof: It is enough to prove the second statement. Let K be a 

subgroup disjoint from D. Using Zorn's Lemma, find a subgroup H containing K, 

disjoint from D and maximal for these properties. The maximality of H insures that G 

= D ⊕ H. 

 

 From this fact it follows that, for some subgroup H, G = D(G) ⊕ H where D(G) 

is the unique maximal divisible subgroup of G. Clearly H has no nontrivial, divisible 

subgroups. 

We will also make use of the following elementary result: 

 

Fact 2. A finitely generated abelian group is a direct sum of finitely many cyclic 

groups.  

 

Prüfer p-group. Let p be any prime and consider the subset  

∞
p

Z  = {x ∈ C: 
n

p
x  = 1 for some n ∈ N} 

of complex numbers of norm 1. With the usual multiplication of complex numbers, 

∞
p

Z is an infinite countable abelian group. It is called the Prüfer p-group. Every 

element of ∞
p

Z has finite order p
n
 for some n. Given a natural number n, there are 

exactly p
n
 elements of ∞

p
Z that satisfy the equation 

n
p

x = 1 (namely the elements 

n
pik

e
/2 π where k = 0, ..., p

n
 − 1).  

Note that ∞
p

Z is the union of the ascending chain of finite subgroups  

{x ∈ C: 
n

p
x = 1} 

which are isomorphic to the cyclic groups Z/p
n
Z. Thus every finite subset of 

∞
p

Z generates a finite cyclic group (isomorphic to Z/p
n
Z for some n ∈ N), i.e. ∞

p
Z is 

a locally cyclic group. 

 

Exercises. 
33. Let G and H be two abelian groups of the same prime exponent p (such 

groups are called elementary abelian p-groups) and of the same cardinality. Noting 

the fact that G and H are vector spaces over the field Fp, show that these groups are 

isomorphic to each other. (See also Exercise 34).  

 

34. Let G and H be two torsion-free abelian divisible groups of the same 

uncountable cardinality. Noting the fact that G and H are vector spaces over Q, show 

that G ≈ H. (Compare this with Exercise 35). 

 

35. Show that the group Q has no proper, nontrivial divisible subgroups. 

Conclude that Q and Q ⊕ Q are not isomorphic. Generalize this to ni ,...,1=⊕  Q. 

 

36. Show that a (not necessarily abelian) torsion group that has no elements of 

order p where p is a prime is p-divisible. Show that a group which is p-divisible for all 

primes p is divisible. Deduce that ∞
p

Z is a divisible abelian group. 



 

37. Show that if a divisible abelian group contains an element of order p, then it 

contains a subgroup isomorphic to ∞
p

Z . 

 

38. Let G be a divisible abelian group and p a prime. Let Gp be the set of 

elements of order p of G together with 1. Gp is an elementary abelian p-group and so 

it can be considered as a vector space over the field Fp of p elements. Let κ be the 

dimension of Gp over Fp. Show that G contains a direct sum of κ copies of ∞
p

Z . κ is 

called the Prüfer p-rank of G.  

 

39. Let G be a divisible abelian group. Show that G = T(G) ⊕ F where T(G) is the 

set of torsion elements and F is some divisible torsion-free subgroup. Conclude that a 

divisible abelian group is isomorphic to a group of the form:  

Q)()Z(prime IpIp p
⊕⊕⊕⊕ ∞  

for some sets Ip and I.  

 

40. Let K be an algebraically closed field. First assume that char(K) = 0. Show 

that  

Q)(Zprime

*

IppK ⊕⊕⊕= ∞  

for some I. Now assume that char(K) = p > 0. Show that  

Q)(Zprime,

*

IpqpqK ⊕⊕⊕= ∞≠  

for some I. 

 

41. Let G = ∞
p

Z � Z/2Z where Z/2Z acts on ∞
p

Z by inversion (i.e. if 1 ≠ i 

∈ Z/2Z then ϕi(g) = g
−1

 for all g ∈ ∞
p

Z . Show that G is solvable of class 2, 

nonnilpotent but that the chain (Z_n(G))n ∈ N is strictly increasing. Show that G is 

isomorphic to a Sylow 2-subgroup of PSL2(K) where K is an algebraically closed field 

of characteristic ≠ 2. (Recall that SL2(K) is the group consisting of 2 × 2 matrices of 

determinant 1 over K, and PSL2(K) is the factor group of SL2(K) modulo its center 

that consists of the two scalar matrices ±1). What is the Sylow 2-subgroup of SL2(K) 

when char(K) = 2?  

 

42. Let G be the direct sum of finitely many copies of ∞
p

Z . Show that if H ≤ G is 

an infinite subgroup then H contains a nontrivial divisible subgroup. 

