Math 111
 (Group Theory)

Resit II

15th of July, 1999
Ali Nesin
G will always denote a group, p stands for a prime natural number, n is a natural number. If $A \subseteq G$ and $H \leq G$, the centralizer of A in H is the subgroup

$$
\mathrm{C}_{H}(A)=\{h \in H: h a=a h \text { for all } a \in A\},
$$

the center of H is

$$
\mathrm{Z}(H)=\mathrm{C}_{H}(H)=\{z \in H: h z=z h \text { for all } h \in H\}
$$

the normalizer of H in G is

$$
\mathrm{N}_{G}(H)=\{g \in G: g H=H g\} .
$$

$\mathrm{C}_{H}(A), \mathrm{Z}(H)$ and $\mathrm{N}_{G}(H)$ are all subgroups of G.
The subgroup H of G is called n-divisible if for any $h \in H$ there is an $x \in H$ such that $x^{n}=h$.
G is called torsion-free if for all $g \in G$ and $n>0, g^{n}=1$ implies $g=1$.
1a. Show that if G is finite and has an element of order n, then n divides $|G|$. (5 pts.)

1b. Is the converse true? I.e. if $|G|$ is finite and divisible by n, is it true that G has an element of order n ? (2 pts.)
2. Show that if $|G|=p$ (a prime) then G is cyclic. (5 pts.)

3a. What is the order of the element (123)(456)(789) in Sym(9)? (2 pts.)
3b. What is the subgroup of $\operatorname{Sym}(12)$ generated by the element (12)(3 45$)(67$ 8 9)? (2 pts.)

4a. Show that the subgroups generated by $\sqrt{ } 2$ and $\sqrt{ } 3$ in \mathbb{R}^{+}are isomorphic. (3 pts.)

4b. Show that the subgroup generated by $\sqrt{ } 2$ and $\sqrt{ } 3$ in \mathbb{R}^{*} is isomorphic to $\mathbb{Z} \times$ Z. (4 pts.)
5. Let $h \in G$ and A a finite subset of G be such that $A^{h} \subseteq A$. Show that $A^{h}=A$. (3 pts.)
6. Let φ be the homomorphism $\varphi: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by

$$
\varphi(x, y, z, t)=(x-y+t, z+t) .
$$

6a. Show that $\operatorname{Ker}(\varphi) \approx \mathbb{R} \times \mathbb{R}$. (7 pts.)
$\mathbf{6 b}$. Is φ onto? (3 pts.)
7. Show that if $H \triangleleft G$, then $[G, H] \leq H$. (4 pts.)
8. Let $g \in G, H \leq G$ and n and m two integers prime to each other.

8a. Assume that $g^{m}, g^{n} \in H$. Show that $g \in H$. (5 pts .)
8b. Assume that $g^{m}=g^{n}=1$. Show that $g=1$. (2 pts .)
9a. Show that if $A \subseteq B \subseteq G$, then $\mathrm{C}_{G}(B) \leq \mathrm{C}_{G}(A)$. (2 pts.)
9b. Show that for any $A \subseteq G, A \subseteq \mathrm{C}_{G}\left(\mathrm{C}_{G}(A)\right)$. (3 pts.)
9c. Show that for any $A \subseteq G, \mathrm{C}_{G}(A)=\mathrm{C}_{G}\left(\mathrm{C}_{G}\left(\mathrm{C}_{G}(A)\right)\right.$). (5 pts.)
10. Find a nonabelian group of order 8. (6 pts.)
11. Let $H=\{(a+b, a-b, a): a, b \in \mathbb{R}\} \leq \mathbb{R}^{3}$. Show that $\mathbb{R}^{3} / H \approx \mathbb{R}$. (7 pts.)

12a. Show that for any $a \in G, a \in \mathrm{Z}\left(\mathrm{C}_{G}(a)\right)$. (2 pts.)
12b. Show that if G is finite abelian and if $(n,|G|)=1$ then G is n-divisible. (7 pts.)

12c. Show that if G is finite and if $(n,|G|)=1$ then G is n-divisible. (Hint: Use parts a and b). (5 pts.)

13a. Show that $\mathbb{R}^{+} / \mathbb{Q}^{+}$is torsion-free. (2 pts .)
$\mathbf{1 3 b}$. What is the cardinality of the set of elements of order 2 of $\mathbb{R} * / \mathbb{Q}^{*}$. (4 pts.)
13c. Show that $\mathbb{R} / \mathbb{Z} \approx \mathbb{R} / 2 \mathbb{Z}$. (6 pts.)
13d. Find all subgroups of finite order of \mathbb{Q}^{*}. (4 pts.)
14. Show that $\left\langle g^{2}: g \in G\right\rangle \triangleleft G$. (4 pts.)

15a. Let A and B be two finite cyclic groups of orders prime to each other. Show that $A \times B$ is cyclic. (6 pts.)

15b. Let A and B be two finite cyclic groups of orders not prime to each other. Show that $A \times B$ is not cyclic. (8 pts .)

16a. Show that for all $a \in G, \mathrm{C}_{G}(a)=\mathrm{C}_{G}\left(a^{-1}\right)$. (4 pts.)
16b. Show that for all $a, x \in G, \mathrm{C}_{G}(a)^{x}=\mathrm{C}_{G}\left(a^{x}\right)$. (3 pts.)
16c. Let i and j be two elements of order 2 of G. Let $x=i j$. Show that $(i j)^{i}=$ $(i j)^{-1}$. (3 pts.)

16d. Let i and j be two elements of order 2 of G. Show that $i \in \mathrm{~N}_{\mathrm{G}}\left(\mathrm{C}_{G}(i j)\right)$. (4 pts.)
17. Show that any group G has maximal abelian subgroups. (10 pts.)

