Group Theory

Homework 8 Ağustos 1999 Ali Nesin

Throughout G denotes a group.

1. Let *G* be such that G/Z(G) is cyclic. Show that *G* is abelian.

2. Let $H \le G$ and $g \in G$. Show that gHg^{-1} is a subgroup of G isomorphic to H.

3. Let $H, K \leq G$. Assume that for all $k \in K$, $kHk^{-1} \subseteq H$. Show that $K \leq N_G(H)$.

4. The conjugacy class of an element $a \in G$ is defined to be

$$a^G = \{a^g : g \in G\}.$$

Note that $a \in a^{G}$.

4a. Show that two conjugacy classes are either disjoint or equal. In other words conjugacy classes partition G.

4b. Show that $|C_G(a)| = 1$ iff $a \in Z(G)$ iff $|a^G| = 1$

4c. Let $G/C_G(a)$ denote the right coset space $\{C_G(a)g : g \in G\}$. Show that there is a one-to-one correspondence between $G/C_G(a)$ and a^G .

4d. Assume now that G is finite. By using parts a, b and c show that

$$G = |Z(G)| + \sum |G / C_G(a)|$$

where the summation runs over a set of elements *a* of *G* such that $C_G(a) \neq G$.

4e. Assume $|G| = p^n$ for some prime p and integer n > 0. By using part d show that $Z(G) \neq 1$.

4f. Assume *p* is a prime and divides |G|. Show that *G* has an element of order *p*. (**Hint:** Proceed by induction on |G|. First consider the case when *G* is abelian. Then use part d).

5. Let $H \triangleleft G$ and $X \leq G/H$. For $g \in G$, let g denote the image of g in G/H. Let $K = \{g \in G : g \in X\}.$

5a. Show that K ≤ G.
5b. Show that H ≤ K.
5c. Show that X = K/H.
5d. Show that X ⊲ G/H if and only if K ⊲ G.
5e. Show that K is the unique subgroup of G containing H that satisfies part c.

6. Let $S = \{g^2 : g \in G\}$.

6a. Is *S* necessarily a subgroup? Prove or disprove.

6b. Show that G'S is a normal subgroup of G. (G' denotes the subgroup generated by $\{x^{-1}y^{-1}xy : x, y \in G\}$).

6c. Show that G/G'S is a group of exponent 2.

7. Let $H \triangleleft G$ and K a normal subgroup of G containing H. **7a.** Show that $K/H \triangleleft G/H$. **7b.** Show that $(G/H)/(K/H) \approx G/K$. **8.** Let $H \triangleleft G$ and $K \leq G$.

8a. Show that $H \cap K \triangleleft K$.

8b. By a previous homework we know that $\langle H, K \rangle = HK$. Show that $HK/H \approx K/(H \cap K)$.

8c. Show that if *H* and *K* are two normal subgroups of finite index of *G*, then $H \cap K$ has also finite index in *G*.

9. Let $H \le G$. Let $N_G(H) = \{g \in G : gH = Hg\}$.

9a. Show that there exists a one to one correspondance between the right coset space $G/N_G(H)$ and the set $\{H^g : g \in G\}$.

9b. Let $n = [G : H] < \infty$. Show that $| \{H^g : g \in G\} |$ divides *n*.

9c. Assume *H* has finite index in *G*. Using 7b and 6c, show that $\bigcap_{g \in G} g^{-1} Hg$ has

finite index in G.

10a. Show that \mathbb{Q}^+ does not have a proper subgroup of finite index.

10b. Show that \mathbb{Q}^+ does not have a maximal proper subgroup.

10c. Show that among the subgroups of \mathbb{Q}^+ that does not contain 1, there is one which is maximal.

11. Let $H \le G$. Show that there is a subgroup of G which is maximal with respect to the property $X \cap H = \{1\}$.

12. Let $H \le G$. Show that $\bigcap_{g \in G} g^{-1} Hg$ is the unique maximal *G*-normal subgroup

of H.

13. Let $H \le G$. Let G/H denote the left coset space. For $g \in G$ and $xH \in G/H$, let $g^*(xH) = gxH$.

13a. Show that $g^* \in \text{Sym}(G/H)$.

13b. Show that the map $g \rightarrow g^*$ is a homomorphism from *G* into Sym(*G/H*). **13c.** What is the kernel of the homomorphism *?

13d. Assuming that $[G:H] = n < \infty$, show that $[G:\bigcap_{g \in G} g^{-1}Hg]$ divides n!.

14. Let $G^{\circ} = G^{(\circ)} = G$ and for $i \in \mathbb{N}$, define $G^{i+1} = [G, G^i]$ and $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.

14a. Show that $(G^{i})_{i}$ and $(G^{(i)})_{i}$ are descending chain of normal subgroups of *G*. **14b.** Show that $G^{(i)} \leq G^{i}$ for all *i*. **14c.** Show that for $i \leq j$, $(G/G^{(j)})^{(i)} = (G^{(i)}/G^{(j)})$.

15. An element σ of Sym(*n*) is said to be of type $(n_1, ..., n_k)$ if $n_1 \le ... \le n_k$ and σ is the product of *k* disjoint cycles each of length $n_1, ..., n_k$. For example, the element $(1 \ 2 \ 3)(4 \ 5)(6 \ 7 \ 8 \ 9)(10 \ 11)$

is of type (2, 2, 3, 4).

15a. Show that two elements of Sym(n) are conjugate by an element of Sym(n)if and only if they have the same type. (Two elements σ and τ of a group G are said to

be conjugate, if there is an $\alpha \in G$ such that $\sigma = \alpha^{-1}\tau\alpha$. **15b.** Let $\sigma = (123)(45)$. Calculate $|\sigma^{\text{Sym}(5)}|$ and $|\sigma^{\text{Sym}(6)}|$. **15c.** Compute $|C_{\text{Sym}(5)}(\sigma)|$ and $|C_{\text{Sym}(6)}(\sigma)|$.

15d. Find the elements of $C_{Sym(5)}(\sigma)$ and $C_{Sym(6)}(\sigma)$.