  

43. This exercise will show the advantages of the additive notation over the 

multiplicative one. Let G be a group and let A ≤ G be an abelian subgroup. Let g 

∈ NG(A). Thus g acts on A by conjugation. Let ğ ∈ Aut(A) denote the automorphism 

of A induced by g. We can view ğ as an element of the ring End(A) and, denoting A 

additively, we can consider the endomorphism ğ − 1. (For a ∈ A, (ğ − 1)(a) translates 

into [g, a
−1

] when the group operation of A is denoted multiplicatively). Let p be a 

prime number and assume that g
p
 ∈ CG(A). Show that either g ∈ CG(A) or ğ is an 

automorphism of order p. Assume now that exp(A) = p. Show that (ğ - 1)
p
 = 0. 

Conclude that CA(g) ≠ 0. Conclude also that if A is infinite then CA(g) is also infinite. 

 



44a. Conclude from the preceding exercise that if H � G is a normal subgroup of 

finite index with a nontrivial center and if G is a p-group for a prime p, then G has a 

nontrivial center. Deduce that a nilpotent-by-finite p-group has a nontrivial center.  

b. Let G be a nilpotent-by-finite p-group. Let 1 ≠ H � G. Show that H ∩ Z(G) 

≠ 1. 

c. Show that if G is a nilpotent-by-finite p-group and X < G, then X < NG(X). This 

property is called the normalizer condition.  

 

Permutation Groups. 

Let G be a group and X a set. We say that G acts on X or that (G, X) is a 

permutation group if there is a map G × X → X (denoted by (g, x) → g*x or gx) that 

satisfies the following properties: 

1 For all g, h ∈ G and all x ∈ X, g(hx) = (gh)x. 

2 For all x ∈ X, 1x = x. 

This is saying that there is a group homomorphism ϕ: G → Sym(X) where Sym(X) is 

the group of all bijections of X. The kernel of ϕ is called the kernel of the action. 

When ϕ is one-to-one, the action is called faithful. In other words, G acts faithfully 

on X when gx = x for all x ∈ X implies g = 1. Note that G/ker(ϕ) acts on X in a natural 

way: ğx = gx, and this action is faithful.  

Two permutation groups (G, X) and (H, Y) are called equivalent if there are a 

group isomorphism f : G → H and a bijection ϕ : X → Y such that for all g ∈ G, x ∈ X 

we have ϕ(gx) = f(g)ϕ(x). 

Let (G, X) be a permutation group. For any Y ⊆ X, we let  

GY = {g ∈ G : gy = y for all y ∈ Y}. 

GY is called the pointwise stabilizer of Y. Note that GY ≤ G is a subgroup. When Y = 

{x1, ..., xn}, we write 
nxxG ,...,1

instead of GY. Clearly GY is the intersection of the 

subgroups Gy for y ∈ Y.  

 For g ∈ G and Y ⊆ X we define gY = {gy: y ∈ Y} and the setwise stabilizer G(Y) 

= {g ∈ G : gY = Y} of Y. We have GY ≤ G(Y). Finally for A ⊆ G, we define  

F(A) = {x ∈ X: ax = x for all a ∈ A}, 

the set of fixed points of A.  

 

Exercise.  

45. Let A, B ⊆G and Y, Z ⊆ X. Then the following hold: 

i. A ⊆ GF(A). 

ii. Y ⊆ F(GA). 

iii. If A ⊆ B then F(B) ⊆F(A). 

iv. If Y ⊆ Z, then GZ ≤ GY. 

v. F(GF(A)) = F(A). 

vi. )( YGFG = GY. 

 

We say that G acts n-transitively on X if |X| ≥ n and if for any pairwise distinct 

x1, ..., xn ∈ X and any pairwise distinct y1, ..., yn ∈ X, there is a g ∈ G such that gxi = yi 

for all i = 1, ..., n. Transitive means 1-transitive. We say that (G, X) is sharply n-

transitive if it is n-transitive and if the stabilizer of n distinct points is reduced to {1}; 

in other words, if for any distinct x1, ..., xn ∈ X and any distinct y1, ..., yn ∈ X, there is 

a unique g ∈ G such that gxi = yi ∈ X for all i = 1, ..., n. Sharply 1-transitive actions 



are also called regular actions. Up to equivalence, each group has only one regular 

action (see Exercise 46). Clearly, for every n and |X| = n, (Sym(X), X) is sharply n and 

also sharply (n−1)-transitive. If for g ∈ G, x ∈ X, gx = x implies g = 1, we say that the 

action of G is free or that G acts  freely on X. 

 Let X be a group and G ≤ Aut(X). Then (G, X) is a permutation group. By 

abuse of language, one says that G acts freely (resp. regularly) on X if G acts freely 

(resp. regularly) on X
*
. 

 Now we give the most important and, up to equivalence, the only example of 

transitive group actions:  

 

Left-Coset Representation. Let G be a group and B ≤ G a subgroup. Set X = 

G/B, the left-coset space. We can make G act on X by left multiplication: h(gB) = 

hgB. This action is called the left-coset action, or the the left-coset representation. 

The kernel of this action is the core ∩g∈G B
g
 of B in G, which is the maximal G-

normal subgroup of B. 

