Group Theory

Homework
8 Ağustos 1999
Ali Nesin
Throughout G denotes a group.

1. Let G be such that $G / Z(G)$ is cyclic. Show that G is abelian.
2. Let $H \leq G$ and $g \in G$. Show that $g \mathrm{Hg}^{-1}$ is a subgroup of G isomorphic to H.
3. Let $H, K \leq G$. Assume that for all $k \in K, k H k^{-1} \subseteq H$. Show that $K \leq \mathrm{N}_{G}(H)$.
4. The conjugacy class of an element $a \in G$ is defined to be

$$
a^{G}=\left\{a^{g}: g \in G\right\} .
$$

Note that $a \in a^{\mathrm{G}}$.
4a. Show that two conjugacy classes are either disjoint or equal. In other words conjugacy classes partition G.

4b. Show that $\left|\mathrm{C}_{G}(a)\right|=1$ iff $a \in Z(G)$ iff $\left|a^{G}\right|=1$
4c. Let $G / \mathrm{C}_{\mathrm{G}}(a)$ denote the right coset space $\left\{\mathrm{C}_{G}(a) g: g \in G\right\}$. Show that there is a one-to-one correspondance between $G / \mathrm{C}_{\mathrm{G}}(a)$ and a^{G}.

4d. Assume now that G is finite. By using parts a, b and c show that

$$
|G|=|Z(G)|+\sum\left|G / C_{G}(a)\right|
$$

where the summation runs over a set of elements a of G such that $\mathrm{C}_{G}(a) \neq G$.
4e. Assume $|G|=p^{n}$ for some prime p and integer $n>0$. By using part d show that $\mathrm{Z}(G) \neq 1$.

4f. Assume p is a prime and divides $|G|$. Show that G has an element of order p. (Hint: Proceed by induction on $|G|$. First consider the case when G is abelian. Then use part d).
5. Let $H \triangleleft G$ and $X \leq G / H$. For $g \in G$, let \bar{g} denote the image of g in G / H. Let $K=\{g \in G: \bar{g} \in X\}$.

5a. Show that $K \leq G$.
5b. Show that $H \leq K$.
5c. Show that $X=K / H$.
5d. Show that $X \triangleleft G / H$ if and only if $K \triangleleft G$.
5e. Show that K is the unique subgroup of G containing H that satisfies part c.
6. Let $S=\left\{g^{2}: g \in G\right\}$.

6a. Is S necessarily a subgroup? Prove or disprove.
6b. Show that $G^{\prime} S$ is a normal subgroup of G. (G^{\prime} denotes the subgroup generated by $\left.\left\{x^{-1} y^{-1} x y: x, y \in G\right\}\right)$.
$\mathbf{6 c}$. Show that $G / G^{\prime} S$ is a group of exponent 2 .
7. Let $H \triangleleft G$ and K a normal subgroup of G containing H.

7a. Show that $K / H \triangleleft G / H$.
7b. Show that $(G / H) /(K / H) \approx G / K$.
8. Let $H \triangleleft G$ and $K \leq G$.

8a. Show that $H \cap K \triangleleft K$.
8b. By a previous homework we know that $\langle H, K\rangle=H K$. Show that $H K / H \approx$ $K /(H \cap K)$.

8c. Show that if H and K are two normal subgroups of finite index of G, then H $\cap K$ has also finite index in G.
9. Let $H \leq G$. Let $\mathrm{N}_{G}(H)=\{g \in G: g H=H g\}$.

9a. Show that there exists a one to one correspondance between the right coset space $G / \mathrm{N}_{G}(H)$ and the set $\left\{H^{g}: g \in G\right\}$.

9b. Let $n=[G: H]<\infty$. Show that $\left|\left\{H^{g}: g \in G\right\}\right|$ divides n.
9c. Assume H has finite index in G. Using 7 b and 6 c , show that $\bigcap_{g \in G} g^{-1} H g$ has finite index in G.

10a. Show that \mathbb{Q}^{+}does not have a proper subgroup of finite index.
10b. Show that \mathbb{Q}^{+}does not have a maximal proper subgroup.
10c. Show that among the subgroups of \mathbb{Q}^{+}that does not contain 1 , there is one which is maximal.
11. Let $H \leq G$. Show that there is a subgroup of G which is maximal with respect to the property $X \cap H=\{1\}$.
12. Let $H \leq G$. Show that $\bigcap_{g \in G} g^{-1} H g$ is the unique maximal G-normal subgroup of H.
13. Let $H \leq G$. Let G / H denote the left coset space. For $g \in G$ and $x H \in G / H$, let $g^{*}(x H)=g x H$.
13a. Show that $g^{*} \in \operatorname{Sym}(G / H)$.
13b. Show that the map $g \rightarrow g^{*}$ is a homomorphism from G into $\operatorname{Sym}(G / H)$.
13c. What is the kernel of the homomorphism *?
13d. Assuming that $[G: H]=n<\infty$, show that $\left[G: \bigcap_{g \in G} g^{-1} H g\right]$ divides $n!$.
14. Let $G^{\mathrm{o}}=G^{(0)}=G$ and for $i \in \mathbb{N}$, define $G^{i+1}=\left[G, G^{i}\right]$ and $G^{(i+1)}=\left[G^{(i)}\right.$, $\left.G^{(i)}\right]$.

14a. Show that $\left(G^{i}\right)_{i}$ and $\left(G^{(i)}\right)_{i}$ are descending chain of normal subgroups of G.
14b. Show that $G^{(i)} \leq G^{i}$ for all i.
14c. Show that for $i \leq j,\left(G / G^{(j)}\right)^{(i)}=\left(G^{(i)} / G^{(j)}\right)$.
15. An element σ of $\operatorname{Sym}(n)$ is said to be of type $\left(n_{1}, \ldots, n_{k}\right)$ if $n_{1} \leq \ldots \leq n_{k}$ and σ is the product of k disjoint cycles each of length n_{1}, \ldots, n_{k}. For example, the element $(123)(45)(6789)(1011)$
is of type $(2,2,3,4)$.

15a. Show that two elements of $\operatorname{Sym}(n)$ are conjugate by an element of $\operatorname{Sym}(n)$ if and only if they have the same type. (Two elements σ and τ of a group G are said to be conjugate, if there is an $\alpha \in G$ such that $\sigma=\alpha^{-1} \tau \alpha$).

15b. Let $\sigma=(123)(45)$. Calculate $\left|\sigma^{\operatorname{Sym}(5)}\right|$ and $\left|\sigma^{\operatorname{Sym}(6)}\right|$.
15c. Compute $\left|\mathrm{C}_{S y m(5)}(\sigma)\right|$ and $\left|\mathrm{C}_{S y m(6)}(\sigma)\right|$.
15d. Find the elements of $\mathrm{C}_{\mathrm{Sym}(5)}(\sigma)$ and $\mathrm{C}_{\mathrm{Sym}(6)}(\sigma)$.

