Math 111 (Group Theory) Resit II 15th of July, 1999 Ali Nesin

G will always denote a group, *p* stands for a prime natural number, *n* is a natural number. If $A \subseteq G$ and $H \leq G$, the **centralizer** of *A* in *H* is the subgroup

 $C_H(A) = \{h \in H : ha = ah \text{ for all } a \in A\},\$

the **center** of *H* is

$$Z(H) = C_H(H) = \{z \in H : hz = zh \text{ for all } h \in H\},\$$

the **normalizer** of *H* in *G* is

 $\mathcal{N}_G(H) = \{g \in G : gH = Hg\}.$

 $C_H(A)$, Z(H) and $N_G(H)$ are all subgroups of G.

The subgroup *H* of *G* is called *n*-divisible if for any $h \in H$ there is an $x \in H$ such that $x^n = h$.

G is called **torsion-free** if for all $g \in G$ and n > 0, $g^n = 1$ implies g = 1.

1a. Show that if *G* is finite and has an element of order *n*, then *n* divides |G|. (5 pts.)

1b. Is the converse true? I.e. if |G| is finite and divisible by *n*, is it true that *G* has an element of order *n*? (2 pts.)

2. Show that if |G| = p (a prime) then G is cyclic. (5 pts.)

3a. What is the order of the element $(1\ 2\ 3)(4\ 5\ 6)(7\ 8\ 9)$ in Sym(9)? (2 pts.)

3b. What is the subgroup of Sym(12) generated by the element $(1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9)? (2 \ pts.)$

4a. Show that the subgroups generated by $\sqrt{2}$ and $\sqrt{3}$ in \mathbb{R}^+ are isomorphic. (3 pts.)

4b. Show that the subgroup generated by $\sqrt{2}$ and $\sqrt{3}$ in \mathbb{R}^* is isomorphic to $\mathbb{Z} \times \mathbb{Z}$. (4 pts.)

5. Let $h \in G$ and A a finite subset of G be such that $A^h \subseteq A$. Show that $A^h = A$. (3 pts.)

6. Let φ be the homomorphism $\varphi : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by $\varphi(x, y, z, t) = (x - y + t, z + t).$

6a. Show that $\text{Ker}(\phi) \approx \mathbb{R} \times \mathbb{R}$. (7 pts.) **6b.** Is ϕ onto? (3 pts.)

7. Show that if $H \triangleleft G$, then $[G, H] \leq H$. (4 pts.)

8. Let $g \in G$, $H \leq G$ and *n* and *m* two integers prime to each other. **8a.** Assume that g^m , $g^n \in H$. Show that $g \in H$. (5 pts.) **8b.** Assume that $g^m = g^n = 1$. Show that g = 1. (2 pts.)

9a. Show that if $A \subseteq B \subseteq G$, then $C_G(B) \leq C_G(A)$. (2 pts.) **9b.** Show that for any $A \subseteq G$, $A \subseteq C_G(C_G(A))$. (3 pts.) **9c.** Show that for any $A \subseteq G$, $C_G(A) = C_G(C_G(C_G(A)))$. (5 pts.)

10. Find a nonabelian group of order 8. (6 pts.)

11. Let $H = \{(a + b, a - b, a) : a, b \in \mathbb{R}\} \le \mathbb{R}^3$. Show that $\mathbb{R}^3/H \approx \mathbb{R}$. (7 pts.)

12a. Show that for any $a \in G$, $a \in Z(C_G(a))$. (2 pts.)

12b. Show that if *G* is finite abelian and if (n, |G|) = 1 then *G* is *n*-divisible. (7 pts.)

12c. Show that if *G* is finite and if (n, |G|) = 1 then *G* is *n*-divisible. (**Hint:** Use parts a and b). (5 pts.)

13a. Show that R⁺/Q⁺ is torsion-free. (2 pts.)
13b. What is the cardinality of the set of elements of order 2 of R^{*}/Q^{*}. (4 pts.)
13c. Show that R/Z ≈ R/2Z. (6 pts.)
13d. Find all subgroups of finite order of Q^{*}. (4 pts.)

14. Show that $\langle g^2 : g \in G \rangle \triangleleft G$. (4 pts.)

15a. Let A and B be two finite cyclic groups of orders prime to each other. Show that $A \times B$ is cyclic. (6 pts.)

15b. Let *A* and *B* be two finite cyclic groups of orders **not** prime to each other. Show that $A \times B$ is not cyclic. (8 pts.)

16a. Show that for all $a \in G$, $C_G(a) = C_G(a^{-1})$. (4 pts.)

16b. Show that for all $a, x \in G$, $C_G(a)^x = C_G(a^x)$. (3 pts.)

16c. Let *i* and *j* be two elements of order 2 of *G*. Let x = ij. Show that $(ij)^i = (ij)^{-1}$. (3 pts.)

16d. Let *i* and *j* be two elements of order 2 of *G*. Show that $i \in N_G(C_G(ij))$. (4 pts.)

17. Show that any group *G* has maximal abelian subgroups. (10 pts.)