 

Exercises  

 

46. Let (G, X) be a transitive permutation group. Let x ∈ X be any point and let B 

= Gx. Then the permutation group (G, X) is equivalent to the left-coset representation 

(G, G/B). (Hint: Let f = IdG and ϕ: G/B → X be defined by ϕ(gB) = gx.) 

 

47. If NG(B) = B, then the left-coset action of G on G/B is equivalent to the 

conjugation action of G on {B
g
: g ∈ G}. 

 

48. Let (G, X) be a 2-transitive group and B = Gx. Then G = B � BgB for every g 

∈ G \ B. In particular B is a maximal subgroup of G. Conversely, if G is a group with 

a proper subgroup B satisfying the property G = B ∪ BgB for every (equivalently 

some) g ∈ G \ B, then the permutation group (G, G/B) is 2-transitive. (Hint: Assume 

G is 2-transitive, and let x and B as in the statement. Let g ∈ G \ B be a fixed element 

of G. Let h ∈ G \ B be any element. Since G is 2-transitive, there is an element b ∈ G 

that sends the pair of distinct points (x, gx) to the pair of distinct points (x, hx). Thus b 

∈ B and bgx = hx, implying h
−1

bg ∈ B and h ∈ BgB.) 

 

49. Let G be a group and let H ≤ G be a subgroup. Assume [G:H] = n. By 

considering the coset action G → Sym(G/H) show that [G : ∩g∈G H
g
] divides n!. The 

subgroup ∩g∈G H
g
 is called the core of H in G.  

 

50. Let (G, X) be a permutation group. Assume G has a regular normal subgroup 

A (i.e. the permutation group (A, X) is regular). Show that G = A � Gx for any x ∈ X. 

Show that (G, X) is equivalent to the permutation group (G, A) where G = A � Gx acts 

on A as follows: For a ∈ A, h ∈ Gx and b ∈ A, (ah).b = 
1−

h
ab . Show that G is faithful 

if and only if CH(A) = 1.  

 

51 Let (G, X) be a permutation group. Show that 
xg

G 1−  = Gx 
g
 for any x ∈ X. Show 

that if G is an n-transitive group, then for any 1≤ i ≤ n, all the i-point stabilizers are 

conjugate to each other. 



 

52. Let (G, X) be a transitive permutation group. Show that if G is abelian then, 

for any x ∈ X, Gx is the kernel of the action and (G/Gx, X) is a regular permutation 

group. 

 

53. Let n ≥ 2 be an integer. Show that (G, X) is n-transitive if and only if (Gx, X \ 

{x}) is (n−1)-transitive for any (equivalently some) x ∈ X. State and prove a similar 

statement for sharply n-transitive groups. 

 

54. Let (G, X) be a permutation group. A subset Y ⊆ X is called a set of 

imprimitivity if for all g, h ∈ G, either gY = hY or gY ∩ hY = ∅. If the only sets of 

imprimitivity are the singleton sets and X, then (G, X) is called a primitive 

permutation group. Show that a 2-transitive group is primitive. Assume that (G, X) is 

transitive. Show that (G, X) is primitive if and only if Gx is a maximal subgroup for 

some (equiv. all) x ∈ X. Conclude that if G is a 2-transitive group, then Gx is a 

maximal subgroup. (This also follows from Exercise 48). 

  

55. Let G be a group and B < G be a proper subgroup with the following 

properties: There is a g ∈ G such that G = B ∪ BgB and if agb = a'gb' for a, a', b, b' 

∈ B then a = a' and b = b'. Show that (G, G/B) is a sharply 2-transitive permutation 

group. 

 

56. Let G = A � H  be a group where H acts regularly on A by conjugation (i.e. 

on A
*
). Show that G is a sharply 2-transitive group.  

 

57. Let (G, X) be a sharply 2-transitive permutation group, and for a fixed x ∈ X, 

set B = Gx. Show that for any fixed g ∈ G \ B, G = B � BgB and if agb = a'gb' for a, 

b, a', b' ∈ B, then a = a' and b = b'. Show also that the conjugates of B are disjoint 

from each other. Show that there are involutions that swap given any two points. 

Conclude that there are involutions outside of B. 

 

58.  Show that the group  

G = 








∈∈







KuKt

ut
,:

10

*  

acts sharply 2-transitively on the set  

X = .:
1 








∈







Kx

x
 

 
59. Show that G = PGL2(K) = GL2(K)/Z where Z is the set of scalar matrices (which is 

exactly the center of GL2(K)) acts sharply 3-transitively on G/B where B = B2(K). Show that 

there is a natural correspondence between G/B and the set K ∪ {∞}. Transport the action of G 

on K ∪ {∞} and describe it algebraically.  

 

60. Let V be a vector space over a field K. Show that V � GL(V) acts 2-

transitively on V (see Example 1). Show that, when dimK(V) = 1, we find the example 

of Exercise 58. 

